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PottsMGNet: A Mathematical Explanation of Encoder-Decoder
Based Neural Networks\ast 

Xue-Cheng Tai\dagger , Hao Liu\ddagger , and Raymond Chan\S 

Abstract. For problems in image processing and many other fields, a large class of effective neural networks
has encoder-decoder-based architectures. Although these networks have shown impressive perfor-
mance, mathematical explanations of their architectures are still underdeveloped. In this paper,
we study the encoder-decoder-based network architecture from the algorithmic perspective and pro-
vide a mathematical explanation. We use the two-phase Potts model for image segmentation as
an example for our explanations. We associate the segmentation problem with a control problem
in the continuous setting. Then, the continuous control model is time discretized by an operator-
splitting scheme, the PottsMGNet, and space discretized by the multigrid method. We show that
the resulting discrete PottsMGNet is equivalent to an encoder-decoder-based network. With minor
modifications, it is shown that a number of the popular encoder-decoder-based neural networks are
just instances of the proposed PottsMGNet. By incorporating the soft-threshold-dynamics into the
PottsMGNet as a regularizer, the PottsMGNet has shown to be robust with the network parameters
such as network width and depth and has achieved remarkable performance on datasets with very
large noise. In nearly all our experiments, the new network always performs better than or as well
as on accuracy and dice score compared to existing networks for image segmentation.
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1. Introduction. Deep neural networks have demonstrated great performance in many
image processing tasks, such as image segmentation [58, 48, 13, 3, 47, 75], image denoising
[73, 2], etc. Although deep neural networks have provided remarkable results, mathematical
explanations for their success are still underdeveloped.

A popular explanation or intuition for network architecture is the encoder-decoder frame-
work, which decomposes the network into two parts: the encoder part and the decoder
part. When a high-dimensional variable is passed to the network, the encoder part first uses
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PottsMGNet 541

several computational layers and downsampling layers to extract useful low-dimensional
features. Then these features are passed to the decoder to reconstruct the desired high-
dimensional output. Such an architecture is widely used in networks for image segmentation,
such as UNet [58], UNet++ [75], DeepLab [13], and SegNet [3]. While the encoder-decoder
framework only provides a general picture of the network architecture, i.e., the decoder does a
dimension reduction and the decoder does a data reconstruction, more detailed explanations,
such as what is the role of each layer in the network, and what mathematical model we are
solving by this network, are still unclear.

For image segmentation, a large class of models is based on theories of min cut/ max flow.
The continuous max flow and min cut problems are studied in [4, 71]. Stemming from Markov
random fields, many efficient methods are designed based on graph cuts [9]. A very important
mathematical model for image segmentation is the Potts model [55]. Applications of the Potts
model for segmentation and classification [7, 8, 72] have been extensively studied for discrete
graph settings and can be efficiently solved by max flow algorithms. The new survey [63] con-
tains a comprehensive overview of the Potts model and its fast algorithms. The Potts model
was first proposed for statistical mechanics in [55] and can be taken as a generalization of the
two-state Ising model to lattice [54]. It is used for binary graph cuts in [9]. In [9, 7], efficient
graph cut algorithms, equipped with fast graph cut techniques, are proposed for min cut prob-
lems such as image segmentation with the Potts model. It has been shown in [4, 71] that the
Potts model is equivalent to a continuous min cut and max flow problem: If the Potts model
is discretized with certain approximations, it reduces to existing graph cut models (see [69]
for some more detailed explanations). In [71], the alternating direction method of multipliers
(ADMM) is used to solve the Potts model. However, the convergence of the algorithm is not
guaranteed. Recently, in [61], based on the Eckstein--Bertsekas [21] and Fortin--Glowinski [23]
splitting techniques, two novel preconditioned ADMMs for the Potts model with guaranteed
convergence were proposed.

Operator-splitting methods are powerful tools for solving complicated optimization prob-
lems. In general, an operator-splitting method decomposes a complicated problem into several
easy-to-solve subproblems so that each subproblem either has a closed-form solution or can be
solved efficiently. Based on how these subproblems are solved, operator-splitting methods can
be divided into parallel splitting methods [49] and sequential splitting methods [26, 50]. As
indicated by the name, parallel splitting methods solve all subproblems in parallel and then
combine the results by averaging; sequential splitting methods solve subproblems sequentially.
In fact, ADMM is a special type of operator-splitting method. Operator-splitting methods
have been applied in numerical methods for partial differential equations [29, 42], inverse prob-
lems [28], computational fluid dynamics [6, 53], obstacle problems [45], surface reconstructions
[36], and image processing [44, 18, 17, 43]. Compared to ADMM, operator-splitting methods
have fewer parameters and are not sensitive to the choices of parameters. For problems from
image processing, it is shown in [17, 18] that operator-splitting methods are more efficient.
We refer readers to [31, 30, 32] for a comprehensive discussion on operator-splitting methods.

In this paper, we provide a mathematical explanation of encoder-decoder-based convolu-
tional neural networks for image segmentation from the perspective of mathematical models
and algorithms. We use the two-phase image segmentation as an example, but the explana-
tions can be generalized to multiphase and other classification problems as well. We solve
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542 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

the two-phase segmentation problem using the Potts model with the length represented by
soft-threshold-dynamics [1, 51, 47]. We derive the Euler--Lagrange equation of the problem
and associate it with an initial value problem with control variables. We propose a novel
operator-splitting method, the hybrid splitting, which combines parallel splitting and sequen-
tial splitting to discretize the control problem. By incorporating the hybrid splitting method
with the multigrid method and with proper choices of the control variables, we obtain a
scheme we call PottsMGNet, which has the same architecture as an encoder-decoder-based
neural network. Each layer in the network corresponds to a substep of the splitting scheme,
and its convolutional kernels and biases correspond to the control variables. Our contributions
can be summarized as follows:

\bullet We provide a clear and concise mathematical explanation of a large class of encoder-
decoder-based neural networks, which are essentially some operator-splitting schemes
with a multigrid method for some optimal control problems. These explanations are
important for designing and improving neural networks, providing clear guidelines for
the choice of the number of layers and neurons on each layer, and making the networks
more explainable, with each part having a clear mathematical meaning.

\bullet Our proposed PottsMGNet is a multigrid-based numerical splitting scheme for solv-
ing control problems. With proper settings, our framework recovers the widely used
neural networks in the literature for image segmentation problems, just with differ-
ent activation functions. Each layer in the network corresponds to a substep of the
splitting scheme, and its convolutional kernels and biases are the control variables.

\bullet Numerical tests on different datasets show that PottsMGNet is robust with respect
to network parameters and performs better or as well as existing popular encoder-
decoder neural networks. It can handle data with large noise and is more robust than
other networks with similar architectures.

\bullet We also develop a novel hybrid splitting method for solving time-evolutional equations.
Our hybrid splitting method incorporates parallel splitting and sequential splitting and
we prove that it is first-order accurate. In the current work, they are used to get the
neural networks. They can be used for solving other problems as well.

This work has been inspired by a wealth of pioneering research seeking mathematical ex-
planations for neural networks. In particular, we would like to mention several key references,
including [19, 20, 62, 24, 37, 74, 35, 60, 33, 34, 15, 10, 5]. It has been established that neural
networks possess universal approximation properties [37, 74]. The work of E and co-authors
[19, 20] proposed to view neural networks as continuous dynamical systems and as special
discretizations of continuous problems. This has been a source of inspiration for our work.
Sussillo and Barak [62] explored low-dimensional dynamics in high-dimensional recurrent neu-
ral networks. Ruthotto and Haber [60] introduced deep neural networks motivated by partial
differential equations, and ODE concepts are used in Haber and Ruthotto [33] to obtain sta-
ble architectures for deep neural networks. The relation between deep neural networks and
control problems is investigated in [59, 5]. Many researchers have observed that UNet and
other encoder-decoder neural networks are related to multiscale techniques [34, 33]. Haber
and Ruthotto [34] proposed multiscale methods for convolutional neural networks. In [35],
MgNet is proposed as a unified framework that uses multigrid linear operators as feature
extraction operators in traditional convolutional neural networks. The similarity between
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PottsMGNet 543

neural networks and operator-splitting methods are mentioned and utilized in [41]. Contin-
uous UNet using a second-order ODE has been proposed in [15]. A systematic review is
provided in [10]. However, none of the aforementioned references have explained neural net-
works as an operator-splitting discretization with a multigrid spatial approximation for the
continuous Potts model considered as a control problem, as we have done in this work.

This paper is structured as follows. In section 2, we introduce the Potts model. In
section 3, we formulate a control problem to solve the Potts model and our framework to
learn the control variables. We introduce PottsMGNet, an operator-splitting scheme, for the
control problem and its connections to neural networks in section 4. In section 5, we discuss
the discretization and solution to each subproblem. In section 6, we show that PottsMGNet
is in fact a neural network and discuss how to modify it to recover existing popular neural
networks for image segmentation. In section 7, we present our numerical experiment results,
and we conclude this paper in section 8.

Notation. Throughout this paper, we use lowercase letters to denote scalar variables and
functions. Bold letters are used to denote vectors and vector-valued functions. Capital letters
are used to denote tensors and operators. Calligraphic letters are used to denote sets.

2. Introduction to the Potts model. In this section, we give a brief introduction to the
Potts model [55, 63]. See Appendix A for more detailed derivations in getting this model.

We use image segmentation to present the Potts model and its numerical algorithms. Let
\Omega be the image domain. The continuous two-phase Potts model is of the form\left\{     min

\Omega 0,\Omega 1

\Biggl\{ \sum 1
k=0

\int 
\Omega k

gk(\bfx )d\bfx +
1

2

1\sum 
k=0

| \partial \Omega k| 

\Biggr\} 
,

\Omega 0 \cup \Omega 1 =\Omega , \Omega 0 \cap \Omega 1 = \emptyset ,
(2.1)

where | \partial \Omega k| is the perimeter of \Omega k and gk's are nonnegative weight functions depending on
the input image. By solving (2.1), the image domain is segmented into two regions: \Omega 0 and
\Omega 1.

By utilizing a regularized softmax operator [47] and techniques from threshold dynamics
[1, 51, 22, 47], the two-phase Potts model (2.1) can be approximated by the following problem
(see Appendix A for the derivation):

min
v(\bfx )\in [0,1]

\Biggl[ \int 
\Omega 
vgd\bfx + \varepsilon 

\int 
\Omega 
(v lnv+ (1 - v) ln(1 - v))d\bfx + \eta 

\int 
\Omega 
v(\bfx )(G\sigma \ast (1 - v))(\bfx )d\bfx 

\Biggr] 
(2.2)

for some constant \varepsilon > 0 and \eta \geq 0, where g = g1  - g2 and G\sigma is the Gaussian kernel G\sigma (\bfx ) =
1

2\pi \sigma 2 exp( - \| \bfx \| 2

2\sigma 2 ) for some given \sigma > 0. As usual \ast denotes the convolution operator. By
minimizing (2.2) and denoting the minimizer by u, the image domain is segmented into two
regions corresponding to u \leq 0.5 and u > 0.5. In (2.2), the second integral is used to get
the regularized softmax operator (see Appendix A for detailed explanations about this). The
third integral approximates the perimeter of the two regions. One can show that as \varepsilon \rightarrow 0, we
have u(\bfx )\in \{ 0,1\} for any \bfx \in \Omega (see Lemma A.1 in Appendix A).
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544 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

If the minimizer u exists, it can be proven that u \in (0,1) and it satisfies the Euler--
Lagrangian equation:

\varepsilon ln
u

1 - u
+ \eta G\sigma \ast (1 - 2u) + g= 0 \forall \bfx \in \Omega .(2.3)

The corresponding gradient flow equation on the time interval (0, T ] with a proper initial state
u0(\bfx ) is given as \Biggl\{ 

ut = - \varepsilon ln u
1 - u  - \eta G\sigma \ast (1 - 2u) - g, (\bfx , t)\in \Omega \times (0, T ],

u(\bfx ,0) = u0, \bfx \in \Omega .
(2.4)

Remark 2.1. Following the formulations in Appendix A, we can easily extend our model
and algorithms proposed later to multiphase segmentation and classification problems. To
make the presentations clear, we will stay with the two-phase problem in this work.

3. A control problem for the Potts model. For image segmentation, we assume f is
a given image defined on the image domain \Omega . We take the initial function u0 = H(f)
for some appropriate operator H to be specified in section 7.1. Based on (2.3), we con-
sider the following gradient flow equation for the Potts model with control variables W (\bfx , t)
and d(\bfx , t):\left\{   

\partial u

\partial t
= - \varepsilon ln

u

1 - u
 - \eta G\sigma \ast (1 - 2u) +W (\bfx , t) \ast u+ d(\bfx , t), (\bfx , t)\in \Omega \times (0, T ],

u(\bfx ,0) =H(f), \bfx \in \Omega .
(3.1)

To clarify, in (3.1), we are considering a Potts model with two labels on a domain \Omega \subset \BbbR 2.
The function u(\bfx , t) : \Omega \times [0, T ]\rightarrow \BbbR represents the label of each point \bfx in the domain at time
t. The term W (\bfx , t)\ast u is the convolution of u with a weight function W (\bfx , t) :D\times [0, T ]\rightarrow \BbbR 
for some domain D \subset \BbbR 2, which essentially represents a weighted average of the labels of
neighboring points. The support of W (\bfx , t) is normally small and the domain D may differ
from \Omega . The parameters \varepsilon and \eta control the approximation of the binary functions and are
used to regularize the labels. Specifically, the length regularization with the term associated
with this is used to ensure that neighboring points have similar labels, thereby promoting
spatial coherence of the labeling. The parameter \eta controls the strength of this regularization,
with larger values promoting more spatial coherence.

The function g(\bfx , t) in (2.3) is replaced by W (\bfx , t) \ast u + d(\bfx , t) in (3.1), where W (\bfx , t)
and d(\bfx , t) are control functions that can be used to steer the final state u(\bfx , T ) to some
desirable state. In this way, W (\bfx , t) and d(\bfx , t) are treated as control variables that can
be adjusted to achieve the desired labeling of the domain at the final time T . In (3.1), the
control variable W (\bfx , t) is applied to u by convolution since convolution is widely used in deep
learning methods for image processing. We remark that the convolution in (3.1) (and those
discussed in section 4) can be replaced by any other linear operations.

In this context, we are considering an optimal control approach to obtain a segmentation
operator for two-phase image segmentation. Specifically, we are given a set of I images
fi : \Omega \rightarrow \BbbR 3 that have been segmented into foreground and background regions, denoted by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PottsMGNet 545

vi : \Omega \rightarrow \{ 0,1\} for i = 1,2, . . . , I. Denote \scrN 1 as the mapping f \rightarrow u(\bfx , T ), i.e., \scrN 1(f, \theta 1) =
u(x,T ) with u(x,T ) being the solution of (3.2) at time T , where \theta 1 = (W (\bfx , t), d(\bfx , t)) denotes
the control variables. We seek to find a set of control variables \theta 1 that minimize the distance
between the segmentation result obtained by applying the mapping \scrN 1 to each image fi and
its corresponding ground truth segmentation vi:

min
\theta 1

I\sum 
i=1

\scrL (\scrN 1(fi, \theta 1), vi).(3.2)

The distance measure used is the cross entropy, which is a common choice for comparing
probability distributions:

\scrL (u, v) = - u lnv - (1 - u) ln(1 - v).

Formally, the optimization problem we solve is given by (3.2), where \scrL (\cdot , \cdot ) measures the
distance between two segmentation results and \scrN 1(fi, \theta 1) represents the segmentation result
obtained by applying the mapping \scrN 1 to the image fi using the control variables \theta 1. Since
the control variables \theta 1 appear in the mapping \scrN 1, we can view (3.2) as an optimal control
problem with multiple targeting states vi and control variables \theta 1. The control equation (3.1)
contains nonlinear and bilinear terms, which makes the problem more challenging to solve.
However, the controllability of a similar control equation has been shown for a single targeting
state in [39], which justifies the suitability of our approach.

4. Our PottsMGNet. To solve the optimal control problem (3.2) numerically, we need
two discretizations: one for the control variables \theta 1 = (W (\bfx , t), b(\bfx , t)) and another one for
the corresponding state variable u. To make the presentation clear, we will only consider the
discretization of \theta 1 now and leave the discretization of the state variable till later. So the state
variables u are continuous functions in this section and will be discretized in section 5.

4.1. Multigrid discretizations. The image domain \Omega and the convolution kernel domain
D may be different. We assume that both \Omega and D have been discretized in the multigrid
setting, as explained in Appendix B. As convolution is used, we need to extend the values
of u and \theta 1 outside the domains. Due to this, we will simply take \Omega = D = \BbbR 2 and apply
zero padding for \theta 1 and u. Correspondingly, \scrT j ,\scrV j are the multigrids and spaces over \BbbR 2

with the corresponding padding techniques, where j denotes the grid level. In this paper, we
use \scrT 1 to represent the finest grid (the image's original resolution). The grid gets coarser
as j increases. We will use the V-cycle multigrid technique, which consists of a left branch
and a right branch. In the left branch, computations are conducted from fine grids to coarse
grids sequentially. In the right branch, computations are conducted from coarse grids to fine
grids sequentially. See Figure 1 for an illustration of a V-cycle of the multigrid method. Our
notation for multigrid follows more from [70, 66, 11].

4.2. A basic decomposition for \bfittheta \bfone . The approach presented in [64, 65, 66] for solving the
optimization problems in the discrete multigrid setting involves decomposing the search space
into many subspaces or subsets. The goal is to search for the minimizer iteratively through
these subspaces either in parallel or sequentially. This approach can be seen as decomposing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

4/
24

 to
 5

.1
98

.1
38

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



546 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

Left
Branch

Right
Branch

Figure 1. An illustration of a V-cycle of the multigrid method.

the minimization variable into a sum of variables from different subspaces. The traditional
V-cycle multigrid method is a sequential iterative procedure that operates over the multigrid
subspaces defined in Appendix B in a specific order, as shown in Figure 1.

Traditionally, space decomposition and subspace correction are used to interpret multigrid
and domain decomposition methods [70, 11]. We will apply the space decomposition ideas
[64, 65, 66] for solving the optimization problems (3.2). This idea has been used to decompose
a large space into the sum of smaller spaces and then solve the problems iteratively over the
smaller spaces. But here, it is used differently. The control variable \theta 1 is decomposed into
a sum of variables from subspaces. One purpose for this decomposition is to increase the
number of unknowns for the control variables. This is different from earlier usages for the
space decomposition ideas. Then we will use a hybrid splitting scheme to split the components
of \theta 1 into several subproblems, which are solved in parallel or sequentially. The general idea
is that all components of \theta 1 are gone through when we apply one iteration of the scheme.
Details of the hybrid splitting scheme are discussed in Appendix D. To make the presentation
clear, we will present the ideas step by step in the following on how to decompose the control
variable \theta 1. Our idea is to decompose \theta 1 so that the control variables and operators have a
similar form as those in (D.5). When there is no ambiguity, we omit the control variables'
dependency on \bfx or t for simplicity of presentation.

(i) First, we decompose the control variables W (\bfx , t) and d(\bfx , t) as in the following:

W (\bfx , t) =A(\bfx , t) + \widetilde A(\bfx , t), d(\bfx , t) = b(\bfx , t) +\widetilde b(\bfx , t).(4.1)

These variables will be further split next. Above, A,b contain the control variables in
the left branch of the multigrid V-cycle, and \widetilde A,\widetilde b contain the control variables in the
right branch of the multigrid V-cycle (see later steps for details). We also decompose
the operator as follows:

 - \varepsilon ln
u

1 - u
 - \eta G\sigma \ast (1 - 2u) = S(u) + \widetilde S(u).(4.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

4/
24

 to
 5

.1
98

.1
38

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PottsMGNet 547

(ii) Second, the control variables are further decomposed as

A=

J\sum 
j=1

Aj , b=

J - 1\sum 
j=1

bj , S =

J\sum 
j=1

Sj ,(4.3)

\widetilde A=

J - 1\sum 
j=1

\widetilde Aj +A\ast , \widetilde b= J - 1\sum 
j=1

\widetilde bj + b\ast , \widetilde S =

J - 1\sum 
j=1

\widetilde Sj + S\ast .(4.4)

Above, Aj , bj , Sj , \widetilde Aj ,\widetilde bj , \widetilde Sj contain control variables at grid level j, and A\ast , b\ast , and
S\ast contain control variables that are applied to the output of the V-cycle at the finest
mesh, i.e., Aj , \widetilde Aj \in \scrV j ,A\ast \in \scrV 1, bj ,\widetilde bj , b\ast \in \BbbR .

(iii) At grid level j in the left branch, we further decompose

Aj =

cj\sum 
k=1

Aj
k, bj =

cj\sum 
k=1

bjk, Sj =

cj\sum 
k=1

Sj
k.(4.5)

Above, cj 's are positive integers which are often called the channel number at grid level
j and they are fixed parameters for the network. The reason to do these decompositions
is to increase the number of unknowns in the control variables, which enables us to
handle large datasets. We compute cj intermediate outputs with the Aj

k's. Variables

Aj
k \in \scrV j , bjk \in \BbbR contain control variables producing the kth intermediate output.

This is accomplished via a hybrid splitting scheme with cj parallel splittings (see
Appendix D for details). We do the same decomposition for the right branch, i.e.,

\widetilde Aj =

cj\sum 
k=1

\widetilde Aj
k,

\widetilde bj = cj\sum 
k=1

\widetilde bjk, \widetilde Sj =

cj\sum 
k=1

\widetilde Sj
k.(4.6)

(iv) At grid level j for the kth intermediate output, we again further decompose

Aj
k =

cj - 1\sum 
s=1

Aj
k,s.(4.7)

The purpose is also to increase the number of unknowns for the control variables. The
kth intermediate output at grid level j is computed using all intermediate outputs from
the previous grid level. Variable Aj

k,s is used to convolve with the sth intermediate
output from grid level j  - 1. We do the same decomposition for the right branch.

(v) The A\ast variable is also further decomposed as

A\ast =

c1\sum 
s=1

A\ast 
s,(4.8)

where A\ast 
s is used to convolve with the sth output from level 1 of the right branch.
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548 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

After these decompositions, we see that the control variables are decomposed as

A(\bfx , t) =

J\sum 
j=1

cj\sum 
k=1

cj - 1\sum 
s=1

Aj
k,s(\bfx , t),

\widetilde A(\bfx , t) =

J - 1\sum 
j=1

cj\sum 
k=1

cj - 1\sum 
s=1

\widetilde Aj
k,s(\bfx , t) +

c1\sum 
s=1

A\ast 
s(\bfx , t),(4.9)

b(\bfx , t) =

J\sum 
j=1

cj\sum 
k=1

bjk(\bfx , t),
\widetilde b(\bfx , t) = J - 1\sum 

j=1

cj\sum 
k=1

\widetilde bjk(\bfx , t) +\widetilde b\ast (\bfx , t),(4.10)

and the operators S(u), \widetilde S(u) are decomposed as

S(u) =

J\sum 
j=1

cj\sum 
k=1

Sj
k(u),

\widetilde S(u) = J - 1\sum 
j=1

cj\sum 
k=1

\widetilde Sj
k(u) + S\ast (u).(4.11)

The Potts gradient flow is transferred into\Biggl\{ 
\partial u
\partial t =A \ast u+ \widetilde A \ast u+ b+\widetilde b+ S(u) + \widetilde S(u), (\bfx , t)\in \Omega \times [0, T ],

u(\bfx ,0) =H(f), \bfx \in \Omega .
(4.12)

With the decomposition discussed above, (4.12) has a similar form as (D.5) with Mj = 1,
cj,1 = c2J - j = cj for 1 \leq j \leq J . We solve problem (4.12) by the hybrid splitting method
proposed in Appendix D. Let us divide the time interval [0, T ] into N subintervals with time
step size \Delta t= T/N . We denote our numerical solution at time tn = n\Delta t by Un. In our scheme,
we use u and v to denote intermediate variables. Their superscript j indicates that they are
discretized on \scrT j , i.e., vjk, u

j
k, \=u

j \in \scrV j . The resulting scheme by applying Algorithm D.2 to
(4.12) for updating Un to Un+1 is summarized in Algorithm 4.1, where the dependency of
control variables on \bfx is omitted. Note that in (4.15) and (4.16), there are factors 2j - 1 and
2j in the denominator on the left-hand side. These factors are introduced to compensate for
the averaging effects in the relaxation step (4.17). With these factors and when all operators
are linear, we can show that Algorithm 4.1 is a first-order scheme to solve a time evolution
equation (see Theorem D.2 for details).

The architecture of Algorithm 4.1 is illustrated in Figure 2. The explanations of all indices
for operators and variables of the left branch are summarized in Table 1. In Algorithm 4.1,
for each grid level, a relaxation is used to pass information from the left branch to the right
branch, as indicated by the green arrows.

Let us denote \theta 2 = \{ \theta n2 \} Nn=1 with

\theta n2 =
\Bigl( 
\{ Aj

k,s(\bfx , t
n)\} j,k,s,\{ \widetilde Aj

k,s(\bfx , t
n)\} j,k,s,\{ A\ast 

s(\bfx , t
n)\} s,\{ bjk(\bfx , t

n)\} j,k,\{ \widetilde bjk(\bfx , tn)\} j,k,\widetilde b\ast (\bfx , tn)\Bigr) .
(4.13)

We also denote \scrN 2 as the mapping

\scrN 2 : f \rightarrow H(f)\rightarrow U1 \rightarrow \cdot \cdot \cdot \rightarrow UN ,

which maps f to UN by applying Algorithm 4.1 N times. Parameters \theta 2 are learned by solving

min
\theta 2

I\sum 
i=1

\scrL (\scrN 2(fi, \theta 2), vi).(4.14)
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PottsMGNet 549

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . A basic V-cycle multigrid control algorithm.

\bfD \bfa \bft \bfa : The solution Un at time step tn.
\bfR \bfe \bfs \bfu \bfl \bft : The computed solution Un+1 at time step tn+1.
\bfS \bfe \bft c0 = 1, v0 =Un, v01 =Un.
\bff \bfo \bfr j = 1, . . . , J \bfd \bfo 
\bff \bfo \bfr k= 1,2, . . . cj \bfd \bfo 

Compute vjk by solving

vjk  - vj - 1

2j - 1cj\Delta t
=

cj - 1\sum 
s=1

Aj
k,s(t

n) \ast vj - 1
s + bjk(t

n) + Sj
k(v

j
k).(4.15)

\bfe \bfn \bfd \bff \bfo \bfr 
Compute vj as

vj =
1

cj

cj\sum 
k=1

vjk.

\bfe \bfn \bfd \bff \bfo \bfr 
\bfS \bfe \bft \=uJ = vJ and \=uJk = vJk , k= 1,2, . . . cJ .
\bff \bfo \bfr j = J  - 1, . . . ,1 \bfd \bfo 
\bff \bfo \bfr k= 1,2, . . . cj \bfd \bfo 

Compute ujk by solving

ujk  - \=uj+1

2jcj\Delta t
=

cj+1\sum 
s=1

\widetilde Aj
k,s(t

n) \ast \=uj+1
s +\widetilde bjk(tn) + \widetilde Sj

k(u
j
k).(4.16)

\bfe \bfn \bfd \bff \bfo \bfr 

Compute \=ujk and \=uj as

\=ujk =
1

2
ujk +

1

2
vjk(4.17)

for k= 1, . . . , cj , and

\=uj =
1

cj

cj\sum 
j=1

\=ujk.

\bfe \bfn \bfd \bff \bfo \bfr 
Compute Un+1 by solving

Un+1  - \=u1

\Delta t
=

c1\sum 
s=1

A\ast 
s(t

n) \ast u1s + b\ast (tn) + S\ast (Un+1).
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Grid Level 

Grid Level 

Grid Level 

+

+

Figure 2. Illustration of Algorithm 4.1.

Table 1
Explanation of indices for kernels and variables in the left branch of Algorithms 4.1 and 4.2.

For Aj
k,s, b

j
k, S

j
k,

Aj,l
k,s, b

j,l
k , Sj,l

k

j l k s

Index meaning:
index of

grid levels sequential
splittings

parallel splittings output from the
previous substep

For uj
k, v

j
k,

uj,l
k , vj,lk

j l k -

Index meaning:
index of

grid levels sequential
splittings

parallel splittings -

In (4.14), \theta 2 is a space decomposition representation for a discretization of \theta 1. The operation
procedure \scrN 2 is a numerical scheme solving (3.1). We can see that problem (4.14) is a
discretization of the continuous Potts model (3.2) with some proper decomposition of the
control variables.

Remark 4.1. We will show in section 4.3 that the structure of one iteration of Algorithm 4.1
is the same as a neural network. Take such a network as a block. The operator \scrN 2 applies
Algorithm 4.1 N times, corresponding to chaining N such blocks sequentially. Thus \scrN 2 can be
taken as a large network and \theta 2 is the collection of all trainable parameters (control variables).
Problem (4.14) can be solved by training this network to determine \theta 2, for which PyTorch is
used in our experiments.

4.3. Relationship to neural networks. For readers familiar with convolutional neural
networks, it is immediately evident that the first two terms on the right-hand side of (4.15)
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PottsMGNet 551

and (4.16) are computing the same thing as is done by the ``conv2d"" function in PyTorch.
The architecture of Algorithm 4.1 is equivalent to a simple encoder-decoder-based neural
network with 2J layers:

(i) The left and right branches of the V-cycle correspond to the encoder and decoder in
neural networks, respectively. In the left branch, computations from fine grids to coarse
grids are conducted, which is an encoding process. In the right branch, computations
from coarse grids to fine grids are conducted, which is a decoding process. In general,
Algorithm 4.1 is equivalent to a neural network with 2J layers: 2J  - 1 layers for the
encoder and decoder and one final layer.

(ii) Computations at grid level j in the left branch correspond to the jth layer of the
corresponding network. At this grid level, the number of parallel splittings cj corre-
sponds to the width of the jth layer of the network. The index k corresponds to the
kth channel of this layer.

(iii) The relaxation in the right branch corresponds to the skip pathways between encoders
and decoders in the network.

4.4. A general decomposition for \bfittheta \bfone . In Algorithm 4.1, excluding the final substep, we
only have two sequential steps at each grid level: one in the left branch and one in the right
branch. As a consequence, the equivalent network has two layers for every grid level: one
layer in the encoder and one layer in the decoder. In practice, many popular networks use
several layers for each grid level, for example, UNet has four layers for each grid level. We
then modify the splitting strategy of Algorithm 4.1 to generalize it so that it is equivalent to
more general networks. We decompose the control variables \theta 1 as follows:
(i)--(ii) The first two decompositions are the same as the first two decompositions in sec-

tion 4.2, after which we get the decompositions of A,b,S and \widetilde A,\widetilde b, \widetilde S.
(iii) At grid level j, let Lj be a positive integer representing the number of substeps we

want to perform at grid level j in the left (and right) branch. We decompose

Aj =

Lj\sum 
l=1

Aj,l, bj =

Lj\sum 
l=1

bj,l, Sj =

Lj\sum 
l=1

Sj,l.(4.18)

We use a sequential splitting to divide the operators into Lj sets, where Aj,l, bj,l, and
Sj,l are the sets of operators used at the lth sequential substep. We do the same
decomposition for the right branch.

(iv) At grid level j and the lth sequential substep, we decompose

Aj,l =

cj\sum 
k=1

Aj,l
k , bj,l =

cj\sum 
k=1

bj,lk , bj,l =

cj\sum 
k=1

Sj,l
k .(4.19)

We use a hybrid splitting with cj parallel splittings to treat all operators, where oper-

ators Aj,l
k , bj,lk , and Sj,l

k are used in the kth parallel splitting. We do the same decom-
position for the right branch.

(v) At grid level j, the lth sequential step, and the kth parallel splitting, we take the
cj outputs from the (l  - 1)-th sequential step as inputs and use kernels from Aj,l

k to

convolve with them. Therefore, we decompose Aj,l
k into cj kernels:
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552 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

Aj,l
k =

cj,l\sum 
s=1

Aj,l
k,s with cj,l =

\Biggl\{ 
cj - 1 if l= 1,

cj if l > 1.
(4.20)

We do the same decomposition for the right branch:

\widetilde Aj,l
k =

\widetilde cj,l\sum 
s=1

\widetilde Aj,l
k,s with \widetilde cj,l =

\Biggl\{ 
cj+1 if l= 1,

cj if l > 1.
(4.21)

(vi) We decompose A\ast in the same way as the decomposition step (v) in section 4.2.
After the decompositions, the control variables and operations are decomposed as

A(\bfx , t) =

J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

cj,l\sum 
s=1

Aj,l
k,s(\bfx , t),

\widetilde A(\bfx , t) =

J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

\widetilde cj,l\sum 
s=1

\widetilde Aj,l
k,s(\bfx , t) +

c1\sum 
s=1

A\ast 
s(\bfx , t),

(4.22)

b(\bfx , t) =

J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

bj,lk (\bfx , t), \widetilde b(\bfx , t) = J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

\widetilde bj,lk,s(\bfx , t) + b\ast (\bfx , t),

(4.23)

S(u) =

J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

Sj
k(u),

\widetilde S(u) = J - 1\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

\widetilde Sj
k(u) + S\ast (u).

(4.24)

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bftwo . A general V-cycle multigrid control algorithm.

\bfD \bfa \bft \bfa : The solution Un at time tn.
\bfR \bfe \bfs \bfu \bfl \bft : The computed solution Un+1 at time step tn+1.

\bfS \bfe \bft c0 = 1,L0 = 1, v0 =Un, v0,11 =Un.
\bff \bfo \bfr j = 1, . . . , J \bfd \bfo 

Set vj,0 = vj - 1,Lj - 1 and vj,0k = v
j - 1,Lj - 1

k , k= 1, . . . , cj - 1,
\bff \bfo \bfr l= 1, . . . ,Lj \bfd \bfo 
\bff \bfo \bfr k= 1, . . . , cj \bfd \bfo 

Compute vj,lk by solving

vj,lk  - vj,l - 1

2j - 1cj\Delta t
=

cj,l\sum 
s=1

Aj,l
k,s(t

n) \ast vj,l - 1
s + bj,lk (tn) + Sj,l

k (vj,lk ),(4.25)

where cj,l is defined in (4.20) and (4.21).
\bfe \bfn \bfd \bff \bfo \bfr 
Compute vj+1,l as

vj+1,l =
1

cj

cj\sum 
k=1

vj,lk .

\bfe \bfn \bfd \bff \bfo \bfr 
\bfe \bfn \bfd \bff \bfo \bfr 
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PottsMGNet 553

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bftwo . Continued.

\bfS \bfe \bft \=uJ,LJ = vJ,LJ and uJ,LJ

k = vJ,LJ

k for k= 1,2, . . . cJ .
\bff \bfo \bfr j = J  - 1, . . . ,1 \bfd \bfo 

Set uj,0 = \=uj+1,Lj+1 and uj,0k = u
j+1,Lj+1

k , k= 1, . . . , cj+1,
\bff \bfo \bfr l= 1, . . . ,Lj \bfd \bfo 
\bff \bfo \bfr k= 1,2, \cdot \cdot \cdot cj \bfd \bfo 

Compute uj,lk by solving

uj,lk  - uj,l - 1

2jcj\Delta t
=

\widetilde cj,l\sum 
s=1

\widetilde Aj
k,s(t

n) \ast uj,l - 1
s +\widetilde bjk(tn) + \widetilde Sj

k(u
j
k),(4.26)

where \widetilde cj,l is defined in (4.20) and (4.21).
\bfe \bfn \bfd \bff \bfo \bfr 
Compute uj,l as

uj,l =
1

cj

cj\sum 
k=1

uj,lk .

\bfe \bfn \bfd \bff \bfo \bfr 

Compute \=u
j,Lj

k , \=uj,Lj as

\=u
j,Lj

k =
1

2
u
j,Lj

k +
1

2
v
j,Lj

k , \=uj,Lj =
1

cj

cj\sum 
k=1

\=u
j,Lj

k(4.27)

\bfe \bfn \bfd \bff \bfo \bfr 
Compute Un+1 by solving

Un+1  - \=u1,L1

\Delta t
=

c1\sum 
s=1

A\ast 
s(t

n) \ast u1,L1
s + b\ast (tn) + S\ast (Un+1).(4.28)

The decomposed variables A(\bfx , t), \widetilde A(\bfx , t), b(\bfx , t),\widetilde b(\bfx , t) and the operations S and \widetilde S have
forms similar to those variables and operations in Appendix D. Thus we can use the hy-
brid splitting method Algorithm D.2 to solve the control problem. The resulting scheme for
updating Un to Un+1 is summarized in Algorithm 4.2, where the dependency of the control
variables on \bfx is omitted. Note that Algorithm 4.2 is a special case of Algorithm D.2 by setting
Mj =M2J - j = Lj for 1 \leq j \leq J , dj,m = cj,m - 1, cj,m = c2J - j,m = cj for 1 \leq j \leq J,1 \leq m \leq Lj .
The architecture of Algorithm 4.2 is illustrated in Figure 3. The explanations of all indices
for operators and variables of the left branch are summarized in Table 1.

Similar to (4.13), denote the collection of all parameters discussed in this subsection by
\theta 3 and denote

\scrN 3 : f \rightarrow H(f)\rightarrow U1 \rightarrow \cdot \cdot \cdot \rightarrow UN

as the mapping that maps f to UN by applying Algorithm 4.2 for N times. Parameters \theta 3
are learned by solving

min
\theta 3

I\sum 
i=1

\scrL (\scrN 3(fi, \theta 3), vi).(4.29)
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Grid Level 

Grid Level 

Grid Level 

+

+

Figure 3. An illustration of Algorithm 4.2.

Remark 4.2. Similar to Remark 4.1, we can show that the structure of one iteration of
Algorithm 4.2 is the same as a neural network. Take such a network as a block. The operator
\scrN 3 applies Algorithm 4.2 N times, corresponding to chaining N such blocks sequentially.
Thus \scrN 3 can be taken as a large network and \theta 3 is the collection of all trainable parameters
(control variables). Problem (4.29) can be solved by training this network to determine \theta 3.

Connections to neural networks. Algorithm 4.2 gives a mathematical explanation of many
popular encoder-decoder-based network architectures. In addition to the connections between
Algorithm 4.1 with neural networks, Algorithm 4.2 has one more connection: the number of
sequential splitting for each grid level in Algorithm 4.2 corresponds to the number of layers
for each data resolution in an encoder-decoder-based network. Compared to Algorithm 4.1,
this additional connection makes Algorithm 4.2 a mathematical explanation of a more general
class of encoder-decoder-based networks.

Note that Algorithm 4.1 is a special case of Algorithm 4.2 by setting Lj = 1 for j = 1, . . . , J .
In the rest of this paper, we focus on Algorithm 4.2.

We summarize our notation in Table 2.

5. Numerical discretization. Algorithm 4.2 is semiconstructive as we still need to dis-
cretize u, v in space and solve the semi-implicit problems (4.25), (4.26), and (4.28). We
discuss spatial discretization in this section.

5.1. On the choices of \bfitS , \widetilde \bfitS . In Algorithm 4.2, one needs to solve (4.25), (4.26), and
(4.28), which includes components of S, \widetilde S. We discuss the choices of S, \widetilde S and present how to
solve (4.25), (4.26), and (4.28) in the next subsection.
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PottsMGNet 555

Table 2
Summary of notation.

Index

j grid level l sequential splitting
k parallel splitting s output from the previous substep
n index of time step

Variable and operator

\Delta t time step size tn discrete time
Un numerical solution at tn \varepsilon weight for the regularized softmax

operator
J total grid levels Lj total number of sequential

splitting at grid level j
cj number of parallel splitting at

each sequential splitting of grid
level j in the left branch

\widetilde cj number of parallel splitting at
each sequential splitting of grid

level j in the left branch

vjk, v
j,l
k intermediate variable in the left

branch
uj
k, u

j,l
k intermediate variable in the right

branch

Aj
k,s,A

j,l
k,s convolution kernel in the left

branch

\widetilde Aj
k,s,

\widetilde Aj,l
k,s convolution kernel in the right

branch

bjk, b
j,l
k bias in the left branch \widetilde bjk,\widetilde bj,lk bias in the right branch

Sj
k, S

j,l
k nonlinear operator in the left

branch

\widetilde Sk, \widetilde Sj
k nonlinear operator in the right

branch
A\ast 

s , b
\ast , S\ast control variables and operators at the final substep

H(f) initial condition \theta 1, \theta 2, \theta 3 collection of learnable parameters
G\sigma Gaussian kernel with variance \sigma 2

According to (4.2), S+\widetilde S consists of two terms. (i) The first term is  - \varepsilon ln u
1 - u , which results

from the regularized softmax. This term enforces u to be between 0 and 1. (ii) The second
term  - \eta G\sigma \ast (1  - 2u) results from the length penalty, which promotes smooth boundaries
in the segmentation u. As all substeps except the last substep in Algorithm 4.2 are used to
extract and reconstruct important features of the input image, we set

Sj,l
k = - (2j - 1cj)

 - 1

\kappa 
\varepsilon ln

u

1 - u
, \widetilde Sj,l

k = - (2jcj)
 - 1

\kappa 
\varepsilon ln

u

1 - u
(5.1)

with the normalization term

\kappa =

J\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

(2j - 1cj)
 - 1 +

J - 1\sum 
j=1

Lj\sum 
l=1

cj\sum 
k=1

(2jcj)
 - 1 + 1.(5.2)

At the last substep, the segmentation is reconstructed, for which we will use the length
penalty term to regularize the segmentation. We set

S\ast = - 1

\kappa 
\varepsilon ln

u

1 - u
 - \eta G\sigma \ast (1 - 2u).(5.3)

In (5.1), the factor on the right-hand side is chosen based on two considerations: (i) the
functions S and \widetilde S should satisfy (4.2), and (ii) the effect of  - \varepsilon ln u

1 - u is expected to be
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556 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

the same for every intermediate variable vj,lk and uj,lk , i.e., it is not affected by the fac-
tors on the left-hand side of (4.25) and (4.26), which result from parallel splitting and the
relaxation step.

5.2. On the solution to (4.25), (4.26), and (4.28). In (4.25) and (4.26) when l= 1, the
problems involve computations between functions discretized on different grid levels. We will
first convert all functions to \scrT j and then solve the problems.

For (4.25) when l= 1, vj,0 = vj - 1,Lj and vj,0k = v
j - 1,Lj

k are defined on grid level j  - 1. We
use the average pooling (B.5) or the max pooling (B.6) to downsample these functions to grid
level j and then assign them to vj,0 and vj,0k . In our experiment, (B.6) is used.

For (4.26) when l= 1, uj,0 = \=uj+1,Lj and uj,0k = \=u
j+1,Lj

k are defined on grid level j +1. We
use the piecewise constant upsampling (B.4) to upsample these functions to grid level j and
then assign them to uj,0 and uj,0k .

Observe that (4.25), (4.26), and (4.28) are in the form of

u - u\ast 

\gamma \Delta t
=

c\sum 
s=1

\widehat As \ast u\ast s +\widehat b+ \widehat S(u),(5.4)

where \gamma is some constant, c is some integer, u\ast = 1
c

\sum c
s=1 u

\ast 
s for some functions u\ast s's, \widehat As's

are some convolution kernels, \widehat b is some bias function, and \widehat S is some nonlinear function. The
solution to (5.4) can be computed using two substeps:\Biggl\{ 

\=u= u\ast + \gamma \Delta t
\Bigl( \sum c

s=1
\widehat As \ast u\ast s +\widehat b\Bigr) ,

u= (I\mathrm{i}\mathrm{d}  - \gamma \Delta t\widehat S) - 1(\=u),
(5.5)

where I\mathrm{i}\mathrm{d} denotes the identity operator, and (I\mathrm{i}\mathrm{d}  - \gamma \Delta t\widehat S) - 1 is the resolvent operator of
(I\mathrm{i}\mathrm{d}  - \gamma \Delta t\widehat S). When \widehat S is a nonlinear operator, (5.5) is the building block of neural networks:
the first substep is a linear layer, and the second substep corresponds to some activation
function. Therefore, Algorithm 4.2 is a convolutional network with (I\mathrm{i}\mathrm{d}  - \Delta tS) - 1 being the
activation function.

In (5.5), there is no difficulty in solving for \=u as it is an explicit step. For u in (5.5), when\widehat S = Sj,l
k , \widetilde Sj,l

k or S\ast as in (5.1) and (5.3), we need to solve a problem of the following form:

u - \=u

C1\Delta t
+C2G\sigma \ast (1 - 2u) = - \varepsilon ln

u

1 - u
,(5.6)

where

C1 = 1/\kappa , C2 = 0 for \widehat S = Sj,l
k , \widetilde Sj,l

k ,

C1 = 1/\kappa , C2 = \eta for \widehat S = S\ast .

We use a fixed point method to solve (5.6).
First initialize p0 = \=u. From pk, we update pk+1 by solving

pk  - \=u

C1\Delta t
+C2\eta G\sigma \ast (1 - 2pk) = - \varepsilon ln

pk+1

1 - pk+1
,(5.7)
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PottsMGNet 557

for which we have the closed-form solution

pk+1 =Sig

\biggl( 
 - 1

\varepsilon 

\biggl( 
pk  - \=u

C1\Delta t
+C2\eta G \ast (1 - 2pk)

\biggr) \biggr) 
,(5.8)

where Sig(x) = 1
1+e - x is the sigmoid function. By repeating (5.8) so that pk+1 converges to

some function p\ast , we set u= p\ast .
As Un evolves during iterations, it is not necessary to repeat (5.8) until convergence for

every intermediate variable. Instead, one may only use a few steps of (5.8). In particular, if
only two steps of (5.8) are used, the resulting formula is a relaxed and regularized version of
the sigmoid activation function.

Remark 5.1. In (5.6), if C2 = 0, i.e., there is no length penalty term, at least two steps of
(5.8) should be used. In fact, when C2 = 0 and we initialize p0 = \=u, the first step is trivial as
one always has p1 = 0.5.

6. Relations of Algorithm 4.2 to existing networks. Encoder-decoder-based neural net-
works have been widely used in image segmentation, such as UNet [58], UNet++ [75], and
SegNet [3]. In sections 4.2 and 4.4, we showed that Algorithm 4.2 has an encoder-decoder
architecture and its analogy to neural networks. In this section, we show that with mi-
nor modifications, Algorithm 4.2 can recover the architectures of most encoder-decoder-based
neural networks, just with different activation functions.

We order the image resolution (corresponding to the grid levels in Algorithm 4.2) from
the finest to coarsest by 1 to J , where J is the total levels of image resolution. With this
ordering, level 1 corresponds to the finest resolution and level J corresponds to the coarsest
resolution.

6.1. Relations to general convolutional neural networks. For a convolutional neural
network, the building block is \Biggl\{ 

\=vk =
\sum c

s=1Wk,s \ast v\ast s + bk,

vk = \chi (\=vk),
(6.1)

where v\ast s 's are the outputs from the previous layer, vk is the output of the kth channels
of the current layer, Wk,s's are convolutional kernels, and \chi is an activation function. For
Algorithm 4.2, the building block is (5.4), which is solved by (5.5). In fact, (6.1) and (5.5)
have the same form. With the proper choice of \sigma , they are equivalent to each other.

In the following, we show that if we choose \chi = (I\mathrm{i}\mathrm{d}  - \gamma \Delta t\widehat S) - 1, v\ast s = u\ast s, and the proper
convolution kernels Wk,s's, we have vk = u.

In the first equation of (5.5), substitute the expression of u\ast , and we have

\=u=
1

c

c\sum 
s=1

u\ast s + \gamma \Delta t

\Biggl( 
c\sum 

s=1

\widehat As \ast u\ast s +\widehat b
\Biggr) 
=

c\sum 
s=1

\biggl( 
1

c
1+ \gamma \Delta t \widehat As

\biggr) 
\ast u\ast s + \gamma \Delta t\widehat b,(6.2)
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558 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

where 1 denotes the identity kernel satisfying 1 \ast g= g for any function g. Set

Wk,s =
1

c
1+ \gamma \Delta t \widehat As, bk =\widehat b.(6.3)

We have \=vk = \=u. By choosing \chi = (I\mathrm{i}\mathrm{d}  - \gamma \Delta t\widehat S) - 1, we have vk = u. Essentially, Algorithm 4.2
and convolutional neural networks have the same building block. Most encoder-decoder-
based neural networks are instances of Algorithm 4.2, i.e., an operator-splitting scheme for
some control problems.

6.2. Relations to networks with skip pathways. Some popular encoder-decoder networks
have skip pathways to improve performance, such as UNet [58] and UNet++ [75]. In Algo-
rithm 4.2, skip pathways are realized using the relaxation step (4.27). The implementation
of skip pathways in Algorithm 4.2 may be slightly different from that in UNet and other
networks. While one can make minor modifications to Algorithm 4.2 to exactly recover the
architecture of these networks, here for simplicity, we only address the modification needed
to recover UNet's architecture. For other architectures, one can revise Algorithm 4.2 in a
similar manner.

In UNet at resolution j, the skip pathway copies features from the encoder part to the
upsampled features from resolution j+1 in the decoder part, which is just before computations
at resolution j in the decoder part are conducted. In our Algorithm 4.2, the intermediate
variables v

j,Lj

k 's at grid level j in the encoder part are added to the output of grid level j
in the decoder part, which is after all computations at grid level j in the decoder part are
finished.

To recover the architecture of UNet, we replace the initialization of uj,0 and uj,0k by

uj,0k =

\left\{       
1
2u

j+1,Lj+1

k + 1
2v

j,Lj

k for 1\leq k\leq min\{ cj , cj+1\} ,
1
2u

j+1,Lj+1

k + 1
2v

j,Lj for cj <k\leq cj+1 if cj+1 > cj ,

1
2u

j+1,Lj+1 + 1
2v

j,Lj

k for cj+1 <k\leq cj if cj > cj+1,

, uj,0 =
1

cj

cj\sum 
j=1

uj,0k ,(6.4)

replace (4.26) by

uj,lk  - uj,l - 1

2j - 1cj\tau 
=

\widetilde cj,l\sum 
s=1

\widetilde Aj
k,s(t

n) \ast uj,l - 1
k +\widetilde bjk(tn) + \widetilde Sj

k(u
j
k),(6.5)

and remove (4.27).
One can show that the modified algorithm is an operator-splitting scheme for the control

problem (4.12) with proper choices of convolution kernels, biases, and nonlinear operators,
and it has the same architecture as UNet. Putting this property with the one discussed
in section 6.1, we see that the modified algorithm is nothing else but UNet with different
activation functions.

Compared to UNet, UNet++ has additional nested, dense skip pathways. For UNet, the
skip pathways are realized by using relaxation steps. To realize the additional skip path-
ways in UNet++, one needs to add more relaxation steps correspondingly. With the proper
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PottsMGNet 559

decomposition of A, \widetilde A,b,\widetilde b,S, \widetilde S and the introduction of new relaxations, one can easily modify
Algorithm 4.2 so that it has the same architecture with UNet++.

6.3. Relations to networks without skip pathways. SegNet [3] is another popular encoder-
decoder network for image segmentation. Compared to UNet and UNet++, SegNet does not
have any skip pathways and only contains an encoder and a decoder. To recover the archi-
tecture of SegNet, we only need to make two changes to Algorithm 4.2: (i) in the relaxation

step (4.27), directly set \=u
j,Lj

k = u
j,Lj

k ; (ii) remove the factors 2j - 1 in (4.25) and 2j in (4.26).
The revised algorithm has the same architecture as SegNet and one can show that it is an
operator-splitting scheme for a control problem.

6.4. Differences of Algorithm 4.2 from other networks. Even though Algorithm 4.2 has
an architecture that is similar to some existing encoder-decoder-based network, there are still
some differences. Specifically, it is different from other networks in three aspects:

1. Algorithm 4.2 is derived from the classical Potts model, which has a strong mathe-
matical background. In PottsMGNet, control variables are introduced to approximate
the function g in (2.4), which is assumed to be dependent on the input image f . Thus
we intentionally design some control variables that conduct operations on f , as shown
in (7.1). This is different from existing models, which only directly operate on f at
the input.

2. Algorithm 4.2 is an approximate gradient flow of the original Potts model. By control-
ling the time step in the discretized scheme, the evolution of the segmentation mask
will not change too much from layer to layer, which in some sense ensures the stability
of the network against noise. Even though the time step factor can be absorbed by
convolution kernels, we cannot control what will be learned and the learned kernels
may not have this property, i.e., small scales. We believe explicitly using this time
step factor helps improve the performance.

3. Compared to SOTA models, our model explicitly uses the perimeter penalty at several
layers, which helps improve the robustness against noise. Even though such a regular-
izer can be realized by a convolution layer, we believe explicitly using it helps improve
the performance.

As will be demonstrated in section 7, these differences make PottsMGNet outperform
other models in dealing with images with various levels of noise.

We would like to mention that the STD model introduced in [47] is also derived from the
Potts model and uses a perimeter penalty as a regularizer. The STD model appends some
basic networks, such as DeepLabV3+ [14], by STD layers, which are fixed-point iterations
solving an optimization problem with the perimeter penalty. However, the basic network is
still a black box whose architecture is not explainable. PottsMGNet designs each step (layer)
using the multigrid method and operator-splitting and provides mathematical explanations
for each layer of the resulting network. The first two differences mentioned above also apply
to the STD model.

7. Experiments. We compare Algorithm 4.2 with popular networks. We show that when
using a single network to segment images with various noise levels, Algorithm 4.2 has better
performance. Our PyTorch code is available at https://github.com/liuhaozm/PottsMGNet.
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7.1. Implementation details. The building block of Algorithm 4.2 is (5.5). We call the
first and second steps the convolution step and activation step, respectively. Our implemen-
tation details are as follows:

\bullet Initial condition H(f): We set H(f) as a convolution layer with f :

H(f) = Sig

\Biggl( 
3\sum 

k=1

B0,k \ast fk

\Biggr) 

for f = \{ f1, f2, f3\} .
\bullet Choices of b: In the control problem for Potts model (3.1), there are two control

variables: W and d. Variable W is a kernel function used to compute the convolution
with u. Variable d is independent of u and not directly applied to u. While in the
Euler--Lagrange equation of Potts model (2.3), there is a term g which is independent
of u and only depends on the input image f = \{ f1, f2, f3\} , it is natural to set d, and
thus b and \widetilde b (see (4.4)), as a function of f . In our implementation, we set

bj,lk =

\Biggl\{ \sum 3
s=1B

j,l
k,s \ast f

s if l= 1,

\beta j,l
k if l > 1,

\widetilde bj,lk =

\Biggl\{ \sum 3
s=1

\widetilde Bj,l
k,s \ast f

s if l= 1,\widetilde \beta j,l
k if l > 1

(7.1)

for some learnable kernels Bj,l
k,s,

\widetilde Bj,l
k defined on grid level j, and \beta j,l

k , \widetilde \beta j,l
k being some

bias constants to be learned.
\bullet Convolution step in (5.5): The convolution step is an explicit step that can be easily

implemented using discretized convolution.
\bullet Activation step in (5.5): The activation step is implemented as (5.8) with two itera-

tions. For simplicity, we set C1 = 1,C2 = 0 when computing uk,ls (or uk,ls ). At the last
substep (of Algorithm 4.2), we set C1 = 1,C2 = \lambda .

\bullet Batch normalization: To improve the stability of the training process, a batch nor-
malization step is added before each activation step except for the last substep.

\bullet Downsampling and upsampling: For downsampling and upsampling, maxpooling (B.6)
and piecewise constant upsampling (B.4) are used, respectively.

\bullet Number of time steps: One iteration of Algorithm 4.2 is one time step. In our imple-
mentation, four steps are used.

\bullet Skip pathways: We replace the weight 1/2 in (4.27) by parameters that will be learned
in training.

\bullet Initial condition: We set U0 =
\sum 3

s=1W
0
s \ast fs for some learnable kernel W 0

s 's.
\bullet Network hyper parameters: Without specification, we test Algorithm 4.2 with five grid

levels (J = 5) and the following hyper parameters:

\{ L1,L2,L3,L3,L5\} = \{ 3,3,3,5,5\} , \{ c1, c2, c3, c4, c5\} = \{ 32,32,64,128,256\} .

In the activation function step (5.8), except for the parameters C1,C2 arising from
the skip pathways, this step only depends on \varepsilon \Delta t and \eta /\varepsilon . In our experiments, we
set \Delta t = 0.5, \varepsilon \Delta t = 1, \eta /\varepsilon = 40, and N = 4 i.e., four time steps. We set \sigma = 0.5 in
G\sigma . For the kernel size in the convolution layers, we use 3\times 3 kernels in the first layer
(initialization) and the coarsest grid level. In other layers, we use 5\times 5 kernels.
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7.2. Models and datasets. Algorithm 4.2 is a mathematical explanation of encoder-
decoder-based neural networks. We compare the performance of Algorithm 4.2 with popular
encoder-decoder-based networks, such as Unet [58], UNet++ [75], DeepLabV3+ [14], and
SegNet [3]. The implementation of UNet++ and DeepLabV3+ used the segmentation models
PyTorch package [38].

We test all networks on two data sets: the cell segmentation dataset (CSD) [40] and the
MSRA10K dataset [16]. CSD is used in the 2018 data science bowl competition. The stage
1 dataset contains 536 training images and 134 test images. We resize all images to a size of
96 \times 96. MSRA10K contains 10,000 salient object images with manually annotated masks.
We choose 800 images for training and 200 images for testing. We resize all images to a size
of 128\times 192.

7.3. Training strategy. We aim to train our networks to be robust to several noise levels.
If a network is trained on data with a certain noise level and tested on a data set with higher
noise, the performance can be poor; but if the network is tested on a data set with lower noise,
it will still provide good results. So we will train our network with a high noise level. To make
the training more stable, we use a progressive training strategy: we first train the network
on a clean data set and then gradually increase the noise level. We add Gaussian noise with
standard deviation (SD) \sigma \in \{ 0,0.3,0.5,0.8,1\} . For each noise level, we use 500 epochs to
train our network and use the trained parameters as initial values to train the network for
the next noise level. In our experiments, we normalize all images so that all pixel values are
between 0 and 1.

In our training, we tried two settings. In the first setting, for each noise level with SD=a,
each pixel has a noise SD that is randomly generated from [0, a]. In the second setting,
for each noise level with SD=a, all pixels have noise with SD=a. The comparisons of both
settings are visualized in Figure 4, in which various models are tested on images with Gaussian

accuracy dice

Figure 4. Results on CSD. Comparisons of different training strategies. PottsMGNet is trained under
the first setting, PottsMGNetSD is trained under the second setting, and SD=a denotes the model that are
progressively trained with largest SD=a.
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noise varying from 0 to 1. In the figure, PottsMGNet is trained under the first setting,
PottsMGNetSD is trained under the second setting, and SD=a denotes the model that is
progressively trained with the largest SD=a, i.e., the training process stops at SD=a. For the
second setting, if the model stops training at SD=0.5, then the model has the highest test
accuracy on noise images with SD around 0.5. Further training the model on higher noise only
makes the test accuracy better when tested on higher noise but makes the test accuracy worse
on low noise levels. While the first setting always gives robust results, similar phenomena are
observed for other models.

In the following comparisons, the first setting is always used with the highest SD
being 1.

7.4. Robustness to hyper parameters. In this section, we show that PottsMGNet is not
sensitive to hyper parameters. We compare the performances of PottsMGNet with hyper
parameters specified in Table 3.

In Table 3, Model 1 is the default model specified in section 7.1. With the training strategy
described in section 7.3 and for CSD, the testing accuracy and dice score of all models are
presented in Figure 5. All models have a similar performance, implying that PottsMGNet is
not sensitive to hyper parameters.

Table 3
PottsMGNet with different hyper parameters considered in section 7.4.

N \{ L1,L2,L3,L3,L5\} \{ c1, c2, c3, c4, c5\} 
Model 1 4 \{ 3,3,3,5,5\} \{ 32,32,64,128,256\} 
Model 2 3 \{ 3,3,3,5,5\} \{ 32,32,64,128,256\} 
Model 3 4 \{ 3,3,3,3,3\} \{ 32,32,64,128,256\} 
Model 4 4 \{ 5,5,5,5,5\} \{ 32,32,64,128,256\} 
Model 5 4 \{ 3,3,3,5,5\} \{ 32,64,128,256,256\} 

accuracy dice

Figure 5. Results on CSD. Comparisons of different PottsMGNet with hyper parameters specified in Table 3.
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Table 4
Results on CSD. Comparisons of accuracy and dice score of different models for noise SD=0, 0.5, 0.8, 1.

PottsMGNet UNet UNet++ DeepLab V3+ SegNet

SD=0

Accuracy 96.27\% 94.24\% 94.10\% 93.88\% 94.48
Dice 0.8460 0.7401 0.7332 0.7231 0.7474

SD=0.5

Accuracy 93.85\% 91.11\% 91.12\% 91.87\% 91.66
Dice 0.7445 0.5659 0.5571 0.5996 0.5591

SD=0.8

Accuracy 91.78\% 89.73\% 89.08\% 90.50\% 90.31
Dice 0.6353 0.4938 0.4652 0.4988 0.4622

SD=1

Accuracy 90.50\% 89.10\% 87.48\% 89.79\% 89.57
Dice 0.5554 0.4625 0.4224 0.4582 0.4087

accuracy dice

Figure 6. Results on CSD. Comparisons of accuracy and dice score of different models for noise SD varying
from 0 to 1.

7.5. CSD results. On CSD, we test the trained models on several noise levels. The
comparisons with SD=0, 0.5, 0.8, and 1 are shown in Table 4. Comparisons on more noise
levels are visualized in Figure 6. We observe that for all noise levels, PottsMGNet always
provides the highest accuracy and dice score. Some sample comparisons are presented in
Figure 7. The columns from left to right correspond to noise SD=0, 0.3, 0.5, and 0.7. Even
with very high noise (SD=0.7), PottsMGNet still identifies a large portion of cells.

7.6. MSRA10K. For MSRA10K, we train all models with noise SD \{ 0,0.3,0.5,0.8\} . For
each noise level, 500 epochs are used. We test the trained models on several noise levels.
The comparisons with SD=0, 0.5, and 0.8 are shown in Table 5. Comparisons on more noise
levels are visualized in Figure 8. Similar to our observation for CSD, for most noise levels,
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564 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

Clean Image

Noisy Image

Mask

PottsMGNet

UNet

UNet++

DeepLabV3+

SegNet

Figure 7. Results on CSD. Examples of results by different models. Columns 1--4 correspond to noise SD=0,
0.3, 0.5, 0.7.
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PottsMGNet 565

Table 5
Results on MSRA10K. Comparisons of accuracy and dice score of different models for noise SD=0, 0.5, 0.8.

PottsMGNet UNet UNet++ DeepLab V3+ SegNet

SD=0

Accuracy 93.28\% 92.14\% 92.49\% 92.47\% 92.20
Dice 0.8417 0.8012 0.8190 0.8170 0.8108

SD=0.5

Accuracy 92.69\% 91.83\% 91.77\% 91.96\% 91.99
Dice 0.8278 0.7976 0.8016 0.8074 0.8071

SD=0.8

Accuracy 91.46\% 90.94\% 90.28\% 90.89\% 91.23
Dice 0.7969 0.7726 0.7728 0.7802 0.7907

accuracy dice

Figure 8. Results on MSRA10K. Comparisons of accuracy and dice score of different models for noise SD
varying from 0 to 1.

PottsMGNet always provides the highest accuracy and dice score. Some sample comparisons
are presented in Figure 9. The columns from left to right correspond to noise SD=0, 0.3, 0.5,
and 0.8. In all examples, PottsMGNet can better segment the target object. The segmented
images are presented in Figure 10.

8. Conclusion. In this paper we propose the PottsMGNet algorithm for image segmenta-
tion. Starting from the two-phase Potts model, a control problem is considered. The proposed
Potts net is a first-order operator-splitting algorithm that solves the control problem. The
Potts net has two ingredients: (i) it is based on a novel hybrid splitting strategy for initial
value problems, and (ii) it uses a multigrid idea to split all computations into several substeps
according to the grid level. The PottsMGNet essentially is a neural network. From the al-
gorithmic perspective, it provides mathematical explanations for most encoder-decoder type
neural networks for image segmentation: these networks are operator-splitting schemes for
some control problems. Our numerical experiments show that PottsMGNet is more robust to
different noise levels compared to existing networks.
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Clean Image

Noisy Image

Mask

PottsMGNet

UNet

UNet++

DeepLabV3+

SegNet

Figure 9. Results on MSRA10K. Examples of results by different models. Columns 1--4 correspond to noise
SD=0, 0.3, 0.5, 0.8.

Appendix A. Gradient flow for the Potts model. The Potts model is a popular approach
used in image segmentation and classification tasks with ideas originating from [55]. It extends
the Ising model to multiple states, allowing it to be used for classification tasks [25, 9]. We
discuss the derivation of the gradient flow of the Potts model in a multiphase setting. The
flow for the two-phase model used in (2) is a special case.
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Clean Image

Noisy Image

Mask

PottsMGNet

UNet

UNet++

DeepLabV3+

SegNet

Figure 10. Results on MSRA10K. Segmented images in Figure 9.

Let \Omega be the image domain. The continuous K--phase Potts model is in the form of [71, 63]\left\{     min
\Omega k, k=1,2\cdot \cdot \cdot K

K\sum 
k=1

\biggl( \int 
\Omega k

fk(\bfx )d\bfx + \lambda | \partial \Omega k| 
\biggr) 
,

\cup K
k=1\Omega k =\Omega , \Omega k1

\cap \Omega k2
= \emptyset \forall k1 \not = k2,

(A.1)

where | \partial \Omega k| is the perimeter of \partial \Omega k, \lambda \geq 0 is a given constant, and fk's are some nonnegative
given functions. A popular choice of fk is fk(\bfx ) = (f(\bfx )  - ck)

2/\alpha in which \alpha is a scaling
parameter and ck is the estimated mean density of f(\bfx ) on \Omega k. With such a choice, the Potts
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568 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

model (A.1) reduces to the piecewise Mumford--Shah functional, which is also known as the
Chan--Vese model [12].

For any set \Omega k \subset \Omega , define the indicator function as

\bfone \Omega k
(\bfx ) =

\Biggl\{ 
1 if \bfx \in \Omega k,

0 if \bfx /\in \Omega k.
(A.2)

If we set \bfv = (v1, v2, . . . , vK), vk(\bfx ) = \bfone \Omega k
(\bfx ), \bff = (f1, f2, . . . , fK), then solving the Potts model

(A.1) is equivalent to solving

min
\bfv (\bfx )\in \widehat \scrS 

\Biggl[ \int 
\Omega 
\bfv (\bfx ) \cdot \bff (\bfx )d\bfx +

K\sum 
k=1

| \partial \Omega k| 

\Biggr] 
,(A.3)

where

\widehat \scrS =

\biggl\{ 
\bfv : \bfv = (v1, v2, . . . , vK),

K\sum 
k=1

vk(\bfx ) = 1, vk(\bfx )\in \{ 0,1\} 
\biggr\} 
.(A.4)

The minimizer of (A.3), denoted by \bfu , segments the image into K regions: region \Omega k is
represented by \{ \bfx : uk(\bfx ) = 1\} . The term for the perimeter regularization can be approximated
by a smoothed version using threshold dynamics [1, 51, 22, 47]:

K\sum 
k=1

| \partial \Omega k| \approx 
K\sum 
k=1

\sqrt{} 
\pi 

\sigma 

\int 
\Omega 
uk(\bfx )(G\sigma \ast (1 - uk))(\bfx )d\bfx ,(A.5)

where G\sigma is the Gaussian kernel G\sigma (\bfx ) =
1

2\pi \sigma 2 exp
\Bigl( 
 - \| \bfx \| 2

2\sigma 2

\Bigr) 
. One can show that the right-

hand term in (A.5) converges to
\sum K

k=1 | \partial \Omega k| as \sigma \rightarrow 0 [1, 51, 52]. Then the functional we are
minimizing is

min
\bfv \in \widehat \scrS 

\biggl[ \int 
\Omega 
\bfv (\bfx ) \cdot f(\bfx )d\bfx +

\lambda 

2

\int 
\Omega 
\bfv (\bfx ) \cdot (G\sigma \ast (1 - \bfv ))(\bfx )d\bfx 

\biggr] 
,(A.6)

where

G\sigma \ast (1 - \bfv ) =
\bigl[ 
G\sigma \ast (1 - v1) \cdot \cdot \cdot G\sigma \ast (1 - vK)

\bigr] \top 
.(A.7)

We then relax the constraint \bfv (\bfx ) \in \{ 0,1\} to \bfv (\bfx ) \in [0,1] and consider the following
minimization problem with a smoothing parameter \varepsilon :

min
\bfv \in \scrS 

\biggl[ \int 
\Omega 
\bfv \cdot \bff d\bfx + \varepsilon 

\int 
\Omega 
\bfv \cdot ln\bfv d\bfx +

\lambda 

2

\int 
\Omega 
\bfv (\bfx ) \cdot (G\sigma \ast (1 - \bfv ))(\bfx )d\bfx 

\biggr] 
(A.8)

with

\scrS =

\biggl\{ 
\bfv : \bfv = (v1, v2, . . . , vK),

K\sum 
k=1

vk(\bfx ) = 1, vk(\bfx )\geq 0

\biggr\} 
.(A.9)

If \bfu \in \scrS is a minimizer of the above energy functional, we have the following lemma.
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PottsMGNet 569

Lemma A.1. When \varepsilon \mapsto \rightarrow 0, we have \bfu \rightarrow \{ 0,1\} K for any \bfx \in \Omega .

Proof of Lemma A.1. Denote

F\varepsilon (\bfv ) =

\int 
\Omega 
\bfv \cdot \bff d\bfx + \varepsilon 

\int 
\Omega 
\bfv \cdot ln\bfv d\bfx +

\lambda 

2

\int 
\Omega 
\bfv (\bfx ) \cdot (G\sigma \ast (1 - \bfv ))(\bfx )d\bfx .(A.10)

Let \{ F\varepsilon (n)\} \infty n=1 be any sequence so that limn\rightarrow \infty \varepsilon (n) = 0. Let \bfv \ast be any elements in \scrS and
\{ \bfv n\} \infty n=1 \subset \scrS be a sequence satisfying limn\rightarrow \infty \bfv n = \bfv \ast . Since F\varepsilon is continuous in \varepsilon and \bfv , we
have

lim
n\rightarrow \infty 

F\varepsilon (n)(\bfv n) = F (\bfv ).(A.11)

Therefore, \{ F\varepsilon (n)\} \infty n=1 \Gamma -converges to \scrF . Proving Lemma A.1 reduces to proving \bfu \in \{ 0,1\} K
for the limiting case, i.e., when \varepsilon = 0.

Our proof borrows techniques from [67]. When \varepsilon = 0, we have

\bfu =min
\bfv \in \scrS 

\int 
\Omega 
\bfv \cdot \bff d\bfx +

\lambda 

2

\int 
\Omega 
\bfv \cdot G\sigma \ast (1 - \bfv )d\bfx 

=min
\bfv \in \scrS 

K\sum 
k=1

\biggl[ \int 
\Omega 
vkfkd\bfx +

\lambda 

2

\int 
\Omega 
vkG\sigma \ast (1 - vk)d\bfx 

\biggr] 
,(A.12)

which is concave in each vk. In (A.8), we can represent vK = 1  - 
\sum K - 1

k=1 vk. Denote\widetilde \bfv = [v1, . . . , vK - 1]
\top and \widetilde \bff = [f1  - fK , . . . , fK - 1  - fK ]\top . Denote the set \widetilde \scrS = \{ \widetilde \bfv : 0 \leq \widetilde vk \leq 1

for k= 1, . . . ,K - 1, and 0\leq 
\sum K - 1

k=1 \widetilde vk \leq 1\} . If \bfu is a minimizer of (A.12), then \widetilde \bfu is a minimizer
of

min\widetilde \bfv \in \widetilde S
K - 1\sum 
k=1

\Biggl[ \int 
\Omega 
\widetilde vk(fk  - fK)d\bfx +

\lambda 

2

\int 
\Omega 
\widetilde vkG\sigma \ast (1 - \widetilde vk) - \widetilde vkG\sigma \ast 

\Biggl( 
K - 1\sum 
k=1

\widetilde vk
\Biggr) 
d\bfx 

\Biggr] 
.(A.13)

We prove the lemma by contradiction. Assume \widetilde \bfu \in \widetilde \scrS is not binary. There are two cases.
Case 1: There exist a constant c > 0 and a set \scrK on which

c < \widetilde uk\ast < 1 - c.(A.14)

for some 1 \leq k\ast \leq K  - 1 and \widetilde uk = 0 for k \not = k\ast . Let \delta be the indicator function of \scrK and
\bfitchi = [\chi 1, . . . , \chi K - 1]

\top such that \chi k\ast = \delta and \chi k = 0 for k \not = k\ast . Then \widetilde \bfu + t\bfitchi \in \widetilde \scrS for | t| \leq c. We
deduce that

d(\widetilde \bfu + t\bfitchi )

dt
=

\int 
\Omega 
\delta (fk\ast  - fK - 1)d\bfx +

\lambda 

2

\int 
\Omega 
\delta G\sigma \ast (1 - \widetilde uk\ast  - t\delta ) - \delta G\sigma \ast (\widetilde uk\ast + t\delta )d\bfx 

 - \lambda 

2

\int 
\Omega 
\delta G\sigma \ast 

\Biggl( 
t\delta +

K - 1\sum 
k=1

\widetilde uk
\Biggr) 
+ \delta G\sigma \ast (\widetilde uk\ast + t\delta )d\bfx ,
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570 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

and

d2(\widetilde \bfu + t\bfitchi )

dt2
= - 2\lambda 

\int 
\Omega 
\delta G\sigma \ast \delta d\bfx < 0,

which contradicts that \widetilde \bfu is a minimizer.
Case 2. There exist a constant c > 0 and a set \scrK on which

c < \widetilde uk\ast 
1
< 1 - c, c < \widetilde uk\ast 

2
< 1 - c(A.15)

for some 1\leq k\ast 1, k
\ast 
2 \leq K - 1 and \widetilde uk = 0 for k \not = k\ast 1, k

\ast 
2. Let \delta be the indicator function of \scrK and

\bfitchi = [\chi 1, . . . , \chi K - 1]
\top such that \chi k\ast 

1
= \delta , \chi k\ast 

2
= - \delta , and \chi k = 0 for k \not = k\ast 1, k

\ast 
2. Then \widetilde \bfu + t\bfitchi \in \widetilde \scrS 

for | t| \leq c.
We deduce that

d(\widetilde \bfu + t\bfitchi )

dt
=

\int 
\Omega 
\delta (fk\ast 

1
 - fK - 1) - \delta (fk\ast 

2
 - fK - 1)d\bfx 

+
\lambda 

2

\int 
\Omega 
\delta G\sigma \ast (1 - \widetilde uk\ast 

1
 - t\delta ) - \delta G\sigma \ast (\widetilde uk\ast 

1
+ t\delta )d\bfx 

+
\lambda 

2

\int 
\Omega 
 - \delta G\sigma \ast (1 - \widetilde uk\ast 

2
+ t\delta ) + \delta G\sigma \ast (\widetilde uk\ast 

2
 - t\delta )d\bfx 

and

d2(\widetilde \bfu + t\bfitchi )

dt2
= - 2\lambda 

\int 
\Omega 
\delta G\sigma \ast \delta d\bfx < 0,

which contradicts that \widetilde \bfu is a minimizer.
In conclusion, \widetilde \bfu must be binary and thus \bfu must be binary.

The Euler--Lagrangian equation of (A.8) reads as

\varepsilon (1 + ln\bfu ) + \lambda G\sigma \ast (1 - 2\bfu ) + \bff + \partial I\scrS (\bfu )\ni \bfzero \forall \bfx \in \Omega ,

where I\scrS (\cdot ) is the indicator function for set \scrS defined as

I\scrS (\bfu ) =

\Biggl\{ 
0 if \bfu \in \scrS ,
\infty otherwise,

and \partial I\scrS (\bfu ) is its subdifferential at \bfu . The gradient flow for this problem is\Biggl\{ 
\partial \bfu 
\partial t + \varepsilon (1 + ln\bfu ) + \lambda G\sigma \ast (1 - 2\bfu ) + \bff + \partial I\scrS (\bfu )\ni \bfzero , (\bfx , t)\in \Omega \times (0, T ],

\bfu (\bfx ,0) = \bfu 0(\bfx ),\bfx \in \Omega .

For the two-phase Potts model, i.e., K = 2, we use v= v1, v2 = 1 - v, and then the minimization
problem (A.8) becomes (2.2).

We want to mention that (A.8) is a regularized softmax in the sense that it reduces to
the softmax function when \lambda = 0 and \varepsilon = 1. It has been used in [47] to embed variational
models into traditional neural networks. If we replace the Gaussian kernel G\sigma (\bfx ) by B(\bfx /\sigma ),
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PottsMGNet 571

where B(x) is the indicator function for the unit ball, then the length approximation is still
correct (see [68] for a proof). It has been used in [46] in the same way as threshold dynamics
for image segmentation.

Appendix B. Multigrids and image functions over the grids. In the discrete setting, an
image can be viewed as a piecewise constant function on a grid. Images with different reso-
lutions can then be viewed as functions on grids of different sizes. Without loss of generality,
we assume the original discrete image has a grid (resolution) \scrT of size m\times n and grid step
size h with

m= 2s1 , n= 2s2

for some h> 0 and integers s1, s2 > 0. The image f has a constant value on each small patch
[\alpha 1h, (\alpha 1 + 1)h)\times [\alpha 2h, (\alpha 2 + 1)h) for \alpha 1 = 1, . . . ,m and \alpha 2 = 1, . . . , n.

Starting with \scrT 1 = \scrT , we consider a sequence of coarse grids \{ \scrT j\} Jj=1 so that \scrT j has grid
size mj \times nj and grid step size hj with

mj = 2s1 - j+1, nj = 2s2 - j+1, hk = 2j - 1h.

A sequence of grids with m= n= 16, h= 1 are illustrated in the first row of Figure 11.
Denote \scrI j = \{ \bfitalpha :\bfitalpha = (\alpha 1, \alpha 2), \alpha 1 = 1, . . . ,mj , \alpha 2 = 1, . . . , nj\} . For a given grid \scrT j , we can

define a set of piecewise-constant basis functions \{ \phi j
\alpha \} \alpha \in Ij so that

\phi j
\bfitalpha (x, y) =

\Biggl\{ 
1 if (x, y)\in [\alpha 1hj , (\alpha 1 + 1)hj)\times [\alpha 2hj , (\alpha 2 + 1)hj),

0 otherwise.
(B.1)

T 1 T 2 T 3 T 4

Figure 11. An illustration of a sequence of grids with J = 4. First row: visualization of grids. Second row:
visualization of half of the basis functions for each grid.
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572 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

In the second row of Figure 11, we illustrate the grids with m= n= 16, J = 4, and half of the
basis functions for each grid. Let \scrV j = span(\{ \phi j

\alpha \} \alpha \in Ij ) be the linear space containing all the
piecewise constant functions over grid \scrT j , and then we have

\scrV 1 \supset \scrV 2 \supset \cdot \cdot \cdot \supset \scrV J .(B.2)

For each f \in \scrV j , it can be expressed as f(x, y) =
\sum 

\bfitalpha \in \scrI j f
j
\bfitalpha \phi 

j
\bfitalpha (x, y) with f j

\bfitalpha = f(\alpha 1hj , \alpha 2hj).
Let \scrT j and \scrT j+1 be two grids. We next discuss the downsampling and upsampling oper-

ations. Consider f j+1 \in \scrV j+1. According to (B.2), there exists a function f j \in \scrV j satisfying
f j = f j+1. We denote the upsampling operator \scrU j+1 : \scrV j+1 \rightarrow \scrV j so that

f j = \scrU j+1(f j+1).(B.3)

It is easy to see that for \bfitalpha \in \scrI j , we have

(\scrU j(f j))\bfitalpha = f j+1
\bfitalpha \prime with \alpha \prime 

1, \alpha 
\prime 
2 satisfying 2\alpha \prime 

1  - 1\leq \alpha 1 \leq 2\alpha \prime 
1, 2\alpha 

\prime 
2  - 1\leq \alpha 2 \leq 2\alpha \prime 

2.(B.4)

Given a function f j \in \scrV j , there are many ways to define a downsampling operator \scrD j :
\scrV j \rightarrow \scrV j+1. For example, we can define \scrD j as an averaging downsampling operator:

f j+1 = (\scrU j(f j))\bfitalpha =
1

4

2\alpha 1\sum 
\alpha \prime 

1=2\alpha 1 - 1

2\alpha 2\sum 
\alpha \prime 

2=2\alpha 2 - 1

f j
\alpha \prime 

1,\alpha 
\prime 
2
.(B.5)

Another choice is the max pooling operator, which is widely used in deep learning:

f j+1 = (\scrU k(f j))\bfitalpha = max
\alpha \prime 

1=2\alpha 1 - 1,2\alpha 1

\alpha \prime 
2=2\alpha 2 - 1,2\alpha 2

f j
\alpha \prime 

1,\alpha 
\prime 
2
.(B.6)

Appendix C. Parallel and sequential splitting scheme. Operator splitting methods have
been widely used for scientific computing and many other applications. Among the rich
literature on it, we could point to the following recent publications and surveys [27, 31, 32].
Consider an initial value problem\Biggl\{ 

ut +
\sum M

m=1(Am(\bfx , t;u) + Sm(\bfx , t;u) + fm(\bfx , t)) = 0 on \Omega \times [0, T ],

u(0) = u0,
(C.1)

where Am(\bfx , t;u) and Sm(u,\bfx , t) are operators (linear or nonlinear), and fm(\bfx , t) are functions
independent of u. \Omega is a given domain and T is a given time. In the following, we omit \bfx for
the simplicity of notation. We discuss in this section parallel and sequential splitting schemes
to solve (C.1). As usual, we denote \Delta t = T/N, tn = n\Delta t for n = 0,1, . . .N with a given step
number N .

C.1. Parallel splitting schemes. The authors in [49] proposed a parallel splitting scheme
to solve (C.1):\left\{                 

u0 = u0,

for n\geq 0,we compute un+1 from un by solving first
unm  - un

M\Delta t
+Am(tn+1;un) + Sm(tn+1;unm) + fm(tn+1) = 0, for m= 1, . . . ,M,

un+1 is computed by averaging un+1 =
1

M

M\sum 
m=1

unm.

(C.2)
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(a)

(b)

,
,

,
,

,
,

Figure 12. Illustrations of the corresponding network architecture for (a) parallel splitting and (b) sequential
splitting.

See also [32, sect. 2.8] for some more explanations about this scheme. It has been proved that
(C.2) is O(\Delta t) accurate when A and B are linear operators. In (C.2), all operators are treated
implicitly. If the operators Am are treated explicitly, the parallel splitting scheme becomes\left\{                 

u0 = u0,

for n\geq 0,we compute un+1 from un by solving first
unm  - un

M\Delta t
+Am(tn;un) + Sm(tn+1;unm) + fm(tn+1) = 0 for m= 1, . . . ,M,

un+1 is computed by averaging un+1 =
1

M

M\sum 
m=1

unm.

(C.3)

The structure of (C.3) is illustrated in Figure 12(a).

C.2. Sequential splitting schemes. As a sequential splitting scheme, the Marchuk--
Yanenko scheme [50, 26] solving (C.1) reads as

\left\{             

u0 = u0,

for n\geq 0,we compute un+1 from un by solving

un+m/M  - un+(m - 1)/M

\Delta t
+Am(tn+1;un+m/M ) + Sm(tn+1;un+m/M ) + fm(tn+1) = 0,

for m= 1, . . . ,M.

(C.4)
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574 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

See also [32, sect. 2.2] for some more explanations about this scheme. One can show that this
scheme is also O(\Delta t) accurate. In (C.4), all operators are treated implicitly. If the operators
Am are treated explicitly, the sequential splitting scheme becomes

\left\{             

u0 = u0,

for n\geq 0,we compute un+1 from un by solving

un+m/M  - un+(m - 1)/M

\Delta t
+Am(tn;un+(m - 1)/M ) + Sm(tn+1;un+m/M ) + fm(tn+1) = 0

for m= 1, . . . ,M.

(C.5)

The structure of (C.5) is illustrated in Figure 12(b).

Appendix D. A hybrid splitting scheme to solve initial value problems. Algorithm 4.2
uses a hybrid splitting scheme to split the control problem (4.12) into several subproblems.
In this section, we introduce the hybrid splitting scheme and give an error analysis.

D.1. A hybrid splitting scheme. Consider the following initial value problem:\left\{       
ut +

M\sum 
m=1

\Biggl( 
cm\sum 
k=1

dm\sum 
s=1

Am
k,s(\bfx , t;u) +

cm\sum 
k=1

Sm
k (\bfx , t;u) +

cm\sum 
k=1

fm
k (\bfx , t)

\Biggr) 
= 0 on \Omega \times [0, T ],

u(0) = u0.

(D.1)

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfD .\bfone . A hybrid splitting scheme.

\bfD \bfa \bft \bfa : The solution un at time step tn.
\bfR \bfe \bfs \bfu \bfl \bft : The computed solution un+1 at time step tn+1.
\bfS \bfe \bft d1 = 1, un1 = un.
\bff \bfo \bfr m= 1, . . . ,M \bfd \bfo 
\bff \bfo \bfr k= 1, . . . , cj \bfd \bfo 

Compute u
n+m/M
k by solving

u
n+m/M
k  - un+(m - 1)/M

cm\Delta t
(D.2)

= - 
dm\sum 
s=1

Am
k,s(t

n;un+(m - 1)/M
s ) - Sm

k (tn+1;u
n+m/M
k ) - fm

k (tn).

\bfe \bfn \bfd \bff \bfo \bfr 

Compute un+m/M as

un+m/M =
1

cm

cm\sum 
k=1

u
n+m/M
k .(D.3)

\bfe \bfn \bfd \bff \bfo \bfr 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

4/
24

 to
 5

.1
98

.1
38

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PottsMGNet 575

Above \{ cm\} Mm=1,\{ dm\} Mm=1 are some known positive integers and Am
k,s, S

m
k are operators. As

usual, fm
k is used to denote functions independent of u. We propose a hybrid splitting scheme,

which is a mixture of the parallel and the sequential splitting schemes, to solve (D.1). In our
splitting, we split all operators intoM sequential substeps, each of which consists of cm parallel
splittings. The computation of each parallel splitting uses dm intermediate results from the
previous substep, which requires the condition dm \leq cm - 1. The algorithm is summarized in
Algorithm D.1. The operators can be treated implicitly or explicitly. In (D.2), we purposely
treat Am

k,s explicitly and Sm
k implicitly.

The following theorem shows that Algorithm D.1 converges with first-order at least when
the split operators are all linear.

Theorem D.1. For a fixed T > 0 and a positive integer N , set \Delta t= T/N . Let un+1 be the
numerical solution by Algorithm D.1. Assume Am

k,s's and Sm
k 's are Lipschitz with respect to

t,\bfx and are linear symmetric positive definite operators with respect to u. Assume \Delta t is small
enough (i.e., N is large enough). We have

\| un+1  - u(tn+1)\| \infty =O(\Delta t)(D.4)

for any 0\leq n\leq N .

Theorem D.1 is proved in Appendix E.1.

D.2. A more general hybrid splitting scheme with relaxation. When applying operator
splitting schemes to neural network constructions, we need to handle a more general dynamical
system in the following form:\left\{                 

ut +

2J - 1\sum 
j=1

Mj\sum 
m=1

\left(  cj,m\sum 
k=1

dj,m\sum 
s=1

Aj,m
k,s (\bfx , t;u) +

cj,m\sum 
k=1

Sj,m
k (\bfx , t;u) +

cj,m\sum 
k=1

f j,m
k (\bfx , t)

\right)  
+

d2J\sum 
s=1

A\ast 
s(\bfx , t;u) + S\ast (\bfx , t;u) + f\ast (\bfx , t) = 0 on \Omega \times [0, T ],

u(0) = u0,

(D.5)

where the positive integers J,Mj , cj,m, dj,m, the operators Aj,m
k,s (t), S

j,m
k , and functions f j,m

k (t)

are supposed to be given. Suppose Aj,m
k,s (t), S

j,m
k (t), and f j,m

k (t) are time dependent. We
assume dj,m \leq cj,m - 1 for 1 \leq m \leq Mj , and d2J \leq c2J - 1,M2J - 1

, where cj,0 = cj - 1,Mj - 1
is used.

We also assume cj,Mj
= c2J - j,M2J - j

. These conditions are needed to make the algorithm
meaningful. In (D.5), the operators A\ast 

s, S
\ast , and f\ast can be absorbed by the second term.

Here we write them down explicitly so that the operators in (D.5) have the same form as the
decomposed control variables in section 4.4. We will show that Algorithm 4.2 is a special case
of the general hybrid splitting scheme discussed in this section.

The number of operations in (D.5) is about 2J  - 1 times of that in (D.1). A simple way
to solve (D.5) is to apply Algorithm D.1 for (2J  - 1) times. In many numerical methods
for PDEs, relaxation steps are used to improve the accuracy and stability of the numerical
method, such as the Runge--Kutta method [56, 57]. We will propose a new hybrid splitting
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576 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfD .\bftwo . A general hybrid splitting algorithm.

\bfD \bfa \bft \bfa : The solution un at time tn.
\bfR \bfe \bfs \bfu \bfl \bft : The computed solution un+1 at time step tn+1.
\bfS \bfe \bft d1,1 = 1, un1 = un.
\bff \bfo \bfr j = 1, . . . , J \bfd \bfo 

Set un,j,0 = un,j - 1,Mj - 1 , un,j,0k = u
n,j - 1,Mj - 1

k for k= 1, . . . , cj - 1,Mj - 1
.

\bff \bfo \bfr m= 1, . . . ,Mj \bfd \bfo 
\bff \bfo \bfr k= 1, . . . , cj,m \bfd \bfo 

Compute un,j,mk by solving

un,j,mk  - un,j,m - 1

2j - 1cj,m\Delta t
= - 

dj,m\sum 
s=1

Aj,m
k,s (t

n;un,j,m - 1
s ) - Sm

k (tn+1;un,j,mk ) - f j,m
k (tn).(D.6)

\bfe \bfn \bfd \bff \bfo \bfr 
Compute un,j,m as

un,j,m =
1

cj,m

cj,m\sum 
k=1

un,j,mk .(D.7)

\bfe \bfn \bfd \bff \bfo \bfr 
\bfe \bfn \bfd \bff \bfo \bfr 

\bfS \bfe \bft \=un,J,MJ = un,J,MJ and \=un,J,MJ

k = un,J,MJ

k for k= 1,2, . . . , cJ,MJ
.

\bff \bfo \bfr j = J + 1, . . . ,2J  - 1 \bfd \bfo 

Set un,j,0 = \=un,j - 1,Mj - 1 and un,j,0k = \=u
n,j - 1,Mj - 1

k , k= 1, . . . , cj - 1,Mj - 1
.

\bff \bfo \bfr m= 1, . . . ,Mj \bfd \bfo 
\bff \bfo \bfr k= 1,2, \cdot \cdot \cdot cj,m \bfd \bfo 

Compute un,j,mk by solving

un,j,mk  - un,j,m - 1

2jcj,m\Delta t
= - 

dj,m\sum 
s=1

Aj,m
k,s (t

n;un,j,m - 1
s ) - Sm

k (tn+1;un,j,m) - f j,m
k (tn).(D.8)

\bfe \bfn \bfd \bff \bfo \bfr 
Compute un,j,m as

un,j,m =
1

cj,m

cj,m\sum 
k=1

un,j,mk .(D.9)

\bfe \bfn \bfd \bff \bfo \bfr 

Compute \=u
n,j,Mj

k , \=un,j,Mj as

\=u
n,j,Mj

k =
1

2
u
n,j,Mj

k +
1

2
u
n,2J - j,M2J - j

k , \=un,j,Mj =
1

cj,Mj

cj,Mj\sum 
k=1

\=u
n,j,Lj

k(D.10)

\bfe \bfn \bfd \bff \bfo \bfr 
Compute un+1 by solving

un+1  - \=un,2J - 1,M2J - 1

\Delta t
= - 

d2J\sum 
s=1

A\ast 
s(t

n;un,2J - 1,M2J - 1
s ) - S\ast (tn+1;un+1) - f\ast (tn).(D.11)
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PottsMGNet 577

scheme that incorporates relaxation steps. Our general idea is to split all operators into 2J
sequential parts according to the index j. For the first 2J  - 1 part, the jth part consists of
Mj sequential substeps. Algorithm D.1 will be used 2J  - 1 times for these parts. The 2Jth
part only has one substep. There are infinitely many ways to conduct the relaxations. In
this section, we discuss one way as an example. Other ways can be implemented similarly.
In our algorithm, for j = J + 1, . . . ,2J  - 1, we will pass the intermediate variable from part
2J  - j to part j. We simply use averaging for these relaxations, which uses the condition
cj,Mj

= c2J - j,m2J - j
. The new scheme is summarized in Algorithm D.2.

The following theorem gives an error estimation of Algorithm D.2 when Sj,m
k 's and S\ast are

linear operators.

Theorem D.2. Assume Sj,m
k 's and S\ast are linear operators and Aj,m

k,s ,A
\ast 
s, S

j,m
k , S\ast are Lip-

schitz in \bfx , t and are symmetric positive definite with respect to u. From an initial condition
u(0) = u0, we use Algorithm D.2 to solve (D.5) until time t = T with time step \Delta t so that
T =N\Delta t for some integer N > 0. Denote the numerical solution at tn by un. We have

\| un+1  - u(tn+1)\| \infty =O(\Delta t)(D.12)

for any 0\leq n\leq N .

Theorem D.2 is proved in Appendix E.2, which shows that under certain conditions,
Algorithm D.2 is a first-order numerical scheme in solving the control problem (D.5).

Appendix E. Proof of theorems.

E.1. Proof of Theorem D.1.

Proof of Theorem D.1. In this proof, we focus on the case dm = cm - 1. Other cases can
be proved similarly. Due to linearity, we denote Am

k,s(t
n;u), Sm

k (tn;u) by Am
k,s(t

n)u,Sm
k (tn)u.

Denote \widetilde un+1 the solution of (D.1) at t = tn+1 using un as the initial condition at t = tn.
Denote

W (t)u=

M\sum 
m=1

cm\sum 
k=1

\Biggl( 
cm - 1\sum 
s=1

Am
k,s(t)u+ Sm

k (t)u

\Biggr) 
(E.1)

and \scrI as the identity operator (matrix). We further denote

f(t) =

M\sum 
m=1

cm\sum 
k=1

fm
k (\bfx , t).(E.2)

We have

\widetilde un+1 =exp

\Biggl( \int tn+1

tn
 - W (\tau )d\tau 

\Biggr) 
un

 - exp

\Biggl( \int tn+1

tn
 - W (\tau )d\tau 

\Biggr) \int tn+1

tn
exp

\biggl( \int \tau 

tn
W (\theta )d\theta 

\biggr) 
f(\tau )d\tau .(E.3)

Using Taylor expansion, we have\int tn+1

tn
exp

\biggl( \int \tau 

tn
W (\theta )d\theta 

\biggr) 
f(\tau )d\tau =\Delta t exp

\biggl( \int tn

tn
W (\theta )d\theta 

\biggr) 
f(tn) +O(\Delta t2)

=\Delta tf(tn) +O(\Delta t2)(E.4)
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578 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

and

exp

\Biggl( \int tn+1

tn
 - W (t)d\tau 

\Biggr) 
= 1 - 

\int tn+1

tn
W (t)d\tau +O(\Delta t2)

= 1 - \Delta t\widetilde W (tn) +O(\Delta t2)(E.5)

with

\widetilde W (tn) =

M\sum 
m=1

cm\sum 
k=1

\Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
.(E.6)

Substituting (E.4) and (E.5) into (E.3) gives rise to

\widetilde un+1 = un  - \Delta t\widetilde W (tn)un  - \Delta tf(tn) +O(\Delta t2).(E.7)

We next focus on un+1. We show that for any 1\leq m\ast \leq M , we have

u
n+m\ast /M
k\ast = un  - \Delta t

\Biggl( 
m\ast  - 1\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 

+ cm\ast 

\Biggl( 
cm\ast  - 1\sum 
s=1

\bigl( 
Am

k\ast ,s(t
n) + Sm

k\ast (tn+1)
\bigr) 
un + fm

k\ast (tn)

\Biggr) \Biggr) 
+O(\Delta t2),(E.8)

un+m\ast /M = un  - \Delta t

m\ast \sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 
+O(\Delta t2)(E.9)

for any 1\leq k\ast \leq cm\ast . We will prove (E.8)--(E.9) by mathematical induction. For m\ast = 1, we
have c0 = 1. According to (D.2) and (D.3), we have

u
n+1/M
k = (\scrI +\Delta tc1S

m
k (tn+1)) - 1

\bigl( 
un  - \Delta tc1A

1
k,1(t

n)un  - \Delta tc1f
1
k (t

n)
\bigr) 

= (\scrI  - \Delta tc1S
m
k (tn+1))

\bigl( 
un  - \Delta tc1A

1
k,1(t

n)un  - \Delta tc1f
1
k (t

n)
\bigr) 
+O(\Delta t2)

= un  - \Delta tc1
\bigl( 
A1

k,1(t
n) + Sm

k (tn+1)
\bigr) 
un  - \Delta tc1f

1
k (t

n) +O(\Delta t2)(E.10)

and

un+1/M =
1

c1

c1\sum 
k=1

\bigl( 
un  - \Delta tc1

\bigl( 
A1

k,1(t
n) + Sm

k (tn+1)
\bigr) 
un  - \Delta tc1f

1
k (t

n)
\bigr) 
+O(\Delta t2)

= un  - \Delta t

c1\sum 
k=1

\bigl( \bigl( 
A1

k,1(t
n) + S1

k(t
n+1)

\bigr) 
un + f1

k (t
n)
\bigr) 
+O(\Delta t2).(E.11)

Thus (E.8)--(E.9) hold.
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Assume (E.8)--(E.9) hold for m\ast =m1 <M , i.e.,

u
n+m1/M
k\ast = un  - \Delta t

\Biggl( 
m1 - 1\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 

+ cm1

\Biggl( cm1 - 1\sum 
s=1

\bigl( 
Am

k\ast ,s(t
n) + Sm

k\ast (tn+1)
\bigr) 
un + fm

k\ast (tn)

\Biggr) \Biggr) 
+O(\Delta t2),(E.12)

un+m1/M = un  - \Delta t

m1\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 
+O(\Delta t2)(E.13)

for any 1\leq k\ast \leq cm1
. When m\ast =m1 + 1, we have

u
n+(m1+1)/M
k\ast =

\bigl( 
\scrI +\Delta tcm1+1S

m1+1
k\ast (tn+1)

\bigr)  - 1

\Biggl( 
un+m1/M  - \Delta tcm1+1

m1\sum 
s=1

Am1+1
k\ast ,s (tn)un+m1/M

s

 - \Delta tcm1+1f
m1+1
k\ast (tn)

\Biggr) 

=
\bigl( 
\scrI  - \Delta tcm1+1S

m1+1
k\ast (tn+1)

\bigr) \Biggl( 
un+m1/M  - \Delta tcm1+1

m1\sum 
s=1

Am1+1
k\ast ,s (tn)un+m1/M

s

 - \Delta tcm1+1f
m1+1
k\ast (tn)

\Biggr) 
+O(\Delta t2)

= un+m1/M  - \Delta tcm1+1

cm1\sum 
s=1

Am1+1
k\ast ,s (tn)un+m1/M

s  - \Delta tcm1+1S
m1+1
k\ast (tn+1)un+m1/M

 - \Delta tcm1+1f
m1+1
k\ast (tn) +O(\Delta t2).(E.14)

Substituting (E.12)--(E.13) into (E.14) gives rise to

u
n+(m1+1)/M
k\ast = un  - \Delta t

m1\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
(tn+1)un + fm

k (tn)

\Biggr) 

 - \Delta tcm1+1

cm1\sum 
s=1

Am1+1
k\ast ,s (tn)un+m1/M

s  - \Delta tcm1+1S
m1+1
k\ast (tn+1)un

 - \Delta tcm1+1f
m1+1
k\ast (tn).(E.15)
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580 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

According to (D.3), we have

un+(m1+1)/M = un  - \Delta t

m1\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k

\Biggr) 
(tn+1)un + fm

k (tn)

\Biggr) 

 - \Delta t

cm1+1\sum 
k=1

\Biggl( cm1\sum 
s=1

Am1+1
k,s (tn)un+m1/M

s  - Sm1+1
k (tn+1)un  - fm1+1

k (tn+1)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t

m1+1\sum 
m=1

cm+1\sum 
k=1

\Biggl( \Biggl( 
cm\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 
+O(\Delta t2).(E.16)

Therefore, (E.8)--(E.9) hold for m=m1 +1. Combining (E.10)--(E.11) and (E.15)--(E.16), we
have that (E.8)--(E.9) hold for any 1\leq m\leq M .

Setting m=M gives rise to

un+1 = un  - \Delta t

M\sum 
m=1

cm\sum 
k=1

\Biggl( \Biggl( 
cm - 1\sum 
s=1

Am
k,s(t

n) + Sm
k (tn+1)

\Biggr) 
un + fm

k (tn)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t\widetilde W (tn)un  - \Delta t

M\sum 
m=1

cm\sum 
k=1

fm
k (tn) +O(\Delta t2),(E.17)

where \widetilde W (tn) is defined in (E.6).
Comparing (E.17) with (E.7), we have the local error

un+1  - \widetilde un+1 =O(\Delta t2).(E.18)

Therefore, the global error is O(\Delta t).

E.2. Proof of Theorem D.2.

Proof of Theorem D.2. We consider the case dj,m = cj,m - 1 and d2J = c2J - 1,M2j - 1
. Other

cases can be proved similarly. We denote Aj,m
k,s (t;u), S

j,m
k (u) by Aj,m

k,s (t)u,S
j,m
k u.

To simplify the notation, we denote

Zj(t) =

Mj\sum 
m=1

cj,m\sum 
k=1

\Biggl( 
cj,m - 1\sum 
s=1

Aj,m
k,s (t) + Sj,m

k (t)

\Biggr) 
, Z\ast (t) =

c2J - 1,M2J - 1\sum 
s=1

A\ast 
s(t) + S\ast (t),

fj(t) =

Mj\sum 
m=1

cj,m\sum 
k=1

f j,m
k (t),

Z(t) =

2J - 1\sum 
j=1

Zj(t) +Z\ast (t), f(t) =

2J - 1\sum 
j=1

fj(t) + f\ast (t)
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PottsMGNet 581

and

\widetilde Zj(t
n) =

Mj\sum 
m=1

cj,m\sum 
k=1

\Biggl( 
cj,m - 1\sum 
s=1

Aj,m
k,s (t

n) + Sj,m
k (tn+1)

\Biggr) 
, \widetilde Z\ast (tn) =

c2J - 1,M2J - 1\sum 
s=1

A\ast 
s(t

n) + S\ast (tn+1),

\widetilde Z(tn) =

2J - 1\sum 
j=1

\widetilde Zj(t
n) + \widetilde Z\ast (tn), f(tn) =

2J - 1\sum 
j=1

fj(t
n) + f\ast (tn).

(E.19)

Denote \widetilde un+1 the solution of (D.5) at t = tn+1 using un as an initial condition at t = tn.
We have

\widetilde un+1 = exp

\Biggl( \int tn+1

tn
 - Z(\tau )d\tau 

\Biggr) 
un

 - exp

\Biggl( \int tn+1

tn
 - Z(\tau )d\tau 

\Biggr) \int tn+1

tn
exp

\biggl( \int \tau 

tn
Z(\theta )d\theta 

\biggr) 
f(\tau )d\tau .(E.20)

Using Taylor expansion, we have

\int tn+1

tn
exp

\biggl( \int \tau 

tn
Z(\theta )d\theta 

\biggr) 
f(\tau )d\tau =\Delta t exp

\biggl( \int tn

tn
Z(\theta )d\theta 

\biggr) 
f(tn) +O(\Delta t2)

=\Delta tf(tn) +O(\Delta t2)(E.21)

and

exp

\Biggl( \int tn+1

tn
 - Z(t)d\tau 

\Biggr) 
= 1 - 

\int tn+1

tn
Z(t)d\tau +O(\Delta t2)

= 1 - \Delta t \widetilde Z(tn) +O(\Delta t2).(E.22)

Substituting (E.21) and (E.22) into (E.20) gives rise to

\widetilde un+1 = un  - \Delta t \widetilde Z(tn)un  - \Delta tf(tn) +O(\Delta t2).(E.23)

We then focus on un+1. For any j \leq J in Algorithm D.2, it is a standard hybrid splitting.
From the proof of Theorem D.1, in particular (E.8)--(E.9), for any 1\leq j\ast \leq J,1\leq k\ast \leq cj\ast ,Mj\ast ,
we have
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582 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

u
n,j\ast ,Mj\ast 

k\ast = un  - \Delta t

\Biggl( 
j\ast  - 1\sum 
j=1

2j - 1

\left(  Mj\sum 
m=1

cj,m\sum 
k=1

\Biggl( 
cj,m - 1\sum 
s=1

Aj,m
k,s (t

n) + Sj,m
k (tn+1)

\Biggr) 
un + f j,m

k (tn)

\right)  

+ 2j
\ast  - 1

\left(  Mj\ast  - 1\sum 
m=1

cj\ast ,m\sum 
k=1

\Biggl( 
cj\ast ,m - 1\sum 
s=1

Aj\ast ,m
k,s (tn) + Sj\ast ,m

k (tn+1)

\Biggr) 
un + f j\ast ,m

k (tn)

\right)  

+ 2j
\ast  - 1cj\ast ,Mj\ast 

\left(  cj\ast ,Mj\ast  - 1\sum 
s=1

A
j\ast ,Mj\ast 

k\ast ,s (tn) + S
j\ast ,Mj\ast 

k\ast (tn+1)

\right)  un + f
j\ast ,Mj\ast 

k\ast (tn)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t

\Biggl( 
j\ast  - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Z1,ju

n + fj(t
n)
\Bigr) 

 - 2j
\ast  - 1

\left(  Mj\ast  - 1\sum 
m=1

cj\ast ,m\sum 
k=1

\Biggl( 
cj\ast ,m\sum 
s=1

Aj\ast ,m
k,s (tn) + Sj\ast ,m

k (tn+1)

\Biggr) 
un + f j\ast ,m

k (tn)

\right)  

 - 2j
\ast  - 1cj\ast ,Mj\ast 

\left(  cj\ast ,Mj\ast  - 1\sum 
s=1

A
j\ast ,Mj\ast 

k\ast ,s (tn) + S
j\ast ,Mj\ast 

k\ast (tn+1)

\right)  un + f
j\ast ,Mj\ast 

k\ast (tn)

\Biggr) 
+O(\Delta t2)

(E.24)

un,j
\ast ,Mj\ast = un  - \Delta t

\left(  j\ast \sum 
j=1

2j - 1

\left(  Mj\sum 
l=1

cj,m\sum 
k=1

\Biggl( 
cj,m - 1\sum 
s=1

Aj,l
k,s(t

n) + Sj,l
k (tn+1)

\Biggr) 
un

\right)  \right)  

 - \Delta t

\left(  j\ast \sum 
j=1

2j - 1

\left(  Mj\sum 
m=1

cj,m\sum 
k=1

f j,m
k (tn)

\right)  \right)  +O(\Delta t2)

= un  - \Delta t

\left(  j\ast \sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  +O(\Delta t2).(E.25)

Setting j\ast = J and from Algorithm D.2, we have

\=un,J,MJ

k\ast = un,J,MJ

k\ast = un  - \Delta t

\Biggl( 
J - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 

 - 2J - 1

\Biggl( 
MJ - 1\sum 
m=1

cJ,m\sum 
k=1

\Biggl( 
cJ,m - 1\sum 
s=1

AJ,m
k,s (t

n) + SJ,m
k (tn+1)

\Biggr) 
un + fJ,m

k (tn)

\Biggr) 

 - 2J - 1cJ,MJ

\Biggl( cJ,Mj - 1\sum 
s=1

AJ,MJ

k\ast ,s (tn) + SJ,MJ

k\ast (tn+1)

\Biggr) 
un + fJ,MJ

k (tn)

\Biggr) 
+O(\Delta t2)(E.26)
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PottsMGNet 583

\=un,J,MJ = un,J,MJ =un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  +O(\Delta t2).(E.27)

For the simplicity of notation, we denote \widetilde j\ast = 2J  - j\ast . We next use mathematical induction
to show that for any J + 1\leq j\ast \leq 2J  - 1 and 1\leq k\ast \leq cj\ast ,Mj\ast , we have

\=u
n,j\ast ,Mj\ast 

k\ast = un  - \Delta t

\Biggl( \widetilde j\ast  - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j\ast +1

2
\widetilde j\ast  - 1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j\ast  - 2

\Biggl( \widetilde Z\widetilde j\ast (tn)un + f\widetilde j\ast (tn)
\Biggr) 

 - \Delta t2
\widetilde j\ast  - 2

M\widetilde j\ast  - 1\sum 
m=1

c\widetilde j\ast ,m\sum 
k=1

\Biggl( \Biggl( c\widetilde j\ast ,m - 1\sum 
s=1

A
\widetilde j\ast ,m
k,s (tn) + S

\widetilde j\ast ,m
k (tn+1)

\Biggr) 
un + f

\widetilde j\ast ,m
k (tn)

\Biggr) 

 - \Delta t2
\widetilde j\ast  - 2c\widetilde j\ast ,M\widetilde j\ast 

\left(  \left(  c\widetilde j\ast ,M\widetilde j\ast  - 1\sum 
s=1

A
\widetilde j\ast ,M\widetilde j\ast 
k\ast ,s (tn) + S

\widetilde j\ast ,MJ

k\ast (tn+1)

\right)  un + f
\widetilde j\ast ,M\widetilde j\ast 
k\ast (tn)

\right)  

 - \Delta t2
\widetilde j\ast  - 1

\Biggl( \left(  j\ast  - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \right)  

+

\left(  Mj\ast  - 1\sum 
m=1

cj\ast ,m\sum 
k=1

\Biggl( 
cj\ast ,m - 1\sum 
s=1

Aj\ast ,m
k,s (tn) + Sj\ast ,m

k (tn+1)

\Biggr) 
un + f j\ast ,m

k (tn)

\right)  

+ cj\ast ,Mj\ast 

\left(  \left(  cj\ast ,Mj\ast  - 1\sum 
s=1

A
J,Mj\ast 

k\ast ,s (tn) + S
j\ast ,Mj\ast 

k\ast (tn+1)

\right)  un + f
j\ast ,Mj\ast 

k\ast (tn)

\right)  \Biggr) +O(\Delta t2),(E.28)

\=un,j
\ast ,Mj\ast = un  - \Delta t

\left(  \widetilde j\ast  - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j\ast 

2
\widetilde j\ast  - 1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \right)  

 - \Delta t2
\widetilde j\ast  - 1

\Biggl( 
j\ast \sum 

j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

+O(\Delta t2).(E.29)

We first show that (E.28)--(E.29) hold when j\ast = J +1. Set un,J+1,0 = \=un,J,MJ and un,J+1,0
k =

\=un,J,MJ

k for k= 1,2, . . . , cJ,MJ
. For any 1\leq k\ast \leq cJ+1,1, we have
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584 XUE-CHENG TAI, HAO LIU, AND RAYMOND CHAN

un,J+1,1
k\ast =

\Bigl( 
\scrI +\Delta t2J - 1cJ+1,1S

J+1,1
k\ast (tn+1)

\Bigr)  - 1
\Biggl( 
un,J+1,0

 - \Delta t2J - 1cJ+1,1

\Biggl( 
cJ+1,0\sum 
s=1

AJ+1,1
k\ast ,s (tn)un,J+1,0

s + fJ+1,1
k\ast (tn)

\Biggr) \Biggr) 

=
\Bigl( 
\scrI  - \Delta t2J - 1cJ+1,1S

J+1,1
k\ast (tn+1)

\Bigr) \Biggl( 
un,J+1,0

 - \Delta t2J - 1cJ+1,1

\Biggl( 
cJ+1,0\sum 
s=1

AJ+1,1
k\ast ,s (tn)un,J+1,0

s + fJ+1,1
k\ast (tn)

\Biggr) \Biggr) 
+ (\Delta t2)

= un,J+1,0  - \Delta t2J - 1cJ+1,1

\Biggl( 
cJ+1,0\sum 
s=1

AJ+1,1
k\ast ,s (tn)un,J+1,0

s + SJ+1,1
k\ast (tn+1)un,J+1,0

+ fJ+1,1
k\ast (tn)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1cJ+1,1

\Biggl( \Biggl( 
cJ+1,0\sum 
s=1

AJ+1,1
k\ast ,s (tn) + SJ+1,1

k\ast (tn+1)

\Biggr) 
un + fJ+1,1

k\ast (tn)

\Biggr) 
+O(\Delta t2)(E.30)

and

un,J+1,1 =
1

cJ+1,1

cJ+1,1\sum 
k=1

un,J+1,1
k

= un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1

cJ+1,1\sum 
k=1

\Biggl( \Biggl( 
cJ+1,0\sum 
s=1

AJ+1,1
k,s (tn) + SJ+1,1

k (tn+1)

\Biggr) 
un + fJ+1,1

k (tn)

\Biggr) 
+O(\Delta t2).(E.31)

Repeating the process, we can show that for any 1\leq m\ast \leq MJ+1, we have

un,J+1,m\ast 

k\ast = un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1
m\ast  - 1\sum 
m=1

cJ+1,m\sum 
k=1

\Biggl( \Biggl( 
cJ+1,m - 1\sum 

s=1

AJ+1,m
k,s (tn) + SJ+1,m

k (tn+1)

\Biggr) 
un + fJ+1,m

k (tn)

\Biggr) 

 - \Delta t2J - 1cJ+1,m\ast 

\Biggl( \Biggl( 
cJ+1,m\ast \sum 
s=1

AJ+1,m\ast 

k\ast ,s (tn) + SJ+1,m\ast 

k\ast (tn+1)

\Biggr) 
un + fJ+1,m\ast 

k\ast (tn)

\Biggr) 
+O(\Delta t2)(E.32)
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PottsMGNet 585

and

un,J+1,m\ast 
=

1

cJ+1,m\ast 

cJ+1,m\ast \sum 
k=1

un,J+1,m\ast 

= un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1
m\ast \sum 
m=1

cJ+1,m\sum 
k=1

\Biggl( \Biggl( 
cJ+1,m - 1\sum 

s=1

AJ+1,m
k,s (tn) + SJ+1,m

k (tn+1)

\Biggr) 
un

+ fJ+1,l
k (tn)

\Biggr) 
+O(\Delta t2).(E.33)

Set m\ast =MJ+1 in (E.32) and (E.33). We get

u
n,J+1,MJ+1

k\ast = un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1

MJ+1 - 1\sum 
m=1

cJ+1,m\sum 
k=1

\Biggl( \Biggl( 
cJ+1,m - 1\sum 

s=1

AJ+1,m
k,s (tn) + SJ+1,m

k (tn+1)

\Biggr) 
un

+ fJ+1,m
k (tn)

\Biggr) 

 - \Delta t2J - 1cJ+1,MJ+1

\Biggl( \Biggl( cJ+1,MJ+1 - 1\sum 
s=1

A
J+1,MJ+1

k\ast ,s (tn) + S
J+1,MJ+1

k\ast (tn+1)

\Biggr) 
un

+ f
J+1,MJ+1

k\ast (tn)

\Biggr) 
+O(\Delta t2)(E.34)

and

un,J+1,MJ+1 = un  - \Delta t

\left(  J\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 1
\Bigl( \widetilde ZJ+1(t

n) + fJ+1(t
n)
\Bigr) 
+O(\Delta t2).(E.35)
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For any 1\leq k\ast \leq MJ+1, we compute

\=u
n,J+1,MJ+1

k\ast 

=
1

2
u
n,J+1,MJ+1

k\ast +
1

2
u
n,J - 1,MJ - 1

k\ast 

= un  - \Delta t

\left(  J - 2\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+ 2J - 2

\Bigl( \widetilde ZJ(t
n)un + fJ(t

n)
\Bigr) \right)  

 - \Delta t2J - 3
\Bigl( \widetilde ZJ - 1(t

n)un + fJ - 1(t
n)
\Bigr) 

 - \Delta t2J - 3

MJ - 1 - 1\sum 
m=1

cJ - 1,m\sum 
k=1

\Biggl( \Biggl( 
cJ - 1,m - 1\sum 

s=1

AJ - 1,m
k,s (tn) + SJ - 1,m

k (tn+1)

\Biggr) 
un + fJ - 1,m

k (tn)

\Biggr) 

 - \Delta t2J - 3cJ - 1,MJ - 1

\Biggl( \Biggl( cJ - 1,MJ - 1 - 1\sum 
s=1

A
J - 1,MJ - 1

k\ast ,s (tn) + S
J - 1,MJ - 1

k\ast (tn+1)

\Biggr) 
un + f

J - 1,MJ - 1

k\ast (tn)

\Biggr) 

 - \Delta t2J - 2

MJ+1 - 1\sum 
m=1

cJ+1,m\sum 
k=1

\Biggl( \Biggl( 
cJ+1,m - 1\sum 

s=1

AJ+1,m
k,s (tn) + SJ+1,m

k (tn+1)

\Biggr) 
un + fJ+1,m

k (tn)

\Biggr) 

 - \Delta t2J - 2cJ+1,MJ+1

\Biggl( \Biggl( cJ+1,MJ+1 - 1\sum 
s=1

A
J+1,MJ+1

k\ast ,s (tn) + S
J+1,MJ+1

k\ast (tn+1)

\Biggr) 
un

+ f
J+1,MJ+1

k\ast (tn)

\Biggr) 
+O(\Delta t2)

(E.36)

and

\=un,J+1,MJ+1 =
1

cJ+1,MJ+1

cJ+1,MJ+1\sum 
k=1

\=u
n,J+1,MJ+1

k

= un  - \Delta t

\left(  J - 2\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=J - 1

2J - 2
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2J - 2
\Bigl( \widetilde ZJ+1(t

n)un + fJ+1(t
n)
\Bigr) 
+O(\Delta t2).(E.37)

Therefore, (E.28)--(E.29) hold for j\ast = J  - 1.
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PottsMGNet 587

Assume (E.28)--(E.29) hold for j\ast = j1  - 1 \geq J + 1. Set un,j1,0 = \=un,j1 - 1,Mj1 - 1 and

un,j1,0k = \=u
n,j1 - 1,Mj1 - 1

k for k = 1,2, . . . , cj1 - 1,Mj1 - 1
. Denote \widetilde j1 = 2J  - j1. For any 1\leq k\ast \leq Mj1 ,

we compute

un,j1,1k\ast =
\Bigl( 
\scrI +\Delta t2

\widetilde j1cj1,1Sj1,1
k\ast (tn+1)

\Bigr)  - 1
\Biggl( 
un,j1,0 +\Delta t2

\widetilde j1cj1,1
\Biggl( cj1,0\sum 

s=1

Aj1,1
k\ast ,s(t

n)un,j1,0s + f j1,1
k\ast (tn)

\Biggr) \Biggr) 

=
\Bigl( 
\scrI  - \Delta t2

\widetilde j1cj1,1Sj1,1
k (tn+1)

\Bigr) \Biggl( 
un,j1,0 +\Delta t2

\widetilde j1cj1,1
\Biggl( cj1,0\sum 

s=1

Aj1,1
k\ast ,s(t

n)un,j1,0s + f j1,1
k\ast (tn)

\Biggr) \Biggr) 

+ (\Delta t2)

= un,j1,0  - \Delta t2
\widetilde j1cj1,1

\Biggl( \Biggl( cj1,0\sum 
s=1

Aj1,1
k\ast ,s(t

n) + Sj1,1
k\ast (tn+1)

\Biggr) 
un,j1,0s + f j1,1

k\ast (tn)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t

\left(  \widetilde j1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1+1

2
\widetilde j1 \Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1
\Biggl( 

j1 - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j1cj1,1

\Biggl( \Biggl( cj1,0\sum 
s=1

Aj1,1
k\ast ,s(t

n) + Sj1,1
k\ast (tn+1)

\Biggr) 
un + f j1,1

k\ast (tn)

\Biggr) 
+O(\Delta t2)

(E.38)

and

un,j1,1 =
1

cj1,1

cj1,1\sum 
k=1

un,j1,1k

= un  - \Delta t

\left(  \widetilde j1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1+1

2
\widetilde j1 \Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1
\Biggl( 

j1 - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j1 cj1,1\sum 

k=1

\Biggl( \Biggl( cj1,1\sum 
s=1

Aj1,1
k,s (t

n) + Sj1,1
k (tn+1)

\Biggr) 
un + f j1,1

k (tn)

\Biggr) 
+O(\Delta t2).(E.39)
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Repeating the process, we can show that for any 1\leq m\ast \leq LJ - 1, we have

un,j1,m
\ast 

k\ast = un  - \Delta t

\left(  \widetilde j1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1+1

2
\widetilde j1 \Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1
\Biggl( 

j1 - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j1 m\ast  - 1\sum 

m=1

cj1,m\sum 
k=1

\Biggl( \Biggl( cj1,m - 1\sum 
s=1

Aj1,m - 1
k,s (tn) + Sj1,m - 1

k (tn+1)

\Biggr) 
un + f j1,m - 1

k (tn)

\Biggr) 

 - \Delta t2
\widetilde j1cj1,m\ast 

\Biggl( \Biggl( cj1,m\ast  - 1\sum 
s=1

Aj1,m\ast 

k\ast ,s (tn) + Sj1,m\ast 

k\ast (tn+1)

\Biggr) 
un + f j1,m\ast 

k\ast (tn)

\Biggr) 
+O(\Delta t2)(E.40)

and

un,j1,m
\ast 
=

1

cj1,m\ast 

cj1,m\ast \sum 
k=1

un,j1,m
\ast 

= un  - \Delta t

\left(  \widetilde j1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1+1

2
\widetilde j1 \Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1
\Biggl( 

j1 - 1\sum 
j=J - 1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j1 m\ast \sum 

m=1

cj1,m\sum 
k=1

\Biggl( \Biggl( cj1,m - 1\sum 
s=1

Aj1,m
k,s (tn) + Sj1,m

k (tn+1)

\Biggr) 
un + f j1,m

k (tn)

\Biggr) 
+O(\Delta t2).(E.41)

Setting m\ast =Mj1 in (E.40)--(E.41), we compute

\=u
n,j1,Mj1

k\ast =
1

2
u
n,j1,Mj1

k\ast +
1

2
u
n,\widetilde j1,M\widetilde j1
k\ast 

= un  - \Delta t

\left(  \widetilde j1 - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1+1

2
\widetilde j1 - 1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1 - 2

\Bigl( \widetilde Z\widetilde j1(tn)un + f\widetilde j1(tn)
\Bigr) 

 - \Delta t2
\widetilde j1 - 2

M\widetilde j1 - 1\sum 
m=1

c\widetilde j1,m\sum 
k=1

\Biggl( \Biggl( c\widetilde j1,m - 1\sum 
s=1

A
\widetilde j1,m
k,s (tn) + S

\widetilde j1,m
k (tn+1)

\Biggr) 
un + f

\widetilde j1,m
k (tn)

\Biggr) 

 - \Delta t2
\widetilde j1 - 2c\widetilde j1,M\widetilde j1

\left(  \left(  c\widetilde j1,M\widetilde j1\sum 
s=1

A
\widetilde j1,M\widetilde j1
k\ast ,s (tn) + S

\widetilde j1,M\widetilde j1
k\ast (tn+1)

\right)  un + f
\widetilde j1,M\widetilde j1
k\ast (tn)

\right)  
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PottsMGNet 589

 - \Delta t2
\widetilde j1 - 1

\Biggl( 
j1 - 1\sum 

j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2
\widetilde j1 - 1

Mj1
 - 1\sum 

m=1

cj1,m\sum 
k=1

\Biggl( \Biggl( cj1,m - 1\sum 
s=1

Aj1,m
k,s (tn) + Sj1,m

k (tn+1)

\Biggr) 
un + f j1,m

k (tn)

\Biggr) 

 - \Delta t2
\widetilde j1 - 1cj1,Mj1

\left(  \left(  cj1,Mj1
 - 1\sum 

s=1

A
j1,Mj1

k\ast ,s (tn) + S
j1,Mj1

k\ast (tn+1)

\right)  un + f
j1,Mj1

k\ast (tn)

\right)  +O(\Delta t2)

(E.42)

and

\=un,j1,Mj1 =
1

cj1,Mj1

cj1,Mj1\sum 
k=1

\=u
n,j1,Mj1

k

= un  - \Delta t

\left(  \widetilde j1 - 1\sum 
j=1

2j - 1
\Bigl( \widetilde Zj(t

n)un + fj(t
n)
\Bigr) 
+

J\sum 
j=\widetilde j1

2
\widetilde j1 - 1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \right)  

 - \Delta t2
\widetilde j1 - 1

j1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) 
+O(\Delta t2).(E.43)

Therefore (E.28)--(E.29) hold for any J + 1\leq j\ast \leq 2J  - 1.
Setting j\ast = 2J  - 1 in (E.28)--(E.29), we have

\=u
n,2J - 1,M2J - 1

k\ast = un  - \Delta t

\Biggl( 
J\sum 

j=2

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \Biggr) 

 - \Delta t2 - 1

\Biggl( \widetilde Z1(t
n)un + f1(t

n)

\Biggr) 

 - \Delta t2 - 1
M1 - 1\sum 
m=1

c1,m\sum 
k=1

\Biggl( \Biggl( 
c1,m - 1\sum 
s=1

A1,m
k,s (t

n) + S1,m
k (tn+1)

\Biggr) 
un + f1,m

k (tn)

\Biggr) 

 - \Delta t2 - 1c1,M1

\Biggl( \Biggl( c1,M1 - 1\sum 
s=1

A1,M1

k\ast ,s (tn) + S1,M1

k\ast (tn+1)

\Biggr) 
un + f1,M1

k\ast (tn)

\Biggr) 

 - \Delta t

\Biggl( \left(  2J - 2\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) \right)  
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 - 

\left(  M2J - 1 - 1\sum 
m=1

c2J - 1,m\sum 
k=1

\Biggl( 
c2J - 1,m - 1\sum 

s=1

A2J - 1,m
k,s (tn) + S2J - 1,m

k (tn+1)

\Biggr) 
un + f2J - 1,m

k (tn)

\right)  
 - c2J - 1,M2J - 1

\Biggl( c2J - 1,M2J - 1 - 1\sum 
s=1

\Bigl( 
A

2J - 1,M2J - 1

k\ast ,s (tn) + S
2J - 1,M2J - 1

k\ast (tn+1)
\Bigr) 
un + f

2J - 1,M2J - 1

k (tn)

\Biggr) \Biggr) 

+O(\Delta t2),

(E.44)

\=un,2J - 1,M2J - 1 = un  - \Delta t

J\sum 
j=1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) 
 - \Delta t

2J - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) 
+O(\Delta t2).

(E.45)

According to (D.11), we have

un+1 =
\bigl( 
\scrI +\Delta tS\ast (tn+1)

\bigr)  - 1

\Biggl( 
\=un,2J - 1,M2J - 1  - \Delta t

\Biggl( c2J - 1,M2J - 1\sum 
s=1

A\ast 
s(t

n)\=u
n,2J - 1,M2J - 1

k + f\ast (tn)

\Biggr) \Biggr) 

= (\scrI  - \Delta tS\ast (tn+1))

\Biggl( 
\=un,2J - 1,M2J - 1  - \Delta t

\Biggl( c2J - 1,M2J - 1\sum 
s=1

A\ast 
s(t

n)\=u
n,2J - 1,M2J - 1

k + f\ast (tn)

\Biggr) \Biggr) 

+O(\Delta t2)

= \=un,2J - 1,M2J - 1  - \Delta tS\ast (tn+1)\=un,2J - 1,M2J - 1  - \Delta t

\Biggl( c2J - 1,M2J - 1\sum 
s=1

A\ast 
s(t

n)\=u
n,2J - 1,M2J - 1

k

+ f\ast (tn)

\Biggr) 
+O(\Delta t2)

= un  - \Delta t

J\sum 
j=1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) 
 - \Delta t

2J - 1\sum 
j=J+1

\Bigl( \widetilde Zj(t
n)un + fj(t

n)
\Bigr) 

 - \Delta t
\Bigl( \widetilde Z\ast (tn)un + f\ast (tn)

\Bigr) 
+O(\Delta t2)

= un  - \Delta t \widetilde Z(tn)un  - \Delta tf(tn) +O(\Delta t2),

(E.46)

where f(tn) is defined in (E.19).
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Putting (E.46) and (E.23) together, we have

\| \widetilde un  - un\| \infty =O(\Delta t2).(E.47)

The local error is of O(\Delta t2). Thus the global error is of O(\Delta t).
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