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Multi-Prototypes Convex Merging Based
K-Means Clustering Algorithm
Dong Li, Shuisheng Zhou, Tieyong Zeng, and Raymond H. Chan.

Abstract—K-Means algorithm is a popular clustering method. However, it has two limitations: 1) it gets stuck easily in spurious local
minima, and 2) the number of clusters k has to be given a priori. To solve these two issues, a multi-prototypes convex merging based
K-Means clustering algorithm (MCKM) is presented. First, based on the structure of the spurious local minima of the K-Means problem,
a multi-prototypes sampling (MPS) is designed to select the appropriate number of multi-prototypes for data with arbitrary shapes.
Then, a merging technique, called convex merging (CM), merges the multi-prototypes to get a better local minima without k being
given a priori. Specifically, CM can obtain the optimal merging and estimate the correct k. By integrating these two techniques with
K-Means algorithm, the proposed MCKM is an efficient and explainable clustering algorithm for escaping the undesirable local minima
of K-Means problem without given k first. Two theoretical proofs are given to guarantee that the cost of MCKM (MPS+CM) can achieve
a constant factor approximation to the optimal cost of the K-Means problem. Experimental results performed on synthetic and
real-world data sets have verified the effectiveness of the proposed algorithm.

Index Terms—K-Means, multi-prototypes, multi-prototypes sampling, convex merging.

✦

1 INTRODUCTION

C LUSTERING analysis is one of the important branches
in machine learning [1], [2], which has extensive appli-

cations in different fields, for example, artificial intelligence
[3], pattern recognition [4], image processing [5], etc. The
goal of the clustering algorithm is to separate a data set into
multiple clusters so that the objects in the same cluster are
highly similar. Many types of clustering algorithms have
been studied in the literature, see [6] and the references
therein.

As a popular clustering paradigm, partition-based meth-
ods believe that data set can be represented by cluster
prototypes. They require one to specify the number of
clusters k a priori and update the clusters by optimizing
some objective functions. The most representative partition-
based clustering algorithms is the K-Means algorithm [7],
[8], which aims to divide the data set into k clusters so
that the sum of squared distances between each sample to
its corresponding cluster center is the smallest. However,
because the K-Means algorithm is NP-hard, it easily gets
stuck in spurious local minima [9], [10]. Besides, k has to be
given first.

To avoid bad local minima in the K-Means algorithm,
numerous remedies have been proposed. Most of them can

• D. Li, S. Zhou are with School of Mathematics and Statistics, Xidian
University, Xi’an 710071, China (E-mail: lidong xidian@foxmail.com;
sszhou@mail.xidian.edu.cn).

• T. Zeng is with the Department of Mathematics, The Chinese University
of Hong Kong, Shatin, Hong Kong. E-mail: zeng@math.cuhk.edu.hk

• R.H. Chan is with the Department of Mathematics, City University of
Hong Kong, 83 Tat Chee Ave, Hong Kong, and with the Hong Kong
Centre for Cerebro-Cardiovascular Health Engineering, 19 W Ave, Science
Park, Hong Kong. E-mail: raymond.chan@cityu.edu.hk

Manuscript received xxxx, 2022; revised xxxx, 2022. This work was sup-
ported by the National Natural Science Foundation of China under Grants
No. 61772020; HKRGC Grants Nos. CUHK14301718, CityU11301120,
and C1013-21GF; and CityU Grant 9380101 (Corresponding author:
Shuisheng Zhou.)

be classified into three strategies. The first strategy focuses
on initialization selection. Pena et al. [11] concluded that the
quality of the solution and running time of the K-Means
algorithm highly depends on the initialization techniques.
A good initialization can find better local minima or even
global minima. K-Means++ [12] was proposed to initialize
K-Means by choosing the centers with specific probabilities,
and the result is O(log k)-competitive with the optimal
result. K-Means|| [13] was presented to obtain a nearly opti-
mal result by an over-sampling technique after a logarithmic
number of iterations. An improved K-Means++ with local
search [14] was developed to achieve a constant approxi-
mation guarantee to the global minima with O(k log log k)
local search steps.

The second strategy focuses on theoretical innovations
in the model frameworks. A relaxation method for K-Means
[15] was designed to construct the objective of K-Means
into the so-called 0-1 semidefinite programming (SDP), and
solve it by the linear programming and SDP relaxations.
Then, a feasible solution is obtained by principal component
analysis. Experimental results show that the 0-1 SDP for K-
Means always find a global minima for k = 2 ( [16] also
summarized similar results). Coordinate descent method for
K-Means [10] was provided to get better local minima by
reformulating the objective of K-Means as a trace maximiza-
tion problem and solving it with coordinate descent scheme.

The third strategy focuses on adjustment to local minima
based on various heuristics and empirical observations.
Usually, the adjustment scheme is the splitting and merging
of prototypes [17], [18], [19], [20], [21].

All the methods above have achieved better local min-
ima or global minima on the data sets with subclusters that
are uniform size and linearly separable from each other. This
is not surprising as K-Means-type algorithms often produce
clusters of relatively uniform size, even if the data sets have
varied cluster sizes. This is called the ”uniform effect” [22].
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The Euclidean distance squared error criterion of K-Means-
type algorithms therefore tends to work well on the data
sets with subclusters that are uniform size and linearly
separable from each other. This limits the performance of
the algorithms on the data sets with special patterns, such
as the data sets with subclusters that are non-uniform, with
subclusters that are non-convex, and with subclusters that
are skewed-distributed, etc.

To address the aforementioned problem, the over-
parametrization learning framework, as a promising and
empirical approach, has been applied to the clustering
algorithms [23], [24], [25], [26], [27]. Graph-based Multi-
prototype Competitive Learning (GMPCL) [28] was pro-
posed to first obtain the coarse clustering by a graph-based
method, and then refine these clusters by multiprototype
competitive learning for the non-linearly separable data.
Self-adaptive Multiprototype-based Competitive Learning
(SMCL) [29] was developed for imbalanced data clustering.
SMCL first selects multi-prototypes in an adaptive way,
and then merges the prototypes based on a new separation
metrics. Finally, the best number of clusters and clustering
result were determined using a new internal clustering met-
rics. Concept Factorization with Local Centroids [30] was
proposed with the aim of capturing the manifold structure
of data by introducing multi-prototypes, and formulating
the clustering problem as a bipartite graph partitioning task.
Overall, these multi-prototypes clustering algorithms share
a common procedure, which involves generating multi-
prototypes that are more suited for modeling clusters with
arbitrary shape and size compared to a single prototype, and
merging the prototypes into a given cluster number based
on some similarity measures.

However, most existing multi-prototypes methods sim-
ply use a predefined number of multi-prototypes and the se-
lection skills lack theoretical guarantees. Therefore, a convex
clustering model was introduced in [31] to overcome these
two issues. The model is formulated as a convex optimiza-
tion problem based on the over-parametrization and sum-
of-norms (SON) regularization techniques. There are other
variants of convex clustering models, see [32], [33] and the
references therein. In general, convex clustering is solved
by the alternating minimization algorithm (AMA) and the
alternating direction method of multipliers (ADMM) [34].

In convex clustering models, the number of over-
parametrization is set to the number of samples, and then
the samples are classified into different clusters by tuning
the regularization parameter. Inevitably, its computational
complexity is very high, where each iteration of the ADMM
solver is of complexity O(n2p). Here, n is the number
of samples and p is the dimensionality of the samples.
Recently, a novel optimization method, called the semis-
mooth Newton-CG augmented Lagrangian method [35],
was proposed to solve the large-scale problem for convex
clustering. We emphasize that since these clustering models
are convex, there are theoretical guarantee to recover their
global minima.

The above approaches rarely analyzed the structures
of the local minima, so there is a lack of explanation and
understanding of the approaches. Recently, Qian et al. [36]
investigated the structures under a probabilistic generative
model and proved that there are only two types of spurious

local minima of K-Means problem under a separation con-
dition. More precisely, all spurious local minima can only
be of two structures: (i) the multiple prototypes lie in a
true cluster, and (ii) one prototype is put in the centroid
of multiple true clusters. In this paper, these two structures
are called over-refinement and under-refinement of the true
clusters, respectively. Naturally, to get better local minima
or global minima, we should refine the prototypes such that
one prototype lies in one true cluster. This inspires us to
explore an efficient and explainable approach for finding
better local minima.

Another line of research focuses on the cluster number
k. Most methods require k to be given a priori. In general, k
is unknown. Clustering by passing messages between data
points [37], called affinity propagation (AP), is designed
to generate high-quality clusters without given k, by it-
eratively exchanging valuable messages between samples.
The similarity matrix between pairs of samples is used as
input. By adding an entropy penalty term to K-Means to
adjust the bias, unsupervised K-Means clustering algorithm
(U-K-Means) [38] can automatically find the optimal k with-
out giving any initialization and parameter selection. An
over-parametrization learning procedure is established to
estimate the correct k in K-Means for the arbitrary shape
data sets [29], [39]. We remark that the convex clustering
models mentioned above, e.g., [31], can also find the correct
k by tuning the regularization parameter and the number of
neighboring samples.

In this paper, we propose an efficient and explainable
multi-prototypes K-Means clustering algorithm for recover-
ing better local minima without the cluster number k being
given a priori. It is called MCKM (multi-prototypes convex
merging based K-Means clustering algorithm). It has two
steps. The first step is guided by the aim that the final
structure of the minima should have (i) at least one or more
prototypes located in a true cluster, and (ii) no prototypes
are at the centroid of multiple true clusters. Along this line,
an over-parametrization selection technique, called multi-
prototypes sampling (MPS), is put forward to select the
appropriate number of multi-prototypes. Then in the second
step, a merging technique, called convex merging (CM), is
developed to get better local minima without k being given.

The main contributions of this paper are as follows:

1) An appropriate number of multi-prototypes can be
selected by MPS to adapt to data with arbitrary shapes.

2) CM can get better local minima without k being given.
It obtains the optimal merging and estimates the cor-
rect k, because it treats the merging task as a convex
optimization problem.

3) The combined method MCKM is an efficient and ex-
plainable K-Means algorithm that can escape the unde-
sirable local minima without given k. Two theoretical
proofs are given to guarantee that the cost of MCKM
(MPS+CM) can achieve a constant factor approximation
to the optimal cost of the K-Means problem.

4) Experiments on synthetic and real-world data sets il-
lustrate that MCKM outperforms the state-of-the-art
algorithms in approximating the global minima of K-
Means, and accurately evaluates the correct k. In addi-
tion, MCKM excels in computational time.
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The paper is organized as follows. Section 2 reviews
the related works. The research motivation is described in
Section 3 and the new algorithm is presented in Section
4. The experimental results with discussion are reported in
Section 5 and Section 6 concludes the paper.

Notations: Let data set be X = [x1,x2, · · · ,xn] with sam-
ple xj ∈ Rp, and the cluster centers be V = [v1,v2, · · · ,vk],
where vi ∈ Rp is the prototype of the cluster Ci for
i = 1, 2, ..., k. Denote ∥·∥ the vector 2-norm or the Frobenius
norm of a matrix. The distances between xj and the proto-
types V are dij = ∥xj − vi∥(i = 1, · · · , k) and the closest
distance is denoted as D(xj). The membership grade matrix
is denoted by U = [uij ] ∈ Rk×n, where uij represents the
grade of the jth sample belonging to the ith cluster. The
optimal cost of K-Means on data set X is denoted by JX

opt

and the corresponding optimal clusters are denoted by Copt.

2 RELATED WORK

In this section, some improved K-Means-type clustering
algorithms and the clustering algorithms based on over-
parametrization learning are briefly recalled.

First of all, the K-Means problem aims to find the k
partitions of X by minimizing the sum of squared distances
between each sample to its nearest center. The underlying
objective function is expressed as follows:

min
U,V

JX(U,V) =
k∑

i=1

n∑
j=1

uij∥xj − vi∥2,

s.t.
k∑

i=1

uij = 1, uij ∈ {0, 1}.

(1)

To solve problem (1), iterative optimization algorithms are
usually employed to approximate the global minima of the
K-Means problem [40]. Among these algorithms, the most
commonly used is the K-Means algorithm in [7].

2.1 K-Means and K-Means++ Algorithms
The K-Means algorithm [7], as the most popular

clustering algorithm, is a heuristic method. First, k initial
cluster centers are set as initializations, and then an iterative
algorithm, called Lloyd’s algorithm, is implemented. For
an input of n samples and k initial cluster centers, Lloyd’s
algorithm consists of two steps: the assignment step assigns
each sample to its closest cluster:

u
(t+1)
ij =

{
1, d

(t)
ij = min1≤c≤k d

(t)
cj

0, otherwise,
(2)

where t is the iteration number. Then, the update step
replaces the k cluster centers with the centroid of the
samples assigned to the corresponding clusters:

v
(t+1)
i =

n∑
j=1

(
u
(t+1)
ij

)
xj

n∑
j=1

(
u
(t+1)
ij

) . (3)

The algorithm alternately repeats the two steps until conver-
gence is achieved. The K-Means algorithm easily gets stuck

in spurious local minima because of the non-convexity and
non-differentiability of (1).

As studied in [11], a good initialization makes Lloyd’s
algorithm perform well. Therefore, K-Means++ algorithm
[12] was proposed as a specific way of choosing the proto-
types V(0) for K-Means. In the first step, K-Means++ selects
an initial prototype v1 uniformly at random from the data
set. In the second step, each subsequent initial centroid
vi, i = 2, 3, ..., k, is chosen by maximizing the following
probability with respect to the previously selected set of
prototypes:

D(xj)
2∑

x∈X D(x)2
, j = 1, 2, ..., n. (4)

Then, the algorithm repeats the second step until it has
chosen a total of k prototypes. The sampling skill used in
the second step is called ”D2 sampling”. We note that it
achieves approximation guarantees, as stated in the follow-
ing Theorem 1.

Theorem 1. [12] For any data set X, if the prototypes are
constructed with K-Means++, then the corresponding objective
function JX satisfies E[JX] ≤ 8(ln k + 2)JX

opt.

Thus, K-Means++ algorithm is fast, simple, and
O(log k)-competitive with the optimal result.

2.2 Split-merge K-Means Algorithm
Split-merge K-Means Algorithm (SMKM) [21] was intro-

duced to reduce the cost of the K-Means problem (1) by a
new splitting-merging step, which is able to generate better
approximations of the optimal cost of the K-Means problem.
It consists of the following two steps:

1) Splitting step: 2-Means is applied to each cluster Ci to
get {vi1 ,vi2}, and then Cisplit is selected as the split
cluster based on the following:

isplit = argmax
i∈{1,2,...,k}

[JCi
(U,vi)− JCi

(U, {vi1 ,vi2})].

(5)

2) Merging step: the pair of clusters with the small-
est merging error increment can be merged together.
Specifically, Ci and Cc are merged if

i, c = argmin
i,c∈{1,2,...,k+1},i̸=c

fi,c (6)

where fi,c = JCi,c
(U,vi,c)− [JCi

(U,vi) + JCc
(U,vc)],

Ci,c = Ci ∪ Cc, and vi,c =
|Ci|·vi+|Cc|·vc

|Ci|+|Cc| .
SMKM repeats alternately the splitting and merging steps
until convergence is achieved. In conclusion, the splitting
step reduces the K-Means approximation error, while the
merging step increases it. Hence, the quality of the local
minima can be improved when the splitting-merging step
reduces the cost of the K-Means.

2.3 Self-adaptive Multiprototype-based Competitive
Learning

Self-adaptive Multiprototype-based Competitive Learn-
ing (SMCL) [29] is over-parametrization method based on
the framework of K-Means competitive learning for imbal-
anced data clustering. It consists of the following two steps:
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1) Prototype number selection (PNS): the number of
multi-prototypes is determined in self-adaptive way.
First, given the predefined number of multi-prototypes
K , the update of prototypes is as follows:

v
(t+1)
i =

{
v
(t)
i +Kαc(xj − v

(t)
i ), i = I∗j ,

v
(t)
i −Kηcβjαc(xj − v

(t)
i ), ∀i ̸= I∗j .

(7)

where αc is learning rate, ηc is tuning parameter,

βj = exp

(
−

∥v(t)
i −xj∥2−∥v(t)

I∗
j
−xj∥2

∥v(t)

I∗
j
−v

(t)
i ∥2

)
, i ̸= I∗j , and I∗j =

arg min
1≤i≤K

{dij}.

After each update of the prototypes, K needs to be
adjusted if maxi(∥v(t+1)

i − v
(t)
i ∥2) < η is met. The

guidelines for each prototype are as follows:{
v
(t)
i is deleted, if ni < θ,

v
(t)
I is added, otherwise.

(8)

where ni = |{j | j ∈ Ci}|, θ is frequency parameter,
I = arg max

1≤i≤K
{niδi}. ϱij =

∑
z∈Ci

Jd(xj ,xz) < ϵK, ϵ is

density parameter, J·K is the indicator function which
returns 1 if the statement is true and 0 otherwise.
δi = maxj∈Ci

minz∈Ci:ϱz>ϱj

d(xj ,xz)

di
, di is the averaged

pairwise distance of all samples in Ci. Finally, PNS
terminates if maxi(∥v(t+1)

i − v
(t)
i ∥2) ≥ η is met, and

the result of PNS is K̂ subclusters, CPNS.
2) Subcluster Grouping with Model Selection (SGMS):

After obtaining CPNS = {C1, C2, ..., CK̂}, 1-d binary
Gaussian mixture probability density function is used
to compute the separation measure Siz between Ci and
Cz for 1 ≤ i < z ≤ K̂ . The samples in Ci and Cz are first
projected into the line between vi and vz :

xp
(i) =

(x(i) − vm)T(vi − vz)

∥vi − vz∥2
,x(i) ∈ Ci (9)

where vm = (vi + vz)/2. The projection calculation of
the samples in Cz is the same as Eq. (9). Therefore, the
mean and variance of the projected samples, µi, µz, σi

and σz can be computed. Then, Siz is computed by:

Siz =
1

min f(A)
,A = {−0.5,−0.49, ..., 0.49, 0.5},

f(A) =
|Ci|

|Ci|+ |Cz|
p(A|µi, σ

2
i ) +

|Cz|
|Ci|+ |Cz|

p(A|µz, σ
2
z).

(10)

SGMS merges only the two closest subclusters at a
time, until all subclusters are merged into one. The
initialization is K = K̂ , and based on comK−1 =
min1≤i<z≤K Siz , two clusters are merged to obtain
C(K − 1) until K = 1. Meanwhile, global separabil-
ity sepK−1 = max1≤i≤K−1

∑
j∈Ci

(
gj
q ) is computed,

where gj is the number of samples whose q-nearest
neighbors are not in Ci. Finally, the best number of
clusters is K∗ = argmin1≤K,K′≤K̂−1(

sepK

maxK′′{sepK′} +
comK

maxK′{comK′} ). And the best clusters are C(K∗).
SMCL is a two-step clustering algorithm for imbalanced

data without given k, which selects multi-prototypes in an
adaptive way, and then merges the prototypes using SGMS.

Finally, a new evaluation metrics is used to determine the
best number of clusters and clustering result. However,
its computational complexity is very high, and too many
parameters need to be predefined.

2.4 Convex Clustering Algorithm

Convex clustering model [31] formulates the clustering
task as a convex optimization problem by adding a sum-of-
norms (SON) regularization to control the trade-off between
the model error and the number of clusters. To reduce
the computational burden of evaluating the regularization
terms, the weight, W = [wij ], is introduced. The objective
function of convex clustering model is expressed as follows:

min
µ1,...,µn∈Rp

1

2

n∑
j=1

∥µj − xj∥2 + γ
∑
i<j

wij∥µi − µj∥p, (11)

where γ > 0 is a tuning parameter and the p-norm with
p ≥ 1 ensures the convexity of the model. Here, wij is a
nonnegative weight given by:

wij =

{
exp(−κ∥xi − xj∥2), if (i, j) ∈ E;
0, otherwise, (12)

where E = ∪n
j=1{l = (i, j)|i ∈ KNN(j)}, KNN(j) is the

index set of the q-nearest neighbors of xj for j = 1, 2, ..., n,
and κ is a given positive constant.

After the optimal solutions µ∗
1, ...,µ

∗
n of (11) are ob-

tained, the samples are assigned to be in one cluster if and
only if their optimal solutions µ∗ are the same. Convex clus-
tering, based on over-parametrization learning, can avoid
bad local minima, cluster arbitrary shape data sets, and get
the cluster number [32], [33]. However, its computational
complexity is very high, which still remains challenging
for large-scale problems. Meanwhile, the number of neigh-
boring samples q is generally selected empirically. If it is
too small, convex clustering will not achieve the perfect
recovery. Conversely, the computational burden cannot be
reduced.

3 MOTIVATION

The above-mentioned algorithms can avoid the bad local
minima of K-Means problem. However, their structure is
rarely involved in the studies, so that the recovery ap-
proaches are not well understood. For example, in [21],
the splitting and merging steps are performed for selecting
better local minima. But only a prototype is split by 2-
Means, and only a pair of prototypes are merged in each
iteration. This lack of explanation of the structure of better
local minima inspires us to come up with a new algorithm.

3.1 Recover the Better Local Minima Based on Multi-
Prototypes Technique

In this subsection, an important theorem in [36], which
describes the structure of spurious local minima of K-Means
problem under convex data, is recalled for convenience.

Theorem 2. For well-separated mixture models, all spurious
local minima solutions V = [v1,v1, ...,vk] of X involves the
following configurations: (i) multiple prototypes {vi} lie in a true
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cluster and (ii) one prototype vi is put in the centroid of multiple
true clusters.

Note that the above configurations (i) and (ii) are referred
to as the over-refinement and under-refinement of the true
clusters, respectively. Importantly, Theorem 2 gives the
general splitting-merging approaches an explanation and
understanding for the better local minima. In detail, the
splitting and merging steps remove under-refinement and
over-refinement of the true clusters, respectively.

Borrowing the precise characterization of local minima
in Theorem 2, the splitting technique is theoretically a good
way to remove under-refinement. However, it does not
determine exactly how many prototypes to split into, so
as to eliminate under-refinement in the clustering result.
Therefore, in this paper, a multi-prototypes technique, as
an over-parametrization approach, is exploited instead of
implementing an unsatisfactory splitting step. The multi-
prototypes technique can avoid under-refinement. In detail,
by setting a number larger than k as the number of clusters,
the multi-prototypes technique aims to achieve that at least
one prototype or multiple prototypes lie in a true cluster.
Then when coupled with the K-Means algorithm, one ex-
pects that only exact refinement or over-refinement of the
true clusters exist after the K-Means algorithm. Hence, a
better local minimum can be recovered by simply merging
the prototypes in this structures. In conclusion, the multi-
prototypes technique is a suitable alternative to the splitting
step for removing under-refinement of the true clusters in
the clustering result.

3.2 Select the Appropriate Number of Multi-Prototypes
To eliminate under-refinement of the true clusters in

the clustering result, we need to set a number of multi-
prototypes larger than k. However, a predefined number
of multi-prototypes may not work for different data sets. In
order to illustrate these issues, a set of experiments is carried
out on three synthetic data sets, D1, D2, and D3, as shown
in Fig. 1. See Section 5.2 for the details of the data sets.

In Fig. 1, the clustering results of K-Means with differ-
ent predefined numbers of multi-prototypes on the three
synthetic data sets are displayed, where the true number of
clusters for the three data sets is k = 2. In (1a)–(1c), the
number of multi-prototypes is set to be small; in (1d)–(1f),
the number of multi-prototypes is set to be large.

From the illustration, it can be summarized that if
the given number of prototypes is too small, the multi-
prototypes for the different data distributions are inaccurate
and some prototypes may lie in the centroid of multiple true
clusters. Conversely, if the number is too large, some proto-
types lie in the overlapping area between the true clusters,
noises samples and outliers. Clearly, the larger the given
number of prototypes, the better the representation of the
multi-prototypes for the different data distributions. How-
ever, if the number of multi-prototypes exceeds a certain
number, the representation approximates density clustering
and the computational complexity is too high. An appropri-
ate number of multi-prototypes should be closely related
to the data distribution. Therefore, we design a multi-
prototypes selection technique to sample an appropriate
number of multi-prototypes based on the data distribution,
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Fig. 1. Clustering results of K-Means with the multi-prototypes on D1,
D2, and D3. In (a)–(c), the given number of multi-prototypes is too small;
in (d)–(f), the given number of multi-prototypes is too large. The plots
clearly show some final prototypes always lie in the overlapping area
between the different true clusters, noises samples and outliers when
the number of multi-prototypes is not selected properly.

where the samples are gradually selected as prototypes
by D2 sampling until the latest selected sample has little
improvement in the data representation. The details are
presented in Section 4.

4 MULTI-PROTOTYPES CONVEX MERGING BASED
K-MEANS CLUSTERING ALGORITHM

In this section, the multi-prototypes convex merging
based K-Means clustering algorithm (MCKM) is proposed
to recover better local minima without given the cluster
number k a priori. In the first step of MCKM, a multi-
prototypes sampling (MPS) first selects a suitable number of
multi-prototypes for better data representation. It provides
an explainable approach to refine or over-refine clusters
based on the structure of the local minima. Furthermore, a
theoretical proof is given, which guarantees that the multi-
prototypes selected by MPS can achieve a constant factor
approximation to the global minima of K-Means problem.
Then in the second step, a merging technique, convex merg-
ing (CM), recovers the better local minima. CM can obtain
the optimal merging and estimate the correct cluster number
because it treats the merging task as a convex optimization
problem. The overall process of MCKM is as follows:

X
MPS (Alg. 1)−−−−−−−→ {VMPS, CMPS} CM (Alg. 2)−−−−−−→ CMCKM.

MPS and CM are explained in Subsections 4.1 and 4.2,
respectively.

4.1 Multi-Prototypes Sampling (MPS)

In the K-Means algorithm, the multi-prototypes are con-
structed to represent the data structure. To quantify the
representation ability of the multi-prototypes, a reconstruc-
tion criterion is introduced, see [41], [42]:

R(s) =
n∑

j=1

∥xj − x̂j(s)∥2, (13)
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where x̂j(s) =
∑s

i=1 uijvi/
∑s

i=1 uij . It gives the recon-
structed value with the current prototypes {v1,v2, ...,vs}
and assignment coefficients, uij , obtained by (2). Note that
the lower value of the reconstruction criterion, the better the
representation ability of the multi-prototypes. Meanwhile, it
can be inferred that the value of the reconstruction criterion
decreases with the increasing number of multi-prototypes.
However, it is not expected that the number of multi-
prototypes is very large, as analyzed in Subsection 3.2.
Therefore, a new ratio, called relative reconstruction rate
with respect to the number of multi-prototype, is defined
as follows:

R(s− 1)−R(s)

R(s− 1)
. (14)

The relative reconstruction rate can be utilized as a
measure of the improvement of the representation ability
of the new multi-prototypes set after adding a prototype
to the multi-prototypes set. If the new multi-prototypes
set has little improvement in the relative reconstruction
rate after adding a prototype, the new prototype should
not be added. Hence, the number of multi-prototypes can
be selected based on (14), where the quantization of little
improvement is equivalent to R(s−1)−R(s)

R(s−1) ≤ ε by setting a
small threshold ε.

As the analysis in Subsection 3.2 shows, a predefined
number of multi-prototypes is difficult to be set properly,
and MPS can select a suitable number using the relative
reconstruction rate. MPS randomly picks an initial sample
into cluster C, and then proceeds D2 sampling, where the
sample is selected with the probability (4) and added to
C in each iteration. MPS converges until the new multi-
prototypes set has little improvement in representing the
data set after adding the latest selected sample. Finally, the
K-Means algorithm is performed with the selected proto-
types on the data set, and the final result is obtained. The
proposed MPS is presented in Algorithm 1.

Algorithm 1 Multi-Prototypes Sampling (MPS)
Input: Date set X = [x1,x2, · · · ,xn], the threshold ε;
Output: The multi-prototypes VMPS, the number of the

multi-prototypes s∗.
1: Pick a sample x(1) randomly and V = {x(1)};
2: Compute R(1) based on V, Eq. (2) and Eq. (13);
3: Set s := 2 and R = R(1);
4: while s ≤ n do
5: Sample x(s) with probability D(x(s))2∑

x∈X D(x)2 based on the
current V and add it to V;

6: Compute R(s) based on V, Eq. (2) and Eq. (13);
7: if R−R(s)

R ≤ ε then
8: Break;
9: else

10: R = R(s);
11: s = s+ 1;
12: end if
13: end while
14: Run K-Means with the selected prototypes V on X;
15: Obtain the multi-prototypes VMPS, the corresponding

clusters CMPS and the number of the multi-prototypes
is s∗ = |VMPS|.

(a) D1, s∗ = 12 (b) D2, s∗ = 25 (c) D3, s∗ = 156

Fig. 2. The results of MPS on D1, D2, and D3 with the appropriate ρ,
where the black stars are the final multi-prototypes and s∗ is the number
of the multi-prototypes.

We have the following comments for MPS:

• As shown above, MPS is an unsupervised technique
that does not require the number of clusters in ad-
vance. By introducing the relative reconstruction rate
in (14), MPS has the ability to select the appropriate
number of multi-prototypes.

• In MPS, ε is a key parameter to tune the number
of multi-prototypes selected by the algorithm. Evi-
dently, the smaller ε is, the more number of multi-
prototypes are sampled, and vice versa. Here, ε is
empirically set as follows:

ε =
1

ρ
√
n ∗ p

(15)

where n is the number of samples, p is the dimen-
sionality of samples, and ρ is a positive constant. We
present the results of MPS with the appropriate ρ on
D1, D2, and D3, as shown in Fig. 2. Furthermore,
we show by experiments in Subsection 5.2.1 that by
changing ρ appropriately, MPS allows the clustering
results of K-Means to better adapt to the arbitrary
shape data sets.

• The computational complexity of MPS is O( 12np(1 +
s∗)s∗ + nps∗tK-Means), where s∗ is the number of
multi-prototypes by MPS, and tK-Means is the number
of iterations of K-Means algorithm.

• We can prove that the multi-prototypes obtained by
MPS achieve a constant factor approximation to the
global minima of K-Means problem, see below.

Theorem 3. For any data set X, if the prototypes are constructed
with MPS, then the corresponding objective function JMPS

X satis-
fies:

E[JMPS
X ] ≤ 2(1− ε)(3JX

opt + 2na

a
),

where ε is the termination threshold for MPS, na = |{x|∥v(x)−
v∗(x)∥ ≥ ∥x− v∗(x)∥}| and

a
= εJMPS

X .

The proof is given in Appendix A. Thus given a small
ε, the iterations of MPS can continuously optimize

a
to

achieve the desired approximate upper bound on the global
minima. After Algorithm 1, the multi-prototypes need to
be merged to recover better local minimum. In the next
subsection, the merging technique CM is presented.

4.2 Multi-Prototypes Convex Merging (CM)

In this part, a merging technique, called convex merging
(CM), is proposed to recover better local minima in the
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case of unknown number of clusters. CM, derived from the
convex clustering paradigm [31], formulates the merging of
the multi-prototypes task as a convex optimization problem
by adding a sum-of-norms (SON) regularization to control
the trade-off between the model error and the number of
clusters. The model is as follows:

min
µ1,...,µs∗∈Rp

1

2

s∗∑
i=1

∥µi − vi∥2 + γ
∑
i<j

wij∥µi − µj∥, (16)

where γ > 0 is a tuning parameter, s∗ is number of the
multi-prototypes by MPS, and the norms chosen ensure the
convexity of the model. Here, wij is chosen based on the
number of neighboring samples q, and (12).

After solving (16), the optimal solutions, µ∗
1, ...,µ

∗
s∗ , are

obtained. Then the multi-prototypes in VMPS are assigned
based on the following criteria: for any i, i

′ ∈ {1, 2, ..., s∗},
vi and vi′ can be assigned to the same cluster if and only if
their optimal solutions ∥µ∗

i −µ∗
i′
∥ ≤ η for a given tolerance

η. Otherwise, i and i
′

are assigned to the different clusters.
Accordingly, the optimal clusters of the multi-prototypes,
CCM = {CCM

1 , CCM
2 , ..., CCM

k∗ }, are formed, where k∗ is the
estimated number of clusters.

Finally, the samples are merged into the clusters in CCM

and we get the final clusters of the data set CMCKM. In detail,
xj ∈ CMCKM

l , if xj ∈ CMPS
i and vi ∈ CCM

l for i = 1, 2, ..., s∗,
j = 1, 2, ..., n, l = 1, 2, ..., k∗.

In (16), γ regulates both the assignment of the multi-
prototypes and the number of clusters. When γ = 0, each
prototype occupies a unique cluster of its own. For a suffi-
ciently large γ, all multi-prototypes are assigned to the same
cluster.

The algorithm of CM is summarized in Algorithm 2.
The details of the optimization process can be referred to
Appendix B and the related studies [34], [35].

Algorithm 2 Convex Merging (CM)
Input: The multi-prototypes VMPS with s∗, the correspond-

ing clusters CMPS, the number of neighboring samples q,
the tuning parameter γ and the termination η;

Output: The clusters of the data set CMCKM and the esti-
mated number of clusters k∗.

1: Optimize (16) on the results of MPS, VMPS, and get the
optimal solution µ∗ = {µ∗

1, ...,µ
∗
s∗};

2: Form the optimal clusters of the multi-prototypes,
CCM = {CCM

1 , CCM
2 , ..., CCM

k∗ }, based on µ∗;
3: Obtain the clusters of the data set CMCKM based on the

clusters CMPS and CCM, and the estimated number of
clusters k∗ = |CMCKM|.

We have the following comments for CM:

• Because the objective of CM is convex, the global
minima of the merging of the multi-prototypes for
a given suitable γ is unique and is easier to obtain
than the traditional merging techniques [31], [32].

• We present the results of CM on the multi-prototypes
of MPS for D1, D2, and D3 with the appropriate q
and γ, as shown in Fig. 3. By choosing appropriate
q and γ in (16), the prototypes fusion path can
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(c) D3, k∗ = 2

Fig. 3. The results of CM on the multi-prototypes of MPS for D1, D2, and
D3 with the appropriate q and γ, where the black stars are the multi-
prototypes of MPS and the green lines are the minimum spanning tree
of each CM subcluster. k∗ is the estimated number of clusters.

be generated, which enhances the explainable and
comprehension of recovering the better local minima.

• Originating from CC model [31], CM has the prop-
erty that the value of γ is inversely proportional to
the estimation of the number of clusters k∗. Based on
monotonicity, a suitable γ is sure to allow MCKM to
evaluate the correct cluster number.

• The computational complexity of CM is
O((s∗)2ptADMM), where s∗ ≪ n, and tADMM the
number of iterations of ADMM solver.

• We can prove that the final clustering result of
MCKM achieves a constant factor approximation to
the global minima of K-Means problem, see below.

Theorem 4. For any data set X, if the final prototypes are
constructed with MCKM (MPS+CM), then the corresponding
objective function JMCKM

X satisfies:

J
opt
X ≤ JMCKM

X ≤ 2JMPS
X + 2nbJ

CM
VMPS

.

where nb = max
1≤i≤s∗

|CMPS
i |, and |CMPS

i | is the cardinality of CMPS
i .

The proof is given in Appendix C. According to The-
orem 3 and 4, the objective function of MCKM (MPS+
CM), still achieves a constant factor approximation to the
global minima of K-Means problem. In summary, MCKM
can achieve better local minima in theory.

In the next section, several experiments are performed to
illustrate the performance of the proposed algorithm.

5 EXPERIMENTAL RESULTS

To verify the effectiveness and efficiency of the proposed
algorithm, experiments are carried out on synthetic and real-
world data sets. We compare our method with four other
clustering algorithms: 1) K-Means algorithm [7]; 2) Split-
Merge K-Means algorithm (SMKM) [21]; 3) Affinity Propa-
gation algorithm (AP) [37]; 4) Self-adaptive multiprototype-
based competitive learning (SMCL) [29]; and 5) Convex
clustering (CC) [31]. These algorithms are chosen because
they use different techniques to achieve the good approxi-
mation of the global minima. Specifically, K-Means, SMKM
and AP usually perform well on relatively uniform size
and linearly separable convex data sets. SMCL and CC can
handle the clustering of non-convex and skewed data sets
without given the cluster number. Moreover, AP, SMCL and
CC can estimate the correct cluster number by selecting
appropriate hyper-parameters.
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All experiments were run on a computer with an Intel
Core i7-6700 processor and a maximum memory of 8GB.
The computer runs Windows 7 with MATLAB R2017a.
The experimental setup and the evaluation metrics used
for clustering performance are described below. The ter-
mination parameter η = 10−6 for all algorithms except
SMCL which is empirically set at 0.001. AP contains two
parameters: damping factor λ and value of the diagonal
of the similarity matrix Λ. In AP, λ = 0.98 for all data
sets. SMCL contains six parameters: learning rata αc, tuning
parameter ηc, frequency parameter θ, density parameter
ϵ, the number of neighboring samples q, and the prede-
fined number of multi-prototypes K . In SMCL, θ = 0.01n,
ϵ = {ϵ | 1

n

∑
z ̸=jJd(xj ,xz) < ϵK = 0.02n}, q = 5 and K = 2

for all data sets. The positive constant κ = 0.9 in (12) for
CC and MCKM. The remaining parameters need to be fine-
tuned in the experiments.

5.1 Evaluation Metrics
In order to evaluate the performances of the clustering

algorithms, three metrics are used. They are: the F-measure
(F∗), Normalized Mutual Information (NMI), and Adjusted
Rand Index (ARI) [43], [44], [45]. They measure the agree-
ment with the ground truth and the clustering results. Let
n be the total number of samples, {C1, C2, · · · , Ck} be the
partition of the ground truth, and {Ĉ1, Ĉ2, · · · , Ĉk̂} be the
partition by an algorithm. Denote | · | the cardinality of a
set. Let n̂i = |Ĉi|, nl = |Cl|, and nl

i = |Cl ∩ Ĉi|, where
i = 1, 2, · · · , k̂ and l = 1, 2, · · · , k. Then the measure
F (l, i) =

2nl
i

nl+n̂i
is the harmonic mean of the precision and

recall of Cl and its potential prediction Ĉi. The overall F-
measure F∗, NMI and ARI are defined as follows:

F∗ =
k∑

l=1

nl

n
max{F (l, i)|i = 1, · · · , k̂.}, (17)

NMI =

k̂∑
i=1

k∑
l=1

nl
i log(

n·nl
i

n̂i·nl
)√√√√( k̂∑

i=1
n̂i log(

n̂i

n )

)(
k∑

l=1
nl log(

nl

n )

) , (18)

ARI =

k̂∑
i=1

k∑
l=1

(nl
i
2

)
−

k̂∑
i=1

(ti
2

) k∑
l=1

(sl
2

)
/
(n
2

)
1
2

(
k̂∑

i=1

(ti
2

)
+

k∑
l=1

(sl
2

))
−

k̂∑
i=1

(ti
2

) k∑
l=1

(sl
2

)
/
(n
2

) , (19)

where
(n
i

)
= n!

i!(n−i)! , sl =
∑k̂

i=1 n
l
i, and ti =

∑k
l=1 n

l
i.

5.2 Experiments on Synthetic Data Sets
Six normalized synthetic data sets are selected for clus-

tering in the first set of experiments, see Fig. 4. They include
unbalanced data set, non-convex data sets, and convex data
sets with large number of clusters. The detailed information
on the data sets is given in Table 1, where n is the number
of training size, p is the dimensionality of samples, and k
is the true number of clusters. In order to have a better
understanding of MCKM, the performance of the multi-
prototypes sampling (MPS) and the convex merging (CM)
are shown respectively in Sections 5.2.1 and 5.2.2.
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(f) D6

Fig. 4. Six synthetic data sets. They include unbalanced data set, non-
convex data set, and convex data set with a large number of clusters.

5.2.1 Parameter Sensitivity
The selection of parameters (ρ, q and γ) is crucial for

MCKM (MPS+CM). Therefore, we analyze the sensitivity of
parameters through visualization on the synthetic data sets.

1) ρ for MPS: Here we show that MPS can adapt to the
arbitrary shape data sets by choosing appropriate ρ in (15).
To illustrate these, MPS is performed on D1 and D2 with ρ =
0.1, 1, 5 respectively. The results and corresponding Voronoi
partition are shown in Fig. 5.

(a) D1, k = 2 (b) D2, k = 2

(c) ρ = 0.1 (d) ρ = 1 (e) ρ = 5

(f) ρ = 0.1 (g) ρ = 1 (h) ρ = 5

Fig. 5. The true clusters of D1 and D2 in 5a and 5b. The results of MPS
and the corresponding Voronoi partition on D1 and D2 with ρ = 0.1, 1, 5
in 5c-5e and 5f-5h, respectively, where the black stars are the final multi-
prototypes.

The true clusters of D1 and D2 are shown in Fig. 5a
and 5b. When ρ = 0.1, we observe from the corresponding
Voronoi partition in Fig. 5c and 5f that some prototypes
obtained by MPS are put in the centroid of the two true
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(a) γ = 0.15
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(b) γ = 0.206
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(c) γ = 0.3
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(f) γ = 5

Fig. 6. The results of CM on the multi-prototypes of MPS for D1 and D2 with different q and γ in 6a-6c and 6d-6f, respectively, where the black stars
are the multi-prototypes of MPS with ρ = 1 on D1 and D2. The green lines are the minimum spanning tree of each CM subcluster.

clusters. When ρ = 5, some prototypes obtained by MPS
lie in the outliers on D2, as shown in Fig. 5h. For D1, when
ρ = 1 and ρ = 5, there is no under-refinement structure of
the true clusters, as shown in Fig. 5d and 5e. Naturally, we
use a small number of multi-prototypes for the next CM.
Therefore, in MPS, ρ = 1 is appropriate for D1 and D2.

From Fig. 4, it can be found that the value of ρ is directly
proportional to the number of multi-prototypes s∗. There-
fore, based on this monotonicity, MPS allows the clustering
results of K-Means to better adapt to the arbitrary shape
data sets. In detail, for the arbitrary shape data set, MPS with
an appropriate ρ can achieve that each true cluster have one
or more prototypes, and none of the prototypes are put in
the centroid of multiple true clusters. Based on the results
of MPS, the better local minima of K-Means can be obtained
by the subsequent convex merging.

2) q and γ for CM: After MPS, CM is applied to merge
the multi-prototypes to get the local minima of K-Means
problem. Here we show that the prototypes fusion path is
generated by choosing appropriate q and γ in (16), which
enhances the explainable and comprehension of recovering
the better local minima. To illustrate these, CM is performed
on the multi-prototypes of MPS for D1 and D2 with q =
1, 2, 3 respectively. And γ = 0.15, 0.206, 0.3 for D1; γ =
0.5, 1.7, 5 for D2. The results are shown in Fig. 6.

In Fig. 6, it can be observed that when q is fixed, an
increasing γ leads to the merging of more multi-prototypes.
This finding is consistent with the conclusion drawn in
Subsection 4.2. When γ is fixed and q = 1, under-merging
is often observed in CM, indicating that some prototypes
that should have been merged are not merged, but there
are no undesired mergers. However, when q = 3, CM often
exhibits over-merging, meaning that some prototypes that
should not have been merged are merged, even when γ is
small. Therefore, we suggest setting q to 1 or 2 in most cases,
as choosing a smaller q ensures that the prototypes that are
merged are highly similar.

Additionally, the appropriate γ varies for different data

sets and is difficult to determine empirically. However, in
[35], a comprehensive theoretical proof has been provided
to demonstrate that an appropriate γ must exist for a given
data set. Moreover, CM has the property that the value of
γ is inversely proportional to the estimation of the number
of clusters. Therefore, based on this monotonicity, an appro-
priate γ can always be selected.

5.2.2 Performance of MCKM

The clustering results of MCKM and of the other four
algorithms are plotted in Fig. 7. The metric results of F∗,
NMI, and ARI are shown in Table 1, where k∗ is the num-
ber of clusters obtained by the algorithms. Suitable hyper-
parameters are selected for AP, SMCL, CC and MCKM and
are listed in the second column of Table 1. Furthermore, the
running times of the algorithms are displayed in Table 2,
where the values are averaged over 20 trials.

From the results, we have the following findings.

• From Fig. 7 and the corresponding Table 1, MCKM
is competent for the clustering of the arbitrary shape
data sets, including unbalanced data set, non-convex
data sets, and convex data sets with a large cluster
number. Its clustering results are comparable to those
of the state-of-the-art clustering algorithms, or even
better, see, for example, the results of D3, D4, and D6.

• In terms of getting the number of clusters, AP, SMCL,
CC and MCKM have the same performance when
the true number of clusters is small. However, when
the true number of clusters is relatively large, only
AP, CC and MCKM still work well by choosing a
suitable parameter. In detail, AP benefits from the
iterative update of valuable information passed be-
tween samples; CM and MCKM inherits the advan-
tage of convex clustering. CM and CC solve the sim-
ilar convex optimization model as in (11) and (16).
In summary, AP, CC and MCKM are outstanding in
getting the number of clusters.
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(a) K-Means
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(f) MCKM

Fig. 7. The clustering results of K-Means [7], SMKM [21], AP [37], SMCK [29], CC [31] and the proposed MCKM on the six synthetic data sets.

• From Table 2, we see that the running time of K-
Means and SMKM is much less than that of AP,
SMCL and CC. Obviously, the estimation of the num-
ber of clusters is very time-consuming for the clus-
tering algorithms. Comparing the four algorithms
without the cluster number given a priori, i.e., AP,
SMCL, CC, and MCKM, MCKM has significantly
higher efficiency. In particular, MCKM is even more
efficient than SMKM on convex data sets with a large
number of clusters, see D5 and D6.

5.3 Experiments on Real-world Data Sets

The second set of experiments are performed on real-
world data sets selected from UCI Machine Learning Repos-
itory1. The detailed information on the data sets, the cluster-
ing performances and the hyper-parameters used are given
in Table 3. In MCKM, the constant ρ = 1, 0.8, 1.6, 1, 2 are
chosen empirically for MPS on HTRU2, Iris, Wine, X8D5K,
and Statlog respectively. The running time of the algorithms

1. https://archive.ics.uci.edu/ml/index.php

are displayed in Table 4, where the values are averaged over
20 trials.

From the results, we obtain the following findings.

• In terms of the clustering results, MCKM outper-
forms the other algorithms on almost all real-world
data sets.

• In terms of evaluating the cluster number, CC and
MCKM still perform better than the other algorithms.

• In terms of the running time of the algorithms, al-
though MCKM is not as efficient as the other algo-
rithms where the cluster number are given a priori,
i.e., K-Means and SMKM, it is the best among the
algorithms that do not require the cluster number. In
particular, the running time of MCKM is about 38%
of that of CC on average.

In conclusion, based on the structure of spurious local
minima of the K-Means problem, MCMK provides an ex-
plainable two-stage approach for recovering a better local
minima, in which oversampling is performed by MPS, and
then the multi-prototypes are merged by CM. Moreover, the
experiments on synthetic and real-world data sets show that

https://archive.ics.uci.edu/ml/index.php
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TABLE 1
The evaluation of the clustering results of the different algorithms on
the six synthetic data sets. The best results are shown in boldface.

Algorithms Parameter F∗ NMI ARI k∗

D1 (n = 3500, p = 2, k = 2)

K-Means k = 2 0.8574 0.4481 0.4999 −
SMKM k = 2 0.8574 0.4481 0.4999 −

AP Λ = −200 0.9574 0.7064 0.8042 2
SMCL αc = ηc = 0.005 0.9878 0.8748 0.9373 2

CC q = 5; γ = 5 0.9939 0.9267 0.9681 2
MCKM q = 2; γ = 0.206 0.9899 0.8909 0.9475 2

D2 (n = 2000, p = 2, k = 2)

K-Means k = 2 0.9160 0.5839 0.6921 −
SMKM k = 2 0.9160 0.5839 0.6921 −

AP Λ = −200 0.9255 0.6176 0.7241 2
SMCL αc = ηc = 0.005 0.9965 0.9669 0.9860 2

CC q = 5; γ = 20 1.0000 1.0000 1.0000 2
MCKM q = 2; γ = 1.7 0.9995 0.9943 0.9980 2

D3 (n = 1000, p = 2, k = 2)

K-Means k = 2 0.5180 0.0006 -0.0002 −
SMKM k = 2 0.5178 0.0006 -0.0002 −

AP Λ = −60 0.5138 0.0003 -0.0004 2
SMCL αc = ηc = 0.005 0.5386 0.0029 0.0027 2

CC q = 5; γ = 14 1.0000 1.0000 1.0000 2
MCKM q = 2; γ = 10 1.0000 1.0000 1.0000 2

D4 (n = 5000, p = 3, k = 2)

K-Means k = 2 0.8338 0.4701 0.4318 −
SMKM k = 2 0.8338 0.4701 0.4318 −

AP Λ = −200 0.8527 0.5087 0.4877 2
SMCL αc = ηc = 0.001 0.9988 0.9878 0.9952 2

CC q = 5; γ = 20 1.0000 1.0000 1.0000 2
MCKM q = 2; γ = 1.5 1.0000 1.0000 1.0000 2

D5 (n = 5000, p = 2, k = 15)

K-Means k = 15 0.8600 0.8823 0.7798 −
SMKM k = 15 0.9700 0.9465 0.9379 −

AP Λ = −10 0.9712 0.9479 0.9402 15
SMCL αc = ηc = 0.005 0.9312 0.9306 0.8395 14

CC q = 5; γ = 9.5 0.8314 0.8879 0.7311 15
MCKM q = 1; γ = 0.1 0.9580 0.9326 0.9148 15

D6 (n = 5250, p = 2, k = 35)

K-Means k = 35 0.9068 0.9489 0.8652 −
SMKM k = 35 0.9890 0.9838 0.9775 −

AP Λ = −5 0.9893 0.9840 0.9782 35
SMCL αc = ηc = 0.0001 0.3058 0.6329 0.0366 7

CC q = 5; γ = 2.1 0.8992 0.9544 0.9819 35
MCKM q = 1; γ = 0.05 0.9893 0.9841 0.9783 35

MCKM achieves a well trade-off between clustering quality
and efficiency. In terms of quality, MCKM is an outstanding
clustering algorithm for recovering a better local minima
without given cluster number. In terms of efficiency, for
AP, the computation of pairwise similarity between sam-
ples and the updates of the three matrices (Responsibility,
Availability, and Similarity) is extremely time-consuming,
particularly when dealing with a large number of samples,
such as D4, D5, D6, HTRU2, and Statlog; For SMCL, a
significant amount of computation is required for Eq. (7),
(8), (9), (10); Compared with CC, we note that n samples are
involved in the CC convex optimization model (11) whereas
s∗ prototypes are involved in the CM convex optimization
model (16), where the number of the multi-prototypes by
MPS s∗ ≪ n. Overall, the running time of MCKM is less
than that of CC. This is consistent with the complexity

analysis in Subsections 4.1 and 4.2. Therefore, both MPS and
CM in MCKM are very efficient.

5.4 Performance of the Approximation to the Global
Minima of K-Means Problem

In the third set of experiments, we verify the
approximation capability of MCKM on the global minima
of K-Means problem. The corresponding K-Means errors of
the chosen algorithms on all data sets are compared with the
optimal errors of the corresponding data sets. Referring to
[16], K-Means cost function can equivalently be rewritten as:

JX =
k∑

i=1

1

2|Ci|
∑

j,j′∈Ci

∥xj − xj′∥2. (20)

For a data set X, the optimal error J∗
X can be calculated

using the partition of the cluster from the true label. The
corresponding error JX for an algorithm can be calculated
based on the partition of the cluster determined by the
algorithm. Table 5 shows the approximation capability of the
algorithms by using |JX − J∗

X|. The best results are shown
in boldface.

From Table 5, we conclude that MCKM approximate
better than the other algorithms in almost all data sets.
This is attributed to MPS’s better adaptation to the arbitrary
shape data sets and CM’s superior merging mechanism for
the multi-prototypes.

6 CONCLUSION

In this paper, multi-prototypes convex merging based K-
Means clustering algorithm (MCKM) is proposed to recover
a better local minima of K-Means problem without the clus-
ter number given first. In the proposed algorithm, a multi-
prototypes sampling (MPS) is used to select the appropriate
number of multi-prototypes with better adaptation to data
distribution. Then, a convex merging (CM) technique is
developed to formulate the merging of the multi-prototypes
task as a convex optimization problem. Specifically, CM
obtains the optimal merging and estimate the correct cluster
number. Two theoretical proofs are given to guarantee that
the cost of MCKM (MPS+CM) can achieve a constant factor
approximation to the optimal cost of the K-Means problem.
Experimental results have verified MCKM’s effectiveness
and efficiency on synthetic and real-world data sets.

It is noteworthy that the results of MCKM are highly
sensitive to parameter selection (e.g. ρ, q, and γ ). Therefore,
for future work, an interesting possibility is to implement
the adaptive parameter selection technique for recovering
better local minima. Another possibility is to design a new
version of MPS with the improved initial point and sam-
pling probabilities for better upper bound approximation.
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APPENDIX A
PROOF OF THEOREM 3

Here, we prove that the multi-prototypes obtained by
MPS can achieve a constant factor approximation to the
optimal cost of K-Means problem.

Proof. Let v(x) be the prototype to which x belongs
and v∗(x) be the optimal prototype to which x belongs.
Assume that MPS has chosen s samples, 1 ≤ s ≤ n,
as the prototypes V, and we continue to choose the
next prototype x(s+1) from X. The probability of being
selected is precisely D(x(s+1))2/

∑
x∈X D(x)2. After

adding the prototype x(s+1), any sample x will contribute
min(D(x), ∥x − x(s+1)∥)2 to the objective function.
Therefore,

E[JMPS
X ] =

∑
x(s+1)∈X

D(x(s+1))2∑
x∈X D(x)2

∑
x∈X

min(D(x), ∥x− x(s+1)∥)2.

According to the termination condition of MPS, since
x(s+1) is selected, we have:

R(s)−R(s+ 1)

R(s)
≥ ε ⇔ (1− ε)R(s) ≥ R(s+ 1).

Based on (13), we have E[JMPS
X ] ≤ (1− ε)

∑
x∈X D(x)2. By

the power-mean inequality ∥x−v(x)∥2 ≤ 2∥x−v∗(x)∥2 +
2∥v∗(x)− v(x)∥2, we have

E[JMPS
X ] ≤ (1− ε)

∑
x∈X

D(x)2,

≤ 2(1− ε)
∑
x∈X

(∥x− v∗(x)∥2 + ∥v∗(x)− v(x)∥2),

= 2(1− ε)(JX
opt +

∑
x∈X

∥v∗(x)− v(x)∥2).

Assume that MPS continues to run and terminates
after the algorithm has sampled s∗ prototypes. Because
MPS adopts D2 sampling method, we have for any x,
D(x(s∗+1))2 ≥ D(x)2. Accordingly, we have:

D(x(s∗+1)) ≥ D(x) ≥ |∥v(x)− v∗(x)∥ − ∥x− v∗(x)∥| .

Then, define Xa = {x|∥v(x)− v∗(x)∥ ≥ ∥x− v∗(x)∥} and
Xb = {X \Xa}. Let na = |Xa| represents the cardinality of
the set Xa. Combining the above derivations, we have:

E[JMPS
X ] ≤ 2(1− ε)(JX

opt +
∑
x∈X

∥v∗(x)− v(x)∥2)

≤ 2(1− ε)(JX
opt +

∑
x∈Xb

∥x− v∗(x)∥2

+
∑

x∈Xa

[
∥x− v∗(x)∥+D(x(s∗+1))

]2
).

Since MPS terminates at s∗ steps, we have:

R(s∗)−R(s∗ + 1)

R(s∗)
≤ ε ⇔ (1− ε)R(s∗) ≤ R(s∗ + 1)

which is equivalent to:∑
x∈X

{D(x)2 −min(D(x), ∥x− x(s∗+1)∥)2} ≤ ε
∑
x∈X

D(x)2.

Here, X is divided into three parts according to the
following rules: 1) x ∈ X1, if min(D(x), ∥x − x(s∗+1)∥)2 =
D(x)2; 2) x ∈ X2, if min(D(x), ∥x − x(s∗+1)∥)2 = ∥x −
x(s∗+1)∥)2; 3) X3 = {x(s∗+1)}. Evidentially,∑

x∈X

{D(x)2 −min(D(x), ∥x− x(s∗+1)∥)2}

= 0 +
∑

x∈X2

{D(x)2 − ∥x− x(s∗+1)∥2}+D(x(s∗+1))2.

Therefore, we have:

D(x(s∗+1))2 ≤ ε
∑
x∈X

D(x)2.

The last step is summarized as follows:

E[JMPS
X ] ≤ 2(1− ε)(3JX

opt + 2εna

∑
x∈X

D(x)2).

The proof process is complete.

APPENDIX B
THE ADMM FOR SOLVING CM.

Algorithm 3 ADMM for Solving (16)
Input: The multi-prototypes VMPS, the number of the

multi-prototypes s∗, the number of neighboring samples
q, a positive constant κ, the tuning parameter γ, the
termination η, λ0, and new variables y0;

Output: The optimal solutions, µ∗
1, ...,µ

∗
s∗ .

1: set the iteration number t = 0
2: V̄MPS is the average column of VMPS;
3: compute E and W based on Eq. (12);
4: σl =

γwl

ν , l ∈ E;
5: repeat
6: compute Z with zi = vi +

∑
l1=i(λ

m
l + νym

l ) −∑
l2=i(λ

m
l + νym

l ), i = 1, 2, ..., s∗;
7: update µt+1 = 1

1+c∗νZ + c∗ν
1+c∗ν V̄MPS;

8: update yt+1 with yt+1
l = proxσl∥·∥(µ

t+1
l1

− µt+1
l2

−
ν−1λt

l), l ∈ E;
9: update λt+1 with λt+1

l = λt
l + ν(yt+1

l − µt+1
l1

+

µt+1
l2

), l ∈ E;
10: t = t+ 1;
11: until Stopping criterion is met
12: Obtain the optimal solutions, µ∗

1, ...,µ
∗
s∗ .

The objective of CM (16) is recast as the equivalent
constrained problem:

min
µ1,...,µs∗∈Rp

1

2

s∗∑
i=1

∥µi − vi∥2 + γ
∑
l∈E

wl∥yl∥2,

s.t. µl1 − µl2 − yl = 0,

(21)

where l = (l1, l2) with l1 < l2, and yl = µl1 − µl2 is intro-
duced to simplify the penalty terms. For the constrained
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optimization problem (21), the augmented Lagrangian is
given by:

Lν(µ,y,λ) =
1

2

s∗∑
i=1

∥µi − vi∥2 + γ
∑
l∈E

wl∥yl∥2

+
∑
l∈E

⟨λl,yl − µl1 + µl2⟩+
ν

2

∑
l∈E

∥yl − µl1 + µl2∥22.

(22)
ADMM minimizes the augmented Lagrangian by the fol-
lowing iterative process:

µt+1 = argmin
µ

Lν(µ,y
t,λt);

yt+1 = argmin
y

Lν(µ
t+1,y,λt);

λt+1
l = λt

l + ν(yt+1
l − µt+1

l1
+ µt+1

l2
), l ∈ E,

(23)

where t is the iteration number. ADMM for solving (16) is
summarized in Algorithm 3. For other solvers, please refer
to [34], [35],

APPENDIX C
PROOF OF THEOREM 4

Here, we prove that the final clustering result of MCKM
can achieve a constant factor approximation to the optimal
cost of K-Means problem.

Proof. Let vMPS(x) be the prototype to which x belongs
in the multi-prototypes obtained by MPS, and CMPS =
{CMPS

1 , CMPS
2 , ..., CMPS

s∗ } is the corresponding clusters. Let
|CMPS

i | represents the cardinality of CMPS
i for i = 1, 2, ..., s∗.

v∗(x) be the optimal prototype to which x belongs. µ∗ =
{µ∗

1, ...,µ
∗
s∗} is the optimal solution obtained by CM. As-

sume that the merge result of multi-prototypes of MPS is
obtained by CM for a given suitable γ, and CM evaluates
the correct number of clusters, k∗

After the optimal solutions µ∗
1, ...,µ

∗
s∗ of (11) are

obtained, the multi-prototypes of MPS are assigned to be in
one cluster if and only if their optimal solutions µ∗ are the
same. Finally, the samples are assigned to its corresponding
solution µ∗

x. In detail, the solution of xj is µ∗
i , if the solution

of vMPS(xj) is µ∗
i for i = 1, 2, ..., s∗, j = 1, 2, ..., n. Therefore,

J
opt
X =

n∑
j=1

∥xj − v∗(xj)∥2 ≤
n∑

j=1

∥xj − µ∗
xj
∥2

As analyzed above, the objective function of MCKM is
clearly given by:

JMCKM
X =

n∑
j=1

∥xj − µ∗
xj
∥2.

By the power-mean inequality ∥xj − µ∗
xj
∥2 ≤ 2∥xj −

vMPS(xj)∥2+2∥vMPS(xj)−µ∗
xj
∥2 for j = 1, 2, ..., n, we have:

J
opt
X =

n∑
j=1

∥xj − v∗(xj)∥2 ≤ JMCKM
X

≤ 2(
n∑

j=1

∥xj − vMPS(xj)∥2 + ∥vMPS(xj)− µ∗
xj
∥2)

≤ 2(
n∑

j=1

∥xj − vMPS(xj)∥2) + 2nb(
s∗∑
i=1

∥vi − µ∗
i ∥2)

where nb = max
1≤i≤s∗

|CMPS
i |. Then, based on the CM model

(16), we add a term to the inequality above, and we have:

JMCKM
X ≤ 2(

n∑
j=1

∥xj − vMPS(xj)∥2) + 2nb(
s∗∑
i=1

∥vi − µ∗
i ∥2)

≤ 2(
n∑

j=1

∥xj − vMPS(xj)∥2) + 2nb(
s∗∑
i=1

∥vi − µ∗
i ∥2

+ γ
∑
i<z

wiz∥µi − µz∥)

= 2JMPS
X + 2nbJ

CM
VMPS

.

The last step is summarized as follows:

J
opt
X ≤ JMCKM

X ≤ 2JMPS
X + 2nbJ

CM
VMPS

.

The proof process is complete.
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