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Image Segmentation Using Bayesian Inference for Convex Variant
Mumford--Shah Variational Model\ast 
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Abstract. The Mumford--Shah model is a classical segmentation model, but its objective function is noncon-
vex. The smoothing and thresholding (SaT) approach is a convex variant of the Mumford--Shah
model, which seeks a smoothed approximation solution to the Mumford--Shah model. The SaT
approach separates the segmentation into two stages: first, a convex energy function is minimized to
obtain a smoothed image; then, a thresholding technique is applied to segment the smoothed image.
The energy function consists of three weighted terms and the weights are called the regularization
parameters. Selecting appropriate regularization parameters is crucial to achieving effective segmen-
tation results. Traditionally, the regularization parameters are chosen by trial-and-error, which is
a very time-consuming procedure and is not practical in real applications. In this paper, we apply
a Bayesian inference approach to infer the regularization parameters and estimate the smoothed
image. We analyze the convex variant Mumford--Shah variational model from a statistical perspec-
tive and then construct a hierarchical Bayesian model. A mean field variational family is used to
approximate the posterior distribution. The variational density of the smoothed image is assumed to
have a Gaussian density, and the hyperparameters are assumed to have Gamma variational densities.
All the parameters in the Gaussian density and Gamma densities are iteratively updated. Experi-
mental results show that the proposed approach is capable of generating high-quality segmentation
results. Although the proposed approach contains an inference step to estimate the regularization
parameters, it requires less CPU running time to obtain the smoothed image than previous methods.

Key words. image segmentation, Mumford--Shah model, Bayesian inference, mean field variational approxima-
tion, regularization parameters
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1. Introduction. Image segmentation is an important task in image processing with ap-
plications in various fields such as science, engineering, medicine, and commerce. Its aim is to
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partition the image into multiple parts or regions based on the characteristics of the pixels in
the image, allowing for subsequent analysis such as object recognition [37, 60, 73], image com-
pression/editing [9, 55], and occlusion boundary estimation within motion or stereo systems
[43, 75, 86]. There are many efficient approaches for image segmentation, e.g., the mathe-
matical model-based approaches [72, 91], pattern recognition techniques [87], tracking-based
approaches [42], statistical approaches [29], and artificial intelligence approaches [58], etc.

Image segmentation is intrinsically difficult because the images are usually degraded by
some blurs and corrupted by noise. In general, the standard image degradation model is

\bfg =\scrH \bfu + \bfn ,(1.1)

where \bfg \in \BbbR n is the degraded image, \bfu \in \BbbR m is the clean image, \bfn \in \BbbR n is the noise or the
texture, and the matrix \scrH \in \BbbR n\times m can be the identity operator for the denoising problem or
a blurring operator for the image restoration problem. The purpose of image segmentation
is to obtain a smoothed image \bfu from the given image \bfg such that \bfu has the piecewise
continuous regions with sharp boundaries and contains the global structural information.
Mumford and Shah [65, 66] proposed a classical image segmentation model, which has been
studied extensively [24, 26, 39, 52, 56, 72, 78, 88]. The model is to seek an optimal piecewise
smooth approximation \bfu by minimizing the following function:

min
\bfu ,\Gamma 

\Biggl\{ 
\beta 

2

\int 
\Omega 
(\bfg  - \scrH \bfu )2dx+

\lambda 1

2

\int 
\Omega \setminus \Gamma 

| \nabla \bfu | 2dx+ \lambda 2 \cdot Length(\Gamma )

\Biggr\} 
.(1.2)

Here \Omega is a bounded open connected set where \bfu is defined, \Gamma is a compact curve in \Omega .
The first term in (1.2) represents the data-fitting term and the next two terms represent
regularization terms. The positive parameters \beta , \lambda 1, and \lambda 2 measure the trade-off among the
fidelity between \bfg and \scrH \bfu , the smoothness of \bfu in the region \Omega \setminus \Gamma , and the regularity of \Gamma ,
respectively.

Since the energy function in (1.2) is nonconvex, it is difficult to find its minimizer [39]. In
order to deal with this numerical difficulty, many simplified models have been proposed, such
as restricting \bfu to be a piecewise constant function [52, 78]. Instead of seeking a piecewise
constant solution, a convex approximation approach of the Mumford--Shah model (1.2) was
proposed to obtain a smooth approximate solution in [21, 23]. This approach consists of two
stages. In the first stage, a smoothing procedure is applied by minimizing the convex function

min
\bfu 

\scrJ (\bfu ;\beta ,\lambda 1, \lambda 2)\equiv 
\biggl\{ 
\beta 

2

\int 
\Omega 
(\bfg  - \scrH \bfu )2dx+

\lambda 1

2

\int 
\Omega 
| \nabla \bfu | 2dx+ \lambda 2

\int 
\Omega 
| \nabla \bfu | dx

\biggr\} 
.(1.3)

The second stage involves employing a thresholding technique, such as the K-means method,
to segment the minimizer \bfu of (1.3). The convex approximation objective function can produce
exact solutions for the Mumford--Shah model in (1.2) for two-phase disk images [21, 23].

The selection of the regularization parameters in the model (1.3) affects the performance of
segmentation. Although there are three parameters in the minimization problem (1.3), we can
fix the parameter \beta and then tune the other two parameters. If the parameter \lambda 1 is set to 0,
the middle term in (1.3) vanishes and the problem becomes the classical total-variation (TV)
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250 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

image restoration problem. There are papers that propose methods to choose the optimal \lambda 2;
see [5, 80]. However, the middle term in (1.3) comes from the Mumford--Shah model (1.2) and
it is crucial because it allows small local variations in the minimizer \bfu . Without this term,
there will be staircase artifacts in the solution, which would lead to a spurious boundary in
the thresholded segmented image [21, 23].

In [21], the regularization parameters \{ \lambda i\} 2i=1 in (1.3) are selected by the trial-and-error
method. This means that we solve the minimization problem (1.3) with various values of
\{ \lambda i\} 2i=1. Then the optimal parameters \{ \lambda i\} 2i=1 are those that give the best segmentation
quality in the solution \bfu when compared with the ground truth. However, the trial-and-
error approach is computationally expensive because it involves trying all combinations of
regularization parameters, and it is time consuming. Moreover, this approach may not be
practical because we may not have access to the ground truth in practice.

Several approaches have been proposed to automatically select regularization parameters
for some classical variational problems, which include the generalized cross validation method
[41], discrepancy principle method [64], joint maximum a posterior method (JMAP) [14],
Bayesian inference method [27], and so on. In this paper, we apply the variational Bayesian
inference to select the regularization parameters for problem (1.3). Variational Bayesian in-
ference has been successfully applied to TV-regularized image restoration and blind image
deconvolution problem [27, 34, 54]. Similarly to the JMAP method, the variational Bayesian
inference method can simultaneously estimate the image and hyperparameter (i.e., regular-
ization parameters). However, while the JMAP method is to find the image \bfu and the hyper-
parameters \beta ,\lambda 1, \lambda 2 that maximize the posterior density p(\bfu , \theta | \bfg ) (here \theta = (\beta ,\lambda 1, \lambda 2)), the
variational Bayesian inference method is to seek a probability density function q(\bfu , \theta ) from
a set of tractable distribution families that approximates the posterior density p(\bfu , \theta | \bfg ) and
then to infer the image \bfu and the hyperparameters \beta ,\lambda 1, \lambda 2 from q(\bfu , \theta ).

The Kullback--Leibler divergence is used to measure the closeness of the density q(\bfu , \theta )
and the posterior density p(\bfu , \theta | \bfg ). Then we reformulate the inference as an optimization
problem. Under the mean field approximation assumption [13, 71], the variational density of
the image \bfu and the hyperparameter \theta can be evaluated by the approach of coordinate ascent
inference. However, obtaining the density of \bfu given the density of \theta is difficult because (1.3)
includes a TV norm term and the TV norm prior is not conjugate to the Gaussian likelihood,
which makes the inference intractable. In [27, 34, 54], the majorization-minimization approach
is applied to obtain a quadratic upper bound of the TV norm. In order to avoid a zero
denominator, a smoothed parameter is introduced in the quadratic function. The additional
smoothed parameter is a trade-off between the quality of the restored image edges and the
speed of convergence. Therefore, instead of the smoothed approach, we apply the Laplace
approximation approach to infer the variational distribution parameters of the image \bfu . The
obtained \bfu achieves the minimum of a TV regularization optimization problem. This means
that the \bfu we get is more accurate and our speed of convergence is not affected by the extra
smoothed parameter. The posterior density of the hyperparameter \theta has the form of Gamma
density; thus we assume that the variational density of \theta is Gamma. The parameters in the
densities of \bfu and \theta are iteratively updated. Numerical experiments show that our method
competes well with other methods that use trial-and-error to determine the best parameters
in terms of accuracy and is much faster in terms of time.
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 251

The rest of this paper is organized as follows. In section 2, we describe the hierarchical
Bayesian model, joint density, and hyperprior. In section 3, we apply variational inference to
infer the image \bfu and the regularization parameters \beta and \{ \lambda i\} 2i . Next, we show how to use
appropriate thresholds to segment \bfu by K-means. In section 4, we provide the experimental
results on grayscale and color images. Finally, the conclusions are given in section 5.

2. Bayesian model. In order to obtain the numerical solution of the minimization problem
(1.3), we formulate the objective function \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2) into a discretization form as follows:

\scrJ (\bfu ;\beta ,\lambda 1, \lambda 2)\equiv 
\beta 

2
\| \bfg  - \scrH \bfu \| 22 +

\lambda 1

2
\| \nabla \bfu \| 22 + \lambda 2 \| \nabla \bfu \| 1 .(2.1)

To simplify, we assume that all images are vectors reshaped from two-dimensional matrices
of size M \times N . The vectors \bfg ,\bfu \in X, where X is an Euclidean subspace of \BbbR MN with an
index set \Omega . The gradient \nabla \bfu is in X \times X given by (\nabla \bfu )i = ((\nabla h\bfu )i, (\nabla v\bfu )i), where \nabla h,\nabla v

represent the discrete version of the horizontal and vertical gradient operators respectively.
The backward difference is used to compute the discretization of the gradient, and a periodic
boundary condition is applied to extend the value of \bfu . We denote \nabla T being an adjoint of \nabla .
The TV term in (2.1) is defined as | | \nabla \bfu | | 1 :=

\sum 
i\in \Omega 

\sqrt{} 
(\nabla h\bfu )

2
i + (\nabla v\bfu )2i .

For convenience's sake, we summarize the symbols used in this paper.
\bullet \scrN (\mu ,\Sigma ): Gaussian density function with mean \mu and variance \Sigma .
\bullet \scrG (a, b): Gamma density function with shape parameter a and scale parameter b.
\bullet p(x) = \scrN (\mu x,\Sigma x): The variable x follows a Gaussian distribution with mean \mu x and

variance \Sigma x.
\bullet p(\cdot ): the true density function.
\bullet q(\cdot ): the variational density function .
\bullet qk(\cdot ): the variational density function in the kth iteration.

2.1. Maximum a posteriori (MAP) interpretation. In this subsection, we describe the
variational problem (1.3) from the statistical perspective. In the MAP approach [2, 67], we
assume that the parameters \beta ,\lambda 1, and \lambda 2 in (1.3) are known. We model the observed noise \bfn 
as a zero mean white Gaussian vector. Given the image \bfu and the noise variance \sigma 2, according
to the observation model (1.1), the conditional probability density of the random variable \bfg 
is

p(\bfg | \bfu , \beta ) =\scrN (\bfg | \scrH \bfu ,
1

\beta 
I)\propto \beta MN/2 exp

\biggl[ 
 - \beta 

2
| | \bfg  - \scrH \bfu | | 22

\biggr] 
.(2.2)

Here \scrN denotes the Gaussian density function, and the parameter \beta is related to the noise
variance \sigma 2 by \beta = 1/\sigma 2.

The Bayesian approach requires choosing a prior distribution on the image \bfu . The choice
of prior can significantly affect the quality of the resulting image reconstructions. The prior
corresponding to the objective function \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2) in (2.1) is an unnormalized hybrid
Gaussian--Laplacian distribution prior for the image \bfu with parameters \lambda 1 and \lambda 2,

p(\bfu | \lambda 1, \lambda 2) =
1

Z(\lambda 1, \lambda 2)
exp

\biggl( 
 - \lambda 1

2
\| \nabla \bfu \| 22  - \lambda 2 \| \nabla \bfu \| 1

\biggr) 
,(2.3)
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252 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

where Z(\lambda 1, \lambda 2) is a normalizing factor known as the partition function, and it is defined by

Z(\lambda 1, \lambda 2) =

\int 
exp

\biggl( 
 - \lambda 1

2
| | \nabla \bfu | | 22  - \lambda 2| | \nabla \bfu | | 1

\biggr) 
d\bfu .(2.4)

We remark that we can choose other priors on the image \bfu . These priors include the Laplace
prior [7, 81, 89], Gaussian prior [28, 31, 45], simultaneous autoregression prior [63], TV prior
[4, 6] and its variants [47, 48, 83, 84, 85], and so on. If we change the prior on the image \bfu ,
the objective function in the minimization problem should be modified accordingly.

We remark that the hybrid Gaussian--Laplacian mixture model (HGLMM) of the image \bfu 
is a geometric means of the Gaussian distribution with the mean 0, the variance 1

\lambda 1
, the Lapla-

cian distribution with the location parameter 0, and the scale parameter \lambda 2. The HGLMM
has been used for various applications including image annotation [51], annealed importance
sampling [69], and the averaged predictions of multiple neural networks employing a softmax
layer [44]. We remark that there exist small local variations in the image; the hybrid distribu-
tion can prevent the staircase artifacts in the image \bfu , which would lead to spurious boundary
in the threshold segmented image.

When the parameters \beta ,\lambda 1, and \lambda 2 are given, we just need to estimate the unknown image
\bfu . We can derive the posterior density p(\bfu | \bfg , \beta ,\lambda 1, \lambda 2), and the solution \bfu can be obtained
by a MAP approach,

\widehat \bfu = argmax
\bfu 

p(\bfu | \bfg , \beta ,\lambda 1, \lambda 2) = argmax
\bfu 

p(\bfg | \bfu , \beta )p(\bfu | \lambda 1, \lambda 2)

p(\bfg )
.

We want to maximize the right side where the denominator p(\bfg ) has no direct functional
dependence with \bfu . Therefore, the denominator p(\bfg ) can be removed. Taking the negative
logarithm to the posterior density, it is straightforward to observe that the MAP approach is
equivalent to the minimization problem in (2.1). The first term in (2.1) is derived from the
likelihood function while the other two terms are derived from the prior of the image.

2.2. Joint density and hyperprior. In the MAP approach of the convex variant image
segmentation model, we need to know the values of the regularization parameters \beta ,\lambda 1, and
\lambda 2 in order to obtain \bfu . However, they are unknown in practical applications and we need to
choose them. In the framework of Bayesian estimation, the parameters \beta ,\lambda 1, \lambda 2 are treated as
the latent variables, which are called hyperparameters. In this paper, we assume that \beta ,\lambda 1, \lambda 2

are independent of each other, where \beta is the hyperparameter of the data density p(\bfg | \bfu , \beta ),
\lambda 1 and \lambda 2 are the hyperparameters of the image prior density p(\bfu | \lambda 1, \lambda 2). For simplification,
we set \theta = (\beta ,\lambda 1, \lambda 2). The joint density of the variable \bfg ,\bfu , \theta is given by

p(\bfg ,\bfu , \theta ) = p(\bfg | \bfu , \beta )p(\bfu | \lambda 1, \lambda 2)p(\lambda 1)p(\lambda 2)p(\beta ).(2.5)

The functions p(\lambda 1), p(\lambda 2), and p(\beta ) are the prior densities assigned to the hyperparameters,
which are also known as hyperpriors [11]. There are three common types of hyperparametric
priors: uniform prior, Jeffreys prior, and Gamma prior. The probability density function
(pdf) of the uniform prior is constant, the Gamma distribution is the conjugate distribution
of the Gaussian distribution [32, 67], and the prior pdf based on the Jeffreys' prior is invariant
under a transformation of parameter [47].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\lambda 1 \lambda 2 \beta 

\bfu 

\bfg Observed image

Restored image

Hyperparameters

Figure 1. Graphical model to represent the dependencies among the random variables. The edges represent
the dependencies among the variables.

We plot the dependencies among the random variables and the parameters by a graphical
model shown in Figure 1. The circular nodes correspond to the random variables. The edges
represent the dependencies among the variables. Each circular node represents a conditional
probability density that defines the distribution of the random variable associated with that
node given the values of its parent variables.

Applying the joint MAP (JMAP) estimation [14], we can estimate the image \bfu and the
regularization parameters \theta = (\beta ,\lambda 1, \lambda 2) together:

(\widehat \bfu , \widehat \theta ) = argmax
\bfu ,\theta 

p(\bfu , \theta | \bfg )

= argmin
\bfu ,\theta 

 - log p(\bfg | \bfu , \beta ) - log p(\bfu | \lambda 1, \lambda 2) - log p(\lambda 1) - log p(\lambda 2) - log p(\beta ).(2.6)

We remark that the objective function of the minimization problem in (2.6) is nonconvex,
which makes it difficult to find an optimal solution numerically.

3. Variational Bayesian inference. In this section, we apply variational inference to infer
\bfu and \theta . Unlike JMAP, the aim of variational inference does not maximize the posterior
density p(\bfu , \theta | \bfg ), but seeks a variational density q(\bfu , \theta ) to approximate the posterior density
p(\bfu , \theta | \bfg ), i.e., q(\bfu , \theta )\approx p(\bfu , \theta | \bfg ), and then uses q(\bfu , \theta ) to infer on \bfu and \theta by evaluating their
expectations [13]. We remark that both q(\bfu , \theta ) and p(\bfu , \theta | \bfg ) are PDFs. However, q(\bfu , \theta ) is
an approximation of the true density p(\bfu , \theta | \bfg ) and is obtained using variational inference.

3.1. Kullback--Leibler divergence. In variational inference [13], we specify a set of densi-
ties \scrQ to approximate the posterior density p(\bfu , \theta | \bfg ). Then we choose an optimal variational
density q(\bfu , \theta )\in \scrQ which is closest to p(\bfu , \theta | \bfg ). The closeness of the two densities is measured
by the Kullback--Leibler (KL) divergence, which is defined as follows:

KL(q(\bfu , \theta )| p(\bfu , \theta | \bfg )) =
\int 
\bfu ,\theta 

q(\bfu , \theta ) log

\biggl( 
q(\bfu , \theta )

p(\bfu , \theta | \bfg )

\biggr) 
d\bfu d\theta 

=\BbbE q(\bfu ,\theta ) log

\biggl( 
q(\bfu , \theta )

p(\bfu , \theta | \bfg )

\biggr) 
.(3.1)
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The variational inference is to find a variational density q(\bfu , \theta ) \in \scrQ by minimizing the KL
divergence, i.e.,

q\ast (\bfu , \theta ) = argmin
q(\bfu ,\theta )\in \scrQ 

KL(q(\bfu , \theta )| p(\bfu , \theta | \bfg )).

According to the Bayesian rule, the conditional density of the latent variables \bfu and \theta 
given the observed image \bfg can be formulated by [13]:

p(\bfu , \theta | \bfg ) = p(\bfg ,\bfu , \theta )

p(\bfg )
.

Notice that the joint density p(\bfg ,\bfu , \theta ) is given by (2.5). The marginal density of \bfg is given by

p(\bfg ) =

\int 
\bfu ,\theta 

p(\bfg ,\bfu , \theta )d\bfu d\theta 

=

\int 
\bfu ,\beta ,\lambda 1,\lambda 2

p(\bfg | \bfu , \beta )p(\bfu | \lambda 1, \lambda 2)p(\beta )p(\lambda 1)p(\lambda 2)d\bfu d\beta d\lambda 1d\lambda 2.

The density p(\bfg ) is called the evidence which is often analytically intractable and is difficult
to obtain [67]. It is because we need to compute the integral in very high dimension which is
generally not straightforward.

Some approximation methods have been proposed to compute the posterior density, such
as the Markov chain Monte Carlo (MCMC) method [61], variational approximation [27, 50],
and expectation propagation [38]. Here we focus our attention on variational approximation,
because it is a deterministic optimization algorithm that has guaranteed convergence, and
similarly to MCMC, it estimates the posterior without an additional step to perform inference.
According to the numerical results shown in the literature [48, 49], the difference in accuracy
between the Gibbs sampling and the variational inference is not significant. Therefore we
compared our approach with the variational inference only.

3.2. Evidence lower bound. In this section, we review the evidence lower bound; more
details can be found in [13]. Using p(\bfg ,\bfu , \theta ) = p(\bfu , \theta | \bfg )p(\bfg ), we have

KL(q(\bfu , \theta )| p(\bfu , \theta | \bfg )) = log p(\bfg ) - \scrL (q(\bfu , \theta )),

where \scrL (q(\bfu , \theta )) is the evidence lower bound (ELBO) defined as

\scrL (q(\bfu , \theta )) =\BbbE q(\bfu ,\theta )(log p(\bfg ,\bfu , \theta )) - \BbbE q(\bfu ,\theta )(log q(\bfu , \theta ))

=\BbbE q(\bfu ,\theta ) log

\biggl( 
p(\bfg ,\bfu , \theta )

q(\bfu , \theta )

\biggr) 
.(3.2)

According to Jensen's inequality, we have [13]

log p(\bfg ) = log

\int 
\bfu ,\theta 

q(\bfu , \theta )
p(\bfg ,\bfu , \theta )

q(\bfu , \theta )
d\bfu d\theta = log\BbbE q(\bfu ,\theta )

\biggl( 
p(\bfg ,\bfu , \theta )

q(\bfu , \theta )

\biggr) 
\geq \scrL (q(\bfu , \theta )).
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 255

Hence the KL divergence is nonnegative and it is equal to zero when q(\bfu , \theta ) = p(\bfu , \theta | \bfg ).
Because the KL divergence contains the logarithm of the evidence log p(\bfg ), we cannot minimize
KL divergence exactly. Instead we consider maximizing the ELBO

q\ast (\bfu , \theta ) = argmax
q(\bfu ,\theta )\in \scrQ 

\scrL (q(\bfu , \theta )).(3.3)

The reason is that maximizing the ELBO is mathematically equivalent to minimizing the KL
divergence and the ELBO only requires the joint probability density p(\bfg ,\bfu , \theta ) and an approx-
imation density q(\bfu , \theta ). The complexity of the density q(\bfu , \theta ) determines the complexity of
the maximization problem. In the following, we apply the mean field approximation method
to represent q(\bfu , \theta ).

3.3. Mean field variational approximation method. We specify the mean field variational
family to approximate the posterior density. In this approach, the latent variables are mutually
independent and each variable has its own variational factor [13, 71]. Therefore, we can express
the variational density as

q(\bfu , \theta ) = q(\bfu )q(\theta ) and q(\theta ) = q(\beta )q(\lambda 1)q(\lambda 2).

It is important to choose the variational densities q(\bfu ) and q(\theta ). If the variational density
is very complex, it will be difficult to solve the minimization problem. The image \bfu has
a Gaussian--Laplacian prior density and we cannot find a closed form q(\bfu ) to approximate
the posterior density of \bfu . One can consider employing a Gibbs sampling method [36, 68]
or a Laplace approximation method [74, 76] to obtain q(\bfu ) with closed form. The Gibbs
sampling is an algorithm in MCMC while the Laplace approximation refers to approximating
the complex distribution with a Gaussian distribution.

In this paper, we apply the Laplace approximation to compute the variational density q(\bfu )
in section 3.4.2. For the parameter \theta , the likelihood function of \theta is the form of the Gamma
density (see (2.2), (2.3)), and the posterior density of \theta is Gamma. Hence q(\theta ) should also be
a Gamma density. In fact, the Gamma density is often used as a density with nonnegative
parameters; see [27, 34, 63]. The density function of Gamma is defined as

p(x) = \scrG (x| ax, bx) =
(bx)

ax

\Gamma (ax)
xax - 1 exp[ - xbx],(3.4)

where \Gamma (\cdot ) is the Gamma function, ax > 0, bx > 0 represent shape and scale parameters
respectively [10]. Then, the density functions of the hyperparameters \beta , \lambda 1, and \lambda 2 are

p(\beta ) = \scrG (\beta | a\beta , b\beta ), p(\lambda 1) = \scrG (\lambda 1| a\lambda 1
, b\lambda 1

), p(\lambda 2) = \scrG (\lambda 2| a\lambda 2
, b\lambda 2

).

The mean and variance of the Gamma distribution [10] are

\BbbE (x) =
ax
bx

, \BbbV ar(x) =
ax

(bx)2
.(3.5)

Let \scrQ \scrG be the set of Gamma densities and \scrQ \scrN be the set of Gaussian densities. Then
we have \scrQ = \scrQ \scrN \times \scrQ \scrG . We choose the variational density q(\bfu ) \in \scrQ \scrN and q(x) \in \scrQ \scrG 
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256 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

(x \in \{ \beta ,\lambda 1, \lambda 2\} ) in (3.3). More precisely, the image \bfu has a Gaussian density with the mean
\mu and the variance \Sigma and the hyperparameter x (x \in \{ \beta ,\lambda 1, \lambda 2\} ) has a Gamma density with
the shape parameter \widetilde ax and the scale parameter \widetilde bx:

q(\bfu ) =\scrN (\mu ,\Sigma )\in \scrQ \scrN and q(\beta ) = \scrG (\widetilde a\beta ,\widetilde b\beta ), q(\lambda i) = \scrG (\widetilde a\lambda i
,\widetilde b\lambda i

)\in \scrQ \scrG , i= 1,2.

It is worth noting that although (ax, bx) and (\widetilde ax,\widetilde bx) are the shape and scale parameters of
the Gamma distribution, the former is the parameter of the prior p(\theta ) while the latter is the
parameter of the approximate posterior q(\theta ). In this paper, we will infer the parameters \mu ,\Sigma 
and \widetilde ax,\widetilde bx (x\in \{ \beta ,\lambda 1, \lambda 2\} ) by using coordinate ascent variational inference.

3.4. Coordinate ascent variational inference. Coordinate ascent variational inference
[13, 79] is widely applied to maximize the ELBO \scrL (q(\bfu ), q(\theta )). Starting from an initial
density (q0(\theta ), q0(\bfu )) with q0(\theta ) \in \scrQ \scrG , q0(\bfu ) \in \scrQ \scrN , the densities of \bfu and \theta are updated as
follows:

qk(\theta ) = argmax
q(\theta )\in \scrQ \scrG 

\scrL (qk - 1(\bfu ), q(\theta )),(3.6)

qk(\bfu ) = argmax
q(\bfu )\in \scrQ \scrN 

\scrL (q(\bfu ), qk(\theta )).(3.7)

Here, qk(\theta ), qk(\bfu ) refer to the variational densities obtained in the kth iteration. We will
discuss how to maximize (3.6) and (3.7) in the following subsections.

3.4.1. The density \bfitq \bfitk (\bfittheta ). We first consider how to obtain the density qk(\theta ). Assume
that we have obtained qk - 1(\bfitu ) = \scrN (\mu k - 1

\bfu ,\Sigma k - 1
\bfu ). The necessary condition for optimality of

the unconstrained optimization problem

max
q(\theta )

\scrL (qk - 1(\bfu ), q(\theta ))

is the partial derivative with respect to q(\theta ) being equal to 0, i.e.,

\partial \scrL (qk - 1(\bfu ), q(\theta ))

\partial q(\theta )
=\BbbE qk - 1(\bfu )(log p(\bfg ,\bfu , \theta )) - log q(\theta ) - C1 = 0,

where C1 = 1+
\int 
\bfu qk - 1(\bfu ) log qk - 1(\bfu ). Therefore, we obtain

qk(\theta )\propto exp(\BbbE qk - 1(\bfu )(log p(\bfg ,\bfu , \theta ))).(3.8)

By using p(\bfg | \bfu , \beta ) given in (2.2) and p(\bfu | \lambda 1, \lambda 2) given in (2.3) and substituting them into
(2.5), we obtain

p(\bfg ,\bfu , \theta )\propto \beta 
MN

2

Z(\lambda 1, \lambda 2)
exp ( - \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2))p(\theta ).(3.9)

Here \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2) is given by (2.1) and p(\theta ) = p(\beta )p(\lambda 1)p(\lambda 2). In the literature [1, 5, 8, 70, 77],
the Gamma distribution is widely used as the prior of the hyperparameters \beta ,\lambda 1, and \lambda 2. How-
ever, when we choose the Gamma prior, we do not have any prior knowledge about the shape
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 257

and scale parameters in the Gamma density. It is common to fix the shape and scale param-
eters to very small values (for example, ax = bx = 10 - 4 in (3.4)) such that the effect on the
sampled values for the hyperparameters are negligible [1, 5, 8, 70], or they are set to zero,
i.e., ax = bx = 0 [77]. In the latter case, the improper noninformative prior distributions are
placed on \beta and \lambda 1, \lambda 2 so that p(x) \propto 1/x for x \in \{ \beta ,\lambda 1, \lambda 2\} . The improper noninformative
prior is also called a vague prior or weakly informative prior [35].

In this paper, the shape and scale parameters of the Gamma prior are set to zero. Con-
sequently, the jointed density is given by

p(\bfg ,\bfu , \theta )\propto \beta 
MN

2
 - 1

\lambda 1\lambda 2Z(\lambda 1, \lambda 2)
exp ( - \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2)) .(3.10)

According to the mean field approximation method, we have qk(\theta ) = qk(\beta )qk(\lambda 1)qk(\lambda 2) with

qk(\beta )\propto \beta \widetilde ak
\beta  - 1 exp( - \beta \widetilde bk\beta ) and qk(\lambda i)\propto \beta \widetilde ak

\lambda i
 - 1 exp( - \lambda i

\widetilde bk\lambda i
), i= 1,2.

Once we obtain the densities of the hyperparameters \beta ,\lambda i (i= 1,2), we can infer the regular-
ization parameters by their mean as follows (see (3.5)):

\mu k
\beta =

\widetilde ak\beta \widetilde bk\beta , \mu k
\lambda 1

=
\widetilde ak\lambda 1\widetilde bk\lambda 1

, and \mu k
\lambda 2

=
\widetilde ak\lambda 2\widetilde bk\lambda 2

.(3.11)

Now we consider how to compute \widetilde akx and \widetilde bkx, x = \beta ,\lambda 1, \lambda 2. Comparing these density
functions with (3.10), we can easily identify that

\widetilde ak\beta = MN

2

and \left\{     
\widetilde bk\beta = 1

2\BbbE qk - 1(\bfu )(| | \bfg  - \scrH \bfu | | 22),\widetilde bk\lambda 1
= 1

2\BbbE qk - 1(\bfu )(| | \nabla \bfu | | 22),\widetilde bk\lambda 2
= \BbbE qk - 1(\bfu )(| | \nabla \bfu | | 1).

(3.12)

We observe that there exist closed-form formulas for the shape and scale parameters of the
variable \beta , which imply that qk(\beta ) in (3.8) is a feasible solution of the optimization problem
in (3.6) and the constraint with respect to \beta is inactive. However, there are no closed-form
formulas for the shape parameters of the variables \lambda i, i= 1,2, because the partition Z(\lambda 1, \lambda 2)
in (2.4) does not have a closed form. Hence, the right side of (3.10) cannot be expressed as
a Gamma density with respect to \lambda i, i = 1,2, and the constraint with respect to \lambda i, i = 1,2,
is active. We are required to determine the values of \widetilde ak\lambda i

, i = 1,2. Applying the mean field
variational method, we know that the latent variables are mutually independent and each
variable has its own variational factor [13, 71]. Hence Z(\lambda 1, \lambda 2) can be decomposed into the
product of two independent partition functions, i.e., Z(\lambda 1, \lambda 2) =Z1(\lambda 1)Z2(\lambda 2). In general, the
partition function Zi(x), i= 1,2, can be approximated by the power function Zi(x)\propto x - \alpha MN ,
where \alpha is a positive real number and the coefficient of MN comes from the size of the image \bfu 
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258 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

[62]. For example, Z(\lambda )\propto \lambda MN/2 for the prior p(\bfu )\propto exp( - \lambda 
2 \| \nabla \bfu \| 22) in [70] and Z(\lambda )\propto \lambda MN

for the prior p(\bfu )\propto exp( - \lambda \| \nabla \bfu \| 1) in [7]. Hence, we set

\widetilde ak\lambda i
= \alpha k

iMN,i= 1,2.(3.13)

The parameters \alpha 1 and \alpha 2 in (3.13) will be chosen by heuristically experimental evidence
[1, 5, 70] or the sequential imputation method [12, 53]. In the former approach, the parameters
are fixed to constants. In the latter approach, we use an iteratively updated procedure to
obtain estimates of \alpha 1 and \alpha 2. During the iterative procedure, we have a sequence of shape
parameter \{ \widetilde ak\lambda i

\} and scale parameter \{ \widetilde bk\lambda i
\} (see (3.12) and (3.13)), and then the mean of the

parameter \lambda i can be obtained by \mu k
\lambda i

= \widetilde ak\lambda i
/\widetilde bk\lambda i

(i= 1,2). Assuming that we have obtained d

pairs of (\widetilde aj\lambda i
,\widetilde bj\lambda i

) (i= 1,2, j = 0,1, . . . , d) and the parameters \widetilde aj\lambda i
,\widetilde bj\lambda i

are independent (see [53]
for details), then the posterior mean of \lambda i can be estimated by the sequential imputations

\widetilde \mu \lambda i
=

1

d+ 1

d\sum 
j=0

\BbbE (\lambda i| \widetilde aj\lambda i
,\widetilde bj\lambda i

), i= 1,2,(3.14)

where \widetilde \mu \lambda i
(i = 1,2) is a natural unbiased estimate of \mu \lambda i

(i = 1,2) [12, 53]. By expectation of
the Gamma distribution, we have

\BbbE (\lambda i| \widetilde ak\lambda i
,\widetilde bk\lambda i

) = \mu k
\lambda i
, i= 1,2.

By the relationship among the shape parameter a, the scale parameter b, and the expectation
\mu , we have \mu = a/b. It is natural to update the shape parameter \widetilde ak\lambda i

as \widetilde ak\lambda i
=\widetilde bk\lambda i

\widetilde \mu k
\lambda i
; here

\widetilde \mu k
\lambda i
=

1

k

k - 1\sum 
j=0

\BbbE (\lambda i| \widetilde aj\lambda i
,\widetilde bj\lambda i

).

Then we obtain

\widetilde ak\lambda i
=

\widetilde bk\lambda i

k

k - 1\sum 
j=0

\mu j
\lambda i
.(3.15)

In (3.12), to get the scale parameters in the Gamma density, one needs to compute the
expectation over \bfu . We now consider how to compute these expectations. Let Tr(A) be the
trace of the matrix A. It is easy to check that, if q(\bfx ) =\scrN (\mu \bfx ,\Sigma \bfx ), we have

\BbbE q(\bfx )(\| A\bfx  - \bfb \| 22) = \| A\mu \bfx  - \bfb \| 22 +Tr(ATA\Sigma \bfx ).

Hence, using qk - 1(\bfu ) =\scrN (\mu k - 1
\bfu ,\Sigma k - 1

\bfu ), we have\biggl\{ 
\BbbE qk - 1(\bfu )(| | \bfg  - \scrH \bfu | | 22) = | | \bfg  - \scrH \mu k - 1

\bfu | | 22 +Tr(\scrH T\scrH \Sigma k - 1
\bfu ),

\BbbE qk - 1(\bfu )(| | \nabla \bfu | | 22) = | | \nabla \mu k - 1
\bfu | | 22 +Tr(\nabla T\nabla \Sigma k - 1

\bfu ),
(3.16)

where \scrH T ,\nabla T are the conjugate transpose of \scrH and \nabla , respectively. The expectation of
\| \nabla \bfu \| 1 is difficult to evaluate due to the form of the TV prior. One approach is to apply the
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 259

method of iteratively reweighted least squares (IRLS) to approximate \| \nabla \bfu \| 1; see [30]. In the
IRLS approach, the L1-norm \| \bfx \| 1 is represented by the weighted least square norm \| \bfx \| 2Wk

with iteratively updated weights Wk. Here Wk is a diagonal matrix with diagonal entries
1/(\bfx 2

k + \epsilon ) - 1/2 with a given parameter \epsilon > 0, and \bfx k is the solution at the kth iteration step.
Here we apply the weighted norm \| \nabla \bfu \| 2Wk - 1

to approximate \| \nabla \bfu \| 1. The diagonal entry of

the weighted matrix Wk - 1 is given by 1/(
\bigm| \bigm| \nabla \mu k - 1

\bfu 

\bigm| \bigm| + \epsilon ), where \epsilon is a positive number set to
10 - 3 in the paper. Hence we have

\BbbE qk - 1(\bfu )(\| \nabla \bfu \| 1)\approx 
\bigm\| \bigm\| \bigm\| \nabla \mu k - 1

\bfu 

\bigm\| \bigm\| \bigm\| 2
Wk - 1

+Tr(\nabla TWk - 1\nabla \Sigma k - 1
\bfu ).(3.17)

3.4.2. The density \bfitq \bfitk (\bfu ). Next we find the density qk(\bfu ) in (3.7). The necessary condi-
tion for optimality of the unconstrained optimization problem

max
q(\bfu )\in \scrQ \scrN 

\scrL (q(\bfu ), qk(\theta ))

is the partial derivative with respect to q(\bfu ) being equal to 0, i.e.,

\partial \scrL (q(\bfu ), qk(\theta ))
\partial q(\bfu )

=\BbbE qk(\theta )(log p(\bfg ,\bfu , \theta )) - log q(\bfu ) - C2 = 0,

where C2 = 1 +
\int 
\bfu qk(\theta ) log qk(\theta ). Substituting the joint density p(\bfg ,\bfu , \theta ) in (2.5) and the

mean of hyperparameter \beta ,\lambda i (i= 1,2) in (3.11) into the above formulation, the density qk(\bfu )
can be rewritten as follows:

\widehat qk(\bfu )\propto exp
\Bigl( 
 - \scrJ (\bfu ;\mu k

\beta , \mu 
k
\lambda 1
, \mu k

\lambda 2
)
\Bigr) 
,

where \widehat qk(\bfu ) denote the variational density satisfying the above necessary condition. Recalling
the definition of the function \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2) in (2.1), we know that the function \scrJ (\bfu ;\beta ,\lambda 1, \lambda 2)
is not quadratic, which implies that \widehat qk(\bfu ) is an unnormalized density and the constraint in
the optimization problem (3.7) is active.

In order to obtain a feasible solution of (3.7), we apply the Laplace approximation scheme
[76] to approximate \widehat qk(\bfu ) such that qk(\bfu ) is a Gaussian density. The main idea is to find a
Gaussian approximation of the unnormalized density centered at its maximum. The Laplace
approximation consists of the following three steps.

(1) Estimation of the mean. We find a maximum \mu \bfu of the density \widehat qk(\bfu ), which is achieved
at the minimum of the function \scrJ (\bfu ;\mu k

\beta , \mu 
k
\lambda 1
, \mu k

\lambda 2
). Thus we have

\mu k
\bfu = argmin

\bfu 
\scrJ (\bfu ;\mu k

\beta , \mu 
k
\lambda 1
, \mu k

\lambda 2
)

= argmin
\bfu 

\mu k
\beta 

2
\| \bfg  - \scrH \bfu \| 22 +

\mu k
\lambda 1

2
\| \nabla \bfu \| 22 + \mu k

\lambda 2
\| \nabla \bfu \| 1 .(3.18)

The above minimization problem can be solved by the alternating direction method
of multipliers algorithm [15, 46], split-Bregman algorithm [40, 18], and primal-dual
method [22, 25, 33]. Here we apply the primal-dual method to obtain the
minimizer \bfu .
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260 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

(2) Estimation of the covariance. After calculating \mu k
\bfu , we approximate the term \| \nabla \bfu \| 1

with a weighted least square term \| \nabla \bfu \| 2Wk
; see IRLS in [30]. Here Wk is the diagonal

matrix with diagonal entries 1/(
\bigm| \bigm| (\nabla \mu k

\bfu )
\bigm| \bigm| + \epsilon ), where \epsilon > 0 is a given parameter (also

\epsilon = 10 - 3). Thus we have the following approximation:

\scrJ (\bfu ;\mu k
\beta , \mu 

k
\lambda 1
, \mu k

\lambda 2
)\approx 

\mu k
\beta 

2
\| \bfg  - \scrH \bfu \| 22 +

\mu k
\lambda 1

2
\| \nabla \bfu \| 22 + \mu k

\lambda 2
\| \nabla \bfu \| 2Wk

.

Noticing that \widehat qk(\bfu )\propto exp
\Bigl( 
 - \scrJ (\bfu ;\mu k

\beta , \mu 
k
\lambda 1
, \mu k

\lambda 2
)
\Bigr) 
, we obtain

log \widehat qk(\bfu )\propto  - 1

2

\Bigl( 
\bfu  - \mu k

\bfu 

\Bigr) T \Bigl( 
\Sigma k
\bfu 

\Bigr)  - 1 \Bigl( 
\bfu  - \mu k

\bfu 

\Bigr) 
.

Here \Sigma k
\bfu is a symmetric matrix defined by

\Sigma k
\bfu =

\Bigl( 
\mu k
\beta \scrH T\scrH + \mu k

\lambda 1
\nabla T\nabla + \mu k

\lambda 2
\nabla TWk\nabla 

\Bigr)  - 1
.(3.19)

(3) Construction of the density function. We define the approximation density as

qk(\bfitu ) =\scrN (\bfitmu k
\bfu ,\Sigma 

k
\bfu ).(3.20)

3.5. Determination of the segmentation threshold. Once we have obtained the smoothed
image \bfu by the variational Bayesian inference, we can apply a thresholding procedure to get
the segmented solution in the next stage; see the 2-stage segmentation method in [21]. In this
subsection, we review this thresholding procedure which is to apply the K-means method [82]
to automatically select the threshold. The thresholding procedure consists of the following
steps.

(1) Image normalization. The image \bfu is normalized to [0,1] using the linear transforma-
tion formula as follows:

\=\bfu =
1

\bfu \mathrm{m}\mathrm{a}\mathrm{x}  - \bfu \mathrm{m}\mathrm{i}\mathrm{n}
(\bfu  - \bfu \mathrm{m}\mathrm{i}\mathrm{n} \cdot \bfone ).(3.21)

Here \bfu \mathrm{m}\mathrm{a}\mathrm{x},\bfu \mathrm{m}\mathrm{i}\mathrm{n} correspond to the maximum and minimum of \bfu , respectively; \bfone is a
vector of all ones with the same dimension as \bfu . We remark that the above linear
transformation formula is for a gray image. In order to extend to the color image, the
normalization scheme can be applied for each channel.

(2) Pixel cluster. The K-means method is applied to divide the image into K phases
T1, . . . , TK , where K is the number of phases, and we have T1 \cup T2 \cup \cdot \cdot \cdot \cup TK =\Omega .

(3) Threshold vector estimation. We compute the mean \rho i of each category Ti (i =
1, . . . ,K) by

\rho i =

\int 
Ti
\=\bfu dx\int 

Ti
dx

, i= 1,2, . . . ,K,(3.22)

where \rho i is a scalar if \=\bfu is a gray image or is an l-vector if \=\bfu is an l-channel image.
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 261

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone Segmentation algorithm using variational Bayesian inference.

\bfI \bfn \bfp \bfu \bft \bfs : \bfg ,\scrH ,K.
\bfO \bfu \bft \bfp \bfu \bft \bfs : \bfu , \beta ,\lambda 1, \lambda 2.
1: Initialize \alpha 0

1 = 0.1, \alpha 0
2 = 0.1, \mu 0

\bfu = \bfg /2, \Sigma 0
\bfu = \bfzero .

2: \widetilde a\beta =MN/2.
3: \bfw \bfh \bfi \bfl \bfe convergence criterion not met \bfd \bfo 
4: Compute \widetilde ak\lambda i

by (3.15).

5: Compute \widetilde bk\beta ,\widetilde bk\lambda i
(i= 1,2) using (3.12).

6: qk(\beta ) = \scrG (\widetilde a\beta ,\widetilde bk\beta ), qk(\lambda i) = \scrG (\widetilde ak\lambda i
,\widetilde bk\lambda i

).

7: Compute \mu k
\beta , \mu 

k
\lambda i
(i= 1,2) using (3.11).

8: Compute \mu k
\bfu and \Sigma k

\bfu using (3.18) and (3.19).
9: qk(\bfu ) =\scrN (\bfitmu k

\bfu ,\Sigma 
k
\bfu ).

10: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

11: \bfr \bfe \bft \bfu \bfr \bfn \bfu = \mu k+1
\bfu , \beta = \mu k+1

\beta , \lambda 1 = \mu k+1
\lambda 1

and \lambda 2 = \mu k+1
\lambda 2

.

12: Apply K-means algorithm to segment the image.

(4) Image segmentation. The ith phase of \bfu is given by

\Omega i :=

\biggl\{ 
\ell \in \Omega : | | (\=\bfu )\ell  - \rho i| | 2 = min

1\leq j\leq K
| | (\=\bfu )\ell  - \rho j | | 2

\biggr\} 
, i= 1, . . . ,K,

where (\=\bfu )\ell denotes the value of \=\bfu at the \ell th pixel.
Finally, we summarize the proposed adaptive segmentation method in Algorithm 3.1.
The initial value of \alpha 1, \alpha 2, \mu 

0
\bfu , and \Sigma 0

\bfu are set to \alpha 0
1 = \alpha 0

2 = 0.1 and \mu 0
\bfu = \bfg /2,\Sigma 0

\bfu = \bfzero . We

remark that when \Sigma 0
\bfu = \bfzero , we have \widetilde b1\beta = 1

2 | | \bfg  - \scrH \mu 0
\bfu | | 22, \widetilde b1\lambda 1

= 1
2 | | \nabla \mu 0

\bfu | | 22, and \widetilde b1\lambda 2
=
\bigm\| \bigm\| \nabla \mu 0

\bfu 

\bigm\| \bigm\| 2
Wk - 1

according to (3.12), (3.16), and (3.17).

4. Numerical experiments. In this section, we give experimental results to illustrate the
performance of the proposed method. All results were obtained under Windows and MATLAB
R2018b on a PC with a 3.4GHz CPU processor and 4GB of RAM. We apply the segmentation
accuracy (SA) to measure the quality of the segmentation results. The SA is defined as

SA :=
\#correctly classified pixels

\#all pixels
.(4.1)

Accordingly, we know that SA\leq 1, and the larger the SA, the better the segmentation result.

4.1. Choice of the parameters. The parameters \alpha 1 and \alpha 2 in (3.13) will be chosen by
heuristically experimental evidence [1, 5, 70] or the sequential imputation method [12, 53]. The
test images are the three-phase sky (3Ps) image with size 125\times 150, the 61\times 58 three-phase ball
(3Pb) image, the 256\times 256 four-phase synthetical (4Ps) image, and the five-phase synthetical
(5Ps) image with size 91\times 96. The original images are shown in Figure 2. We segment the
clean 3Ps, 3Pb, 4Ps, and 5Ps image and the noisy 4Ps image with the noise variances of 0.05,
0.1, 0.2, 0.3, respectively. We apply the sequential imputation method to iteratively update
\alpha 1, \alpha 2. The initial values are set to \alpha 0

1 = \alpha 0
2 = 0.1. The evolutions of the parameters \alpha i

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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262 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

Figure 2. The three-phase sky (3Ps) image (left), the three-phase ball (3Pb) images (center left), the four-
phase synthetical (4Ps) image (center right), and the five-phase synthetical (5Ps) image (right).

(a) non-noisy (\alpha i(i = 1, 2)) (b) noisy (\alpha i(i = 1, 2))

Figure 3. The evolution of the parameters \alpha 1, \alpha 2 along the iteration number for the clean and the noisy
image. Here the sequential imputation method is applied to iteratively update \alpha 1, \alpha 2, and ``4Ps(0.05)"" in the
legend denotes the noisy 4Ps image with noise variance of 0.05.

along the number of iterations are shown in Figure 3. We observe that the parameters \alpha 1 and
\alpha 2 fluctuate greatly at the beginning of iterations, and they gradually become stable as the
number of iterations increases. It means that the parameters will converge to constants.

We also compare the SA values obtained by the sequential imputation method [12, 53]
and heuristically experimental evidence [1, 5, 70]. In the heuristically experimental evidence,
we set the parameters to \alpha 1 = 2, \alpha 2 = 1.5. The evolutions of the SA values along the number
of iterations are shown in Figure 4. It can be observed that the SA values obtained by
the sequential imputation method [12, 53] and heuristic experimental evidence [1, 5, 70] are
almost the same, but the sequential imputation method (more details, see [12, 53]) requires
more iterations to converge.

4.2. Grayscale image. Here we segment the noisy and blurred synthetic images. The
synthetic images are the two-phase (2P) image with size 128\times 128 and the four-phase (4P)
image with size 256\times 256. The original clean images, the noisy images, and the blurred images
are shown in Figure 5. Both images are corrupted by Gaussian noise with mean of 0 and
variance of 0.25. We also compare the segmentation results on the two-phase and four-phase
images that are corrupted by the motion blur and noise. The motion blur is generated by the
MATLAB command fspecial('motion',15,90), and then the blurred images are corrupted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IMAGE SEGMENTATION USING BAYESIAN INFERENCE 263

(a) non-noisy (SA values) (b) noisy (SA values)

Figure 4. The evolution of the SA values along the iteration number for the clean and the noisy image.
Here ``4Ps(0.05)"" in the legend denotes the noisy 4Ps image with noise variance of 0.05.

Figure 5. The original clean images (left), the noisy images (middle), and the blurred images (right) of the
two-phase (2P) image (top) and the four-phase (4P) image (bottom).

by Gaussian white noise with variance 0.01. We compare the proposed method with the SaT
method [21], and the thresholded-Rudin--Osher--Fatemi (T-ROF) method [20]. They are two-
stage methods which are regarded as restoration by solving a minimization problem in the first
stage and then thresholding in the second stage. We also compare the results obtained by a
different regularization function. In [59], the difference between the L1 norm and L2 norm was
applied as a prior of the smoothed image, this is p(\bfu | \lambda ) = 1

Z(\lambda ) exp( - 
\lambda 
2 (\| \nabla \bfu \| 1 - \| \nabla \bfu \| 2)), while

in our paper, we apply the hybrid Gaussian--Laplace distribution as a prior of the smoothed
image; see (2.3). The regularization parameters in the methods of [20, 21, 59] are chosen by
a trial-and-error method such that the highest SA values can be achieved.

We segment the noisy images in the middle of Figure 5 and the blurred images at the
right of Figure 5. The segmentation results for noisy images are shown in Figure 6, while

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Cai et al. (b) Lou et al. (c) Cai et al. (d) Proposed

Figure 6. Noisy synthetic images segmentation results. The images are corrupted by Gaussian noise.

(a) Cai et al. (b) Lou et al. (c) Cai et al. (d) Proposed

Figure 7. Blurred synthetic images segmentation results. The images are corrupted by motion blur and
Gaussian noise.

the segmentation results for the blurred and noisy images are shown in Figure 7. The first
column to the third column in Figures 6 and 7 show the results of methods in [21, 59, 20],
and the last column shows the results of our method. The boundaries of the segmentation
results are shown with red color and superimposed on the given images. The boundaries of
the 4-phase image in the second row are shown with red, cyan, and magenta colors. For the
segment results of the noisy images, we can observe that our method and the method in [20]
have the best results with no isolated misclassified points in the two-phase image, and it is
clear that our method obtains smoother edges of circles and lines in the four-phase image,
while the other methods give more sawtooth artifacts on the circles and lines.
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Table 1
CPU time in seconds and SA for the synthetical images segmentation.

Type Image SA Time

[21] [59] [20] Proposed [21] [59] [20] Proposed

Noisy 2P 0.9863 0.9858 \bfzero .\bfnine \bfeight \bfnine \bfthree 0.9874 \bfzero .\bftwo \bfzero 0.21 0.53 0.27(0.08)
4P 0.9746 0.9728 0.9756 \bfzero .\bfnine \bfseven \bfeight \bfzero \bfzero .\bffour \bfnine 0.91 1.12 0.89(0.36)

Blurred 2P 0.9058 0.9076 0.9070 \bfzero .\bfnine \bfzero \bfeight \bfnine 0.24 0.97 0.23 \bfzero .\bfone \bfnine (0.09)
4P 0.9842 0.9826 0.9752 \bfzero .\bfnine \bfeight \bffour \bffour \bfzero .\bffour \bftwo 4.42 1.70 0.82(0.38)

average 0.9627 0.9622 0.9618 \bfzero .\bfnine \bfsix \bffour \bfseven \bfzero .\bfthree \bffour 1.63 0.65 0.54(0.23)

(a) 2P/noisy (b) 4P/noisy (c) 2P/motion (d) 4P/motion

Figure 8. The parameters \beta ,\lambda 1, \lambda 2 versus iteration number for two-phase (2P) image and four-Phase (4P)
image.

The CPU running time and the SA obtained by different methods are shown in Table 1.
The best results among all the methods are shown in boldface and the second best results are
marked in underline. The average SAs are 0.9627 [21], 0.9622 [59], 0.9618 [20], and 0.9647
(proposed method). We observe that the proposed method achieves either the highest or the
second highest SA value in all tests. In the average sense, the proposed method achieves
the highest SA value. For the CPU running time, we provide not only the total running
time of the proposed method but also the time required for parameter inference, indicated by
the brackets in Table 1. Although parameter inference accounts for about half of the total
runtime, it is still faster than the methods presented in [20, 59].

We also plot the curve of the regularization parameters \beta ,\lambda 1, \lambda 2 versus iteration number in
Figure 8. For the cases of noisy images, the regularization parameters fluctuate greatly in the
first 10 iterations, and then gradually tend to be stable. For the cases of the blurred images,
the regularization parameters converge at a constant value after several iterations. Thus we
suggest stopping the iteration after a fixed number of iterations, say 100, in real applications.
We remark that although the parameters thus obtained already give accurate segmentation,
the convergence analysis of the regularization parameters is still an open problem.

4.3. Color image. We extend the image segmentation algorithm from grayscale images
to color images. Color images are mainly represented by red, green, and blue (RGB) color
models. It is shown that the lab (perceived lightness, red-green and yellow-blue) color space
is better adapted for color image segmentation than the RGB space. Cai et al. [19] proposed
a three-stage approach for segmenting color images. The first stage is to smooth the image
in each channel independently using the convex variant of the Mumford--Shah model (1.3).
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266 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

The second stage is to lift the smoothed image into a six-dimensional space where a new
vector-valued image is composed of the smoothed image and its transformation into the lab
color space. The last stage is to threshold the resultant image using a multichannel approach
to obtain a segmentation. Here we extend the variational Bayesian inference to segment the
color images by the same three-stage approach.

In addition, here we also utilize the S{\e}rensen--Dice similarity coefficient (DICE) score to
quantify the segmentation accuracy. And the DICE is defined as

DICE :=
2| Sm \cap St| 
| Sm| + | St| 

,(4.2)

where St is the ground truth segmentation, Sm is the segmentation outcome generated by a
given method, and | \cdot | denotes the number of pixels. Similarly, a higher DICE score indicates
better segmentation performance.

4.3.1. Segmentation for noise-free color image. We consider segmenting the noise-free
color images. The color images tested are downloaded from the MSRA data set.1 They are
the tower, golden leaf, guitar, cat, orangutan, and dog shown in the first column of Figure 9.
We compare our method with two segmentation methods for noise-free color image proposed
in [90] and [57]. We denote them as ``SDRE"" [90] and ``TSVS"" [57], respectively. ``TSVS""
[57] is also a three-stage approach to segment the color image, but it first lifts the color image
into a high dimension space and then smoothes the image. The ``SDRE"" method incorporates
the saliency map into the level set framework. The regularization parameters in [57, 90]
are chosen by a trial-and-error method such that the highest SA value is achieved. The
segmentation results obtained by ``SDRE,"" ``TSVS,"" and the proposed method are shown in
the second column to fourth column of Figure 9. We also show the hand-drawn ground-truth
segmentation results in the last column of Figure 9. We can observe that the proposed method
gives better segmentation results. We also show the SA, DICE, and the CPU running time
obtained by difference methods in Table 2. Also, the brackets in Table 2 are the parameter
inference time. We observe that the proposed method achieves the highest SA values and
DICE scores in all tested images. The average CPU running times of ``SDRE"" [90] and
``TSVS"" [57] are more than twice that of the proposed method.

4.3.2. Segmentation for noisy color image. Here we compare the proposed method
on noisy color images with the methods in [19] and [20], which we denote as ``SLaT"" and
``T-ROF,"" respectively. The regularization parameter in [19, 20] were also chosen by the
trial-and-error method such that the highest SA values are achieved. The clean images are
buffalo, goshawk, horse, and pyramid with size 481 \times 321, and were downloaded from the
BSDS500 dataset.2 They are shown in Figure 10(a), and the noisy versions of these images
are shown in Figure 10(b). The variance of the Gaussian noise added is 0.01 for the buffalo and
goshawk images and 0.1 for horse and pyramid images. The segmentation results obtained by
SLaT, T-ROF, and our method are shown in the third to sixth columns of Figure 10, respec-
tively. The last column shows the hand-drawn ground-truth segmentation results. We observe
from Figure 10 that the segmentation results obtained by our method are closer to the real

1https://mmcheng.net/msra10k/
2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Original (b) SDRE (c) TSVS (d) Proposed (e) Truth

Figure 9. The segmentation results for the color images of tower, golden leaf, guitar, cat, orangutan, and
dog. Download from the MSRA dataset color image segmentation results.

segmentation results on the wings of the goshawk and the tail of the horse. We list the SA,
DICE, and the CPU running time obtained by different methods in Table 3, and the pa-
rameter inference time is indicated in parentheses. The average SA (DICE) for SLaT [19]
and T-ROF [20] and our method are 0.9821 (0.9453), 0.9842 (0.9502), and 0.9847 (0.9523),
respectively. When we compare the average CPU running time, our method only needs half
the CPU running time of SLaT [19] and one third of that of T-ROF [20].

5. Conclusion. In this paper, we have developed a method to segment images and select
the regularization parameters simultaneously for the convex variant Mumford--Shah varia-
tional model. We described the variational model from the statistical perspective. The regu-
larization parameters are treated as random variables and variational Bayesian inference was
applied to estimate the smoothed image and the regularization parameters. The mean field
variational family is used to approximate the posterior density. We assumed that the image
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D
ow

nl
oa

de
d 

04
/0

5/
24

 to
 2

18
.1

02
.2

19
.4

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



268 XU XIAO, YOUWEI WEN, RAYMOND CHAN, AND TIEYONG ZENG

Table 2
CPU time in seconds, SA, and DICE for the MSRA dataset images segmentation.

Image SA DICE Time

[90] [57] Proposed [90] [57] Proposed [90] [57] Proposed

Tower 0.9546 0.9777 \bfzero .\bfnine \bfeight \bfeight \bfthree 0.9230 0.9657 \bfzero .\bfnine \bfeight \bfone \bffive \bffour .\bfeight \bfnine 10.06 5.57(2.14)
Golden leaf 0.7951 0.9698 \bfzero .\bfnine \bfseven \bffour \bfsix 0.6390 0.9274 \bfzero .\bfnine \bfthree \bfeight \bftwo 15.77 8.49 \bfthree .\bfsix \bfone (1.51)
Guitar 0.9199 0.9583 \bfzero .\bfnine \bfseven \bfsix \bfthree 0.8228 0.9240 \bfzero .\bfnine \bffive \bffive \bfone 9.5 12.88 \bffive .\bfzero \bfone (1.90)
Cat 0.9751 0.9874 \bfzero .\bfnine \bfnine \bfone \bffive 0.9176 0.9551 \bfzero .\bfnine \bfsix \bfnine \bfone 6.22 2.38 \bfone .\bfthree \bffour (0.43)
Orangutan 0.9707 0.9738 \bfzero .\bfnine \bfseven \bfseven \bfnine 0.9403 0.9474 \bfzero .\bfnine \bffive \bffive \bfsix 4.47 8.61 \bftwo .\bfeight \bfeight (1.14)
Dog \bfzero .\bfnine \bfeight \bfsix \bfnine 0.9811 0.9852 \bfzero .\bfnine \bfsix \bfsix \bftwo 0.9527 0.9629 \bftwo .\bfsix \bffive 6.73 2.98(1.23)

average 0.9337 0.9747 \bfzero .\bfnine \bfeight \bftwo \bfthree 0.8682 0.9454 \bfzero .\bfnine \bfsix \bfzero \bffour 7.25 8.19 \bfthree .\bffive \bfseven (1.39)

(a) Clean (b) Noisy (c) SLaT (d) TROF (e) Proposed (f) Truth

Figure 10. Comparison of segmentation results for color noisy images.

Table 3
SA, DICE, and CPU time in seconds for the noisy color images segmentation.

Noise Image SA DICE Time

[19] [20] Proposed [19] [20] Proposed [19] [20] Proposed

\scrN (0,0.01) Buffalo 0.9959 0.9951 \bfzero .\bfnine \bfnine \bfsix \bffive 0.9658 0.9605 \bfzero .\bfnine \bfseven \bfone \bftwo 6.56 13.63 \bffour .\bftwo \bfnine (1.56)
Goshawk 0.9903 \bfzero .\bfnine \bfnine \bfone \bffour 0.9907 0.8988 \bfzero .\bfnine \bfone \bftwo \bfsix 0.9077 6.61 12.93 \bfthree .\bfsix \bftwo (1.35)

\scrN (0,0.1) Horse 0.9540 \bfzero .\bfnine \bffive \bfnine \bfzero 0.9583 0.9344 \bfzero .\bfnine \bffour \bfone \bfone 0.9405 7.65 21.46 \bffive .\bfnine \bfeight (2.19)
Pyramid 0.9883 0.9913 \bfzero .\bfnine \bfnine \bfthree \bfthree 0.9820 0.9865 \bfzero .\bfnine \bfeight \bfnine \bfseven 6.75 14.89 \bffour .\bftwo \bfeight (1.58)

average 0.9821 0.9842 \bfzero .\bfnine \bfeight \bffour \bfseven 0.9453 0.9502 \bfzero .\bfnine \bffive \bftwo \bfthree 6.89 15.73 \bffour .\bffive \bffour (1.67)
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has a Gaussian distribution and the regularization parameters have a Gamma distribution.
A coordinate ascent approach was applied to obtain the density functions. The segmentation
results for both grayscale images and color images has shown that our approach is competi-
tive with the other variants of the Mumford--Shah variational model in terms of segmentation
accuracy, and is faster in terms of CPU running time.
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