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Abstract

Many pattern recognition applications involve the treatment of high-dimensional data and the small sample size problem. Principal component
analysis (PCA) is a common used dimension reduction technique. Linear discriminate analysis (LDA) is often employed for classification.
PCA plus LDA is a famous framework for discriminant analysis in high-dimensional space and singular cases. In this paper, we examine
the theory of this framework and find out that even if there is no small sample size problem the PCA dimension reduction cannot guarantee
the subsequent successful application of LDA. We thus develop an improved discriminate analysis method by introducing an inverse Fisher
criterion and adding a constrain in PCA procedure so that the singularity phenomenon will not occur. Experiment results on face recognition
suggest that this new approach works well and can be applied even when the number of training samples is one per class.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Linear discriminate analysis (LDA) is a useful tool for pat-
tern classification. Although successful in many cases, many
LDA-based algorithms suffer from the so-called “small sample
size problem” (SSS) [1] which exists in high-dimensional pat-
tern recognition tasks, where the number of available samples is
smaller than the dimensionality of the samples. An active field
where such problem appears is image retrieval/classification.
In particular, face recognition (FR) [2,3] technique has found
a wide range of applications. As a result, numerous FR algo-
rithms have been proposed, and theories related to these fields
have been studied. Among various solutions to this problem, the
most successful are those appearance-based approaches, such
as Eigenfaces and Fisherfaces [4–7], are built on these tech-
niques or their variants. Since SSS problems are common, it is
necessary to develop new and more effective algorithms to deal
with them. A number of regularization techniques that might
alleviate this problem have been suggested. Mika et al. [8,9]
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used the technique of making the inner product matrix nonsin-
gular by adding a scalar matrix. Baudat and Anouar [10] em-
ployed an orthogonal decomposition technique to avoid the sin-
gularity by removing the zero eigenvalues. In Refs. [11–13] the
technique of regularization was used. A well-known approach,
called Fisher discriminant analysis (FDA), to avoid the SSS
problem was proposed by Belhumeur et al. [4]. This method
consists of two steps. The first step is the use of principal com-
ponent analysis (PCA) for dimensionality reduction. The sec-
ond step is the application of LDA for the transformed data.
The basic idea is that after the PCA step the within-class scatter
matrix for the transformed data is not singular. Although the
effectiveness of this framework in face recognition is obvious,
see Refs. [3,4,14,15], and the theoretical foundation for this
framework has also been laid [16,17], yet in this paper we find
out that the PCA step cannot guarantee the successful applica-
tion of subsequent LDA, the transformed within-class scatter
matrix might still be singular.

On the other hand, many researchers have been dedicated to
searching for more effective discriminant subspaces [16–23].
A significant result is the finding that there exists crucial dis-
criminative information in the null space of the within-class
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scatter matrix. This kind of discriminative information is called
irregular discriminant information, in contrast with regular dis-
criminant information outside of the null space [24].

Unfortunately, in order to proceed LDA after PCA, many of
the above methods discard the discriminant information con-
tained in the null space of the within-class scatter matrix, yet
this discriminant information is very effective for the SSS prob-
lem. Chen et al. [19] emphasized the irregular information and
proposed a more effective way to extract it, but overlooked the
regular information. Yu and Yang [16] took two kinds of dis-
criminatory information into account and suggested extracting
them within the range space of the between-class scatter ma-
trix. Since the dimension of the range space is up to K − 1,
Yu et al.’s algorithm, direct LDA (DLDA), is computationally
more efficient for SSS problems in that the computational com-
plexity is reduced to be O(K3).

This paper is the full version of Ref. [25]. Motivated by
the success and power of the two-phase framework (PCA plus
LDA) in pattern regression and classification tasks, consid-
ering the importance of the irregular information in the null
space of the within-class scatter matrix, and in view of the
limitation of the PCA step, we propose a new framework for
the SSS problem. The algorithm of our new method mod-
ifies the procedure of PCA and derives the regular and ir-
regular information from the within-class scatter matrix by
a new criterion, which is called inverse Fisher discriminant
criterion.

The rest of this paper is organized as follows. Since our
method is built on PCA and LDA, in Section 2, we start
the analysis by briefly reviewing the two latter methods. We
point out the deficiency of the PCA plus LDA method through
an example. Following that, the proposed framework is in-
troduced and analyzed in Section 3. The relationship of the
two different frameworks is also discussed. Algorithm of the
new framework and the computational complexity of the al-
gorithm will be considered, too. In Section 4, experiments
with face image data are presented to demonstrate the effec-
tiveness of the new method. Conclusions are summarized in
Section 5.

2. The PCA plus LDA approach and its deficiency

In this section, we will outline the schemes of PCA proce-
dure and LDA procedure briefly. These two procedures pro-
vide us a solid theoretical foundation for the new algorithm
that will be presented in Section 3 and it is the fundamen-
tals from which our new framework can be derived. After
that, we will make some comments about the PCA plus LDA
schemes and give an example to demonstrate that the LDA may
fail after applying PCA to lower the dimension of the feature
space.

For convenience, we consider the face recognition problem
(K-class problem) as follows. Suppose there are K classes,
labelled as G1, G2, . . . , GK . For face recognition, we ran-
domly select ni samples from each class Gi, i = 1, 2, . . . , K ,

for training:

G1 : X
(1)
1 X

(1)
2 · · · X

(1)
n1 ,

G2 : X
(2)
1 X

(2)
2 · · · X

(2)
n2 ,

...
...

...
...

GK : X
(K)
1 X

(K)
2 · · · X

(K)
nK

.

In face recognition applications, X
(j)
i ’s are d × 1 vectors rep-

resenting image of size (d = m × n).

2.1. The PCA procedure

Since d is very large in most cases, it is difficult to deal
with the sample matrix directly. Therefore, it is quite necessary
to lower the dimension of the image space first. Many meth-
ods on this problem have been proposed, among which PCA
is one of the most well-known method. PCA, also known as
Karhunen–Loeve (K–L) method, is a technique now commonly
used for dimensionality reduction. Simply, its object is to pro-
vide a sequence of best linear approximations in low feature
space to the original data set in high-dimensional space and at
the same time keep the elements in the sequence uncorrelated
to each other.

More precisely, rearrange the N (N = ∑K
i=1ni) samples as

a d × N matrix X, where

X = (X
(1)
1 , X

(1)
2 , . . . , X(1)

n1
, X

(2)
1 , X

(2)
2 , . . . ,

X(2)
n2

, . . . , X
(K)
1 , X

(K)
2 , . . . , X(K)

nK
)

= (X1, X2, . . . , XN)

is a d × N matrix. Set � = (1/N)
∑N

i=1Xi and X̃ = (X1 −
�, X2 − �, . . . , XN − �), then X̃ is the centered matrix of X

and we can define the total scatter matrix St as

St = 1

N

N∑
i=1

(Xi − �)(Xi − �)T = 1

N
X̃X̃T. (1)

The goal of PCA is to find out a linear transformation or
projection matrix WPCA ∈ Rd×d ′

that maps the original d-
dimensional image space into an d ′-dimensional feature space
(d ′ < d) and maximize the determinant of the total scatter of
the projected samples, i.e.,

WPCA = arg max
W∈Rd×d′

|WTStW |

= [w1, w2, . . . , wd ′ ]
s.t. ‖wi‖ = 1, i = 1, 2, . . . , d ′, (2)

where {wi |i = 1, 2, . . . , d ′} is the set of d ′-dimensional eigen-
vectors of St corresponding to the d ′ largest eigenvalues, which
can be obtained by single-value decomposition (SVD). The new
feature vectors Yi ∈ Rd ′

are defined by Yi = WT
PCA · Xi, i =

1, 2, . . . , N .
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2.2. The LDA procedure

LDA is another technique that has been successfully used for
many classification problems, such as voice recognition, face
recognition, and multimedia information retrieval. In statistical
theory, LDA arises in those classification problems assuming
that the densities of all classes are multivariate Gaussian with
a common covariance matrix. In such assumption, it is very
easy to deduce the decision boundaries of each class and use
them for classification. For recognition, the aim of LDA is also
to find a projection matrix as in PCA that maximizes the so-
called Fisher criterion. Before we introduce it, we must define
two matrices first.

Again, X
(j)
i ’s (i=1, 2, . . . , nj , j =1, 2, . . . , K) are samples

from classes Gj, j=1, 2, . . . , K . Set �j=(1/nj )
∑nj

i=1X
(j)
i , j=

1, 2, . . . , K , and � is defined as previous. Then �j is the mean
value of class Gj and � is the mean value of all samples. Let
the between-class scatter matrix be defined as

Sb = 1

N

K∑
j=1

nj (�j − �)(�j − �)T (3)

and the within-class scatter matrix be defined as

Sw = 1

N

K∑
j=1

nj∑
i=1

(X
(j)
i − �j )(X

(j)
i − �j )

T. (4)

It is easy to verify that St = Sb + Sw. Now, the projection
matrix WLDA ∈ Rd×d ′

of LDA is chosen as a matrix with
orthonormal columns maximizing the following quotient, called
Fisher criterion:

WLDA = arg max
W∈Rd×d′

|WTSbW |
|WTSwW | = [w1, w2, . . . , wd ′ ], (5)

where {wi |i = 1, 2, . . . , d ′} is the set of generalized eigenvec-
tors of Sb and Sw corresponding to the d ′ largest generalized
eigenvalues {�i |i = 1, 2, . . . , d ′}, i.e.,

Sbwi = �iSwwi, i = 1, 2, . . . , d ′.

When the inverse of Sw exists, the generalized eigenvectors
can be obtained by eigenvalue decomposition of S−1

w Sb. The
new feature vectors Yi ∈ Rd ′

are defined by Yi = WT
LDA · Xi ,

i = 1, 2, . . . , N .

2.3. The deficiency of PCA plus LDA approach

For PCA, it will compute a vector that has the largest vari-
ance, while for LDA it will compute a vector which best dis-
criminates between two classes. Consequently, in the case when
the dimension is not very large and the sample size is not rela-
tively small, LDA will usually outperform PCA for classifica-
tion tasks [5]. However, in real-world applications, especially
in face/image recognition, because of the high dimensionality,
LDA suffers from two aspects of difficulties: the singularity of
the within-class scatter matrix Sw and the computational diffi-
culty in the high-dimensional feature space.

The so-called PCA plus LDA approach [4] is a very popu-
lar technique which intends to overcome such circumstances.
The theoretical foundation for the reason why this two-phase
framework can perform quite well has been also proposed by
Yang et al. [17]. This approach consists of two steps: in the
first step, it applies PCA to lower the dimensionality from d to
d ′ and get the projection matrix WPCA. In the second step, it
applies LDA to find out the feature representation in the lower
dimension feature space Rd ′

and obtain the transformation ma-
trix WLDA. Thus, the transformation matrix of the PCA plus
LDA approach is given by

WT
opt = WT

LDA · WT
PCA, (6)

where WPCA is the result of optimization problem (2), and

WLDA = arg max
W

|WTWT
PCASbWPCAW |

|WTWT
PCASwWPCAW |

= arg max
W

|WTS′
bW |

|WTS′
wW | . (7)

As is well known, the rank of the within-class scatter matrix
Sw ∈ Rd×d satisfies rank(Sw)� min{d, N − K}. When small
sample size problem occurs, i.e., N < d + K , the within-class
scatter matrix Sw is singular, hence the optimization problem
(5) is not solvable. In order to perform LDA (7) after PCA
procedure (2), in PCA step, d ′ must be an integer no large than
N − K − c, where c is a positive integer generally equal to 1.
In most cases, the within-class scatter matrix S′

w would not be
singular after PCA procedure. However, it is possible that the
within-class scatter matrix S′

w might be still singular even after
the PCA step reducing the dimension d to d ′ =N −K −c. The
following simple example demonstrates the possibility of such
case.

Suppose d = 2, K = 2, N = 4�, n1 = n2 = 2�, where � is
a positive integer. We consider a two-class problem in R2. Let
the data be given by

X =
( 1 1 · · · 1 1 −1 −1 · · · −1 −1

�1 −�1 · · · �� −�� �1 −�1 · · · �� −��

)
,

the first 2� vectors (columns) belong to class 1 and the last 2�
vectors belong to class 2, �i is a constant such that |�i | < 1, i =
1, . . . , �.

By simple calculation, we have for the total scatter matrix
St , the within-class scatter matrix Sw and the between-class
scatter matrix Sb

St =
(1 0

0
∑�

i=1�
2
i /�

)
, Sw =

(0 0

0
∑�

i=1�
2
i /�

)

and Sb =
(1 0

0 0

)
.

St is already diagonal, the two eigenvectors e1 = (1, 0)T, e2 =
(0, 1)T correspond to its two eigenvalues �1 = 1 and �2 =∑�

i=1�
2
i /�.
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In the PCA plus LDA framework, the goal of PCA is to
choose WPCA such that the matrix

(WPCA)TSwWPCA

is not singular so that the subsequent LDA procedure can be
applied. That is the eigen problem for the matrix

((WPCA)TSwWPCA)−1((WPCA)TSbWPCA)

can be solved.
Since |�2

i | < 1, i =1, . . . , �, we have �1 > �2, the first eigen-
vector e1 will be used for projection:

WPCA = e1.

But the reduced within-class scatter matrix

(WPCA)TSwWPCA = eT
1 Swe1 = 0

is still singular, which leads to the failure of LDA procedure.
We notice that in this case there is no SSS problem.

On the other hand, by projecting X on e1 the first class be-
comes {1, . . . , 1} and the second class becomes {−1, . . . ,−1}.
It is clear that the two classes can be well separated.

3. The improved linear discriminate analysis

In this section, we will develop a new discriminant analysis
algorithm built on a new criterion. We would like to introduce
our new criterion for FDA first and then we will present a new
framework based on PCA and LDA and show that how our
modification of PCA can be applied to our new criterion. We
will prove that the use of the new criterion after our modified
PCA procedure is appropriate. After that, the new algorithm
will be introduced. Computational considerations related to our
method will also be discussed. Applications to face recognition
will be introduced at the end of this section. For convenience,
in this section, we still consider the K-class problem depicted
in Section 2.

3.1. Fundamentals

Before presenting our method, some remarks on the PCA
plus LDA approach should be made first.

• Some small principal components that might be essential for
classification are thrown away after PCA step. Since in PCA
step, it just chooses d ′ eigenvectors corresponding to the first
d ′ largest eigenvalues of St . It is very likely that the remain-
der contains some potential and valuable discriminatory in-
formation for the next LDA step.

• LDA might fail even after PCA dimension reduction as men-
tioned in the previous section.

• The null space of the within-class scatter matrix Sw contains
discriminative information for classification. For a projection
direct �, if �TSw� = 0 and �TSb� �= 0, obviously, the opti-
malization problem (5) is maximized. This kind of informa-
tion is ignored in the PCA plus LDA approach.

In view of the above three remarks, we will try to take into
account these factors and manage to find a new approach for
classification.

On the one hand, let us focus on the Fisher criterion. Since
the PCA plus LDA approach would run into a dilemma when
the within-class scatter matrix S′

w is singular after PCA proce-
dure, many variants of Fisher criterion (5) have been suggested
[4,26] in order to proceed the approach. For instance, by simply
replacing the within-class scatter matrix Sw in the denominator
by the total scatter matrix St , one has

W 1
LDA = arg max

W∈Rd×d′

|WTSbW |
|WTStW |

or one can just ignore the denominator to get

W 2
LDA = arg max

W∈Rd×d′
|WTSbW | = [w1, w2, . . . , wd ′ ]

s.t. wT
i Swwi = 0, ‖wi‖ = 1, i = 1, 2, . . . , d ′

or

W 3
LDA = arg max

W∈Rd×d′
|WTSbW |

= [w1, w2, . . . , wd ′ ]
s.t. ‖wi‖ = 1, i = 1, 2, . . . , d ′.

Each of the above three criteria has its own virtues and short-
comings. We would not compare the differences and utilization
of these criteria here. Instead, we propose our new criterion.

From the inverse relationship

arg max
W∈Rd×d′

|WTSbW |
|WTSwW | ⇐⇒ arg min

W∈Rd×d′

|WTSwW |
|WTSbW | ,

we deduce, without considering the singularity, the inverse
Fisher criterion, that is

WIFDA = arg min
W∈Rd×d′

|WTSwW |
|WTSbW | = [w1, w2, . . . , wd ′ ]. (8)

In contrast with LDA or FDA, we name the procedure using the
above inverse Fisher criterion as the inverse Fisher discriminant
analysis (IFDA). Obviously, the Fisher criterion (5) and inverse
Fisher criterion (8) are equivalent, provided that the within-class
scatter matrix Sw and the between-class scatter matrix Sb are not
singular. However, we notice that the rank of the between-class
scatter matrix Sb ∈ Rd×d satisfies rank(Sb)�K −1. Thus, the
difficulty of SSS problem still exists for this new criterion.

On the other hand, let us return to exploit the PCA. For the
optimization problem (2), it gives optimal projection vectors
that have the largest variance and PCA just selects d ′ eigenvec-
tors corresponding to the first d ′ largest eigenvalues of St but
ignores the smaller ones. If we want to take those eigenvec-
tors into account, we should abandon or modify such criterion
for vector selection. Moreover, it is very likely that vectors wi ,
i = 1, 2, . . . , d ′, satisfying the inequality

wT
i Sbwi > wT

i Swwi ,
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Fig. 1. Distribution of wT
i
Sbwi and wT

i
Swwi , wi is the eigenvector of St with respect to the ith largest eigenvalue: (a) with the ORL database and (b) with

the FERET database.

would be more effective for classification. In Fig. 1 the distri-
butions of wT

i Sbwi and wT
i Swwi , where wi is the ith largest

normalized eigenvector for the ORL database, are plotted. Here
we would like to present a new criterion by modifying Eq. (2)
as follows:

WPCA_S = arg max
W∈Rd×d′

|WTStW | = [w1, w2, . . . , wd ′ ]

s.t. wT
i Sbwi > wT

i Swwi ,

‖wi‖ = 1, i = 1, 2, . . . , d ′. (9)

we call this step PCA with selection (PCA_S). The reduced
matrix S′

b = WT
PCA_SSbWPCA_S might still be singular. It is

obvious that we should not work in the null space of the

reduced within-covariance matrix S′
b. We further project S′

b

onto its range space and denote this operation as Wproj ∈
Rd ′×d′′(d ′′ �d ′).

Finally, we can introduce our new algorithm. First, we apply
our modified PCA procedure to lower the dimension from d

to d ′ and get a projection matrix WPCA_S ∈ Rd×d ′
. Moreover,

we project onto the range space of the matrix S′
b and get a

projection matrix Wproj ∈ Rd ′×d′′. Second, we use IFDA to
find out the feature representation in the lower dimensionality
feature space Rd′′ and obtain a transformation matrix WIFDA.
Consequently, we have the transformation matrix Wopt of our
new approach as follows:

WT
opt = WT

IFDA · WT
proj · WT

PCA_S , (10)
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where WPCA_S is the result of optimization problem (9) and

WIFDA = arg min
W

|WTWT
projW

T
PCA_SSwWPCA_SWprojW |

|WTWT
projW

T
PCA_SSbWPCA_SWprojW |

= arg min
W

|WTWT
proj S

′
wWprojW |

|WTWT
proj S

′
bWprojW |

= arg min
W

|WTS′′
wW |

|WTS′′
bW | . (11)

Before we go to the end of this part, we would like to make
some comments on our new framework.

• Those eigenvectors with respect to the smaller eigenvalues
of St are taken into account in our modified PCA step.

• Our inverse Fisher criterion can extract discriminant vectors
in the null space of Sw rather than just throw them away.

3.2. The improved discriminate analysis (IDA)

In summary of the discussion so far, the algorithm for our
new approach is given below:

• Step 1 (PCA): For the K-class problem, the total scatter
matrix St ∈ Rd×d is a positive semi-definite matrix, and
we have single value decomposition St = UT�U , where
� = diag(�1, �2, . . . , �g, 0, . . . , 0), g = rank(St ), and U =
(u1, u2, . . . , ud) is a unitary matrix UTU = Id such that ui

is eigenvectors corresponding to �i for i = 1, 2, . . . , g.
• Step 2 (Eigenvector selection): Applying selection rule (for

i =1, 2, . . . , g if uT
i Sbui > uT

i Swui then ui is selected) to the
set of {u1, u2, . . . , ug}, we get WPCA_S =[ui1 , ui2 , . . . , uid′ ],
where d ′ � min{g, K − 1}.

• Step 3 (Dimension reduction): We have the projection ma-
trix WPCA_S : Rd → Rd ′

. Applying it to the sampling
matrix X, we calculate the between-class scatter matrix
S′

b = WT
PCA_SSbWPCA_S in the reduced feature space Rd ′

.

Project onto the range of the matrix S′
b. Wproj : Rd ′ →

Rd′′(d ′′ �d ′). Calculate the between-class scatter matrix
S′′

b = WT
proj S

′
bWproj and the within-class scatter matrix

S′′
w =WT

projW
T
PCA_SSwWPCA_SWproj in the reduced feature

space Rd′′. We get Y =WT
projW

T
PCA_S ·X=(Y1, Y2, . . . , YN).

• Step 4 (IFDA): The optimization problem (11) using
inverse Fisher criterion is solved by (S′′

b )−1S′′
wv = �v

with eigenvalues 0��1 ��2 � · · · ��q, q �d ′′ and corre-
sponding normalized eigenvectors v1, v2, . . . , vq . We have
WIFDA = [v1, v2, . . . , vq ].

• Step 5 (Feature representation): Applying the inverse Fisher
transform WIFDA to new sample Yi’s, i = 1, 2, . . . , N , we
get the feature representation Z = WT

opt · X = WT
IFDA · Y =

WT
IFDA · WT

proj · WT
PCA_S · X.

• Step 6 (Decision): For a new test sample Xnew ∈ Rd and class
Gj , many distance types can be applied to decide the distance
d(Xnew, Gj ) between Xnew and class Gj, j = 1, 2, . . . , K ,

such as Euclid distance l2, l1, cosine distance and Maha-
lanobis distance. The decision result is given by

Xnew ∈ Gk = arg min
Gk

d(Xnew, Gj ).

3.3. Computational complexity of IDA

For our algorithm, considering the complexity of eigenanal-
ysis, there are three time-consuming steps: PCA, dimension
reduction and IFDA. For PCA step, we have the method pre-
sented by Turk and Pentland [7] for eigenface problem, whose
computational complexity is O(N3), where N is the number
of training samples. For the step of dimension reduction, Turk
and Pentland’s method can be applied to S′

b as well, thus, the
computational complexity of this step is O(K3). For IFDA step,
since the rank of S′′

b is up to K−1 and the dimension of the fea-
ture space is reduced to d ′′ �K −1, thus, similar to DLDA, the
computational complexity of IFDA is also O(K3). Therefore,
the computational complexity of our algorithm is O(N3+2K3).

3.4. Application to face recognition

The IDA method can be used in pattern recognition prob-
lems with high-dimensional data, such as face recognition, gene
classification [27,28], etc. When it is applied to face recog-
nition, we call the columns of the transform Wopt defined in
Eq. (10) the IDA face (IDAFace) and this new approach is
named as IDAFace method.

4. Experiment results

In this section, experiments are designed to evaluate the per-
formance of our new approach: IDAFace. Experiment for com-
paring the performance between FisherFace and IDAFace is
also done.

Two standard databases from the Olivetti Research Labora-
tory (ORL) and the FERET are selected for evaluation. These
databases could be utilized to test moderate variations in pose,
illumination and facial expression. The Olivetti set contains 400
images of 40 persons. Each one has 10 images of size 92×112
with variations in pose, illumination and facial expression (see
Fig. 2a). For the FERET set we use 432 images of 72 persons.
Each person has six images whose resolution after cropping is
also 92 × 112 (see Fig. 2b). Moreover, we combine the two to
get a new larger set, the ORLFERET, which has 832 images
of 112 persons. All the above database have been done with
histogram equalization.

We implement our IDAFace algorithm and test its perfor-
mance on the above three databases. In “Decision step”, we use
the l2 metric as the distance measure. For the classifier we use
the nearest neighbor rule with class mean of each class. The
recognition rate is calculated as the ratio of number of success-
ful recognition and the total number of test samples. The ex-
periments are repeated 50 times on each database and average
recognition rates for each database are reported.
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Fig. 2. (a) Example images of one subject from the ORL database; (b) example images of two subjects (the first row) and the cropped images (the second
row) with the FERET database.

Table 1
Recognition rate of IDAFace method with ORL database

Number of training 1 2 3 4 5 6 7 8 9
samples
Recognition rate 63.3 73.9 84.3 89.7 92.4 93.9 95.5 96.0 95.9
(%)

Table 2
Recognition rate of IDAFace method with FERET database

Number of training samples 1 2 3 4 5
Recognition rate (%) 75.1 85.0 89.5 92.2 94.3

4.1. Recognition performance of the IDAFace method

We run our algorithm for the ORL database and the FERET
database separately. Table 1 is the result of average recogni-
tion rate for the ORL database, and Table 2 is for the FERET
database.

From Tables 1 and 2, we can see that the average recog-
nition rates of our IDAFace method with the ORL database
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Fig. 3. Recognition rates from Ranks 1 to 10 for different training sample per class with ORL database (a) and FERET database (b).

change from 63% to 96% when the number of training sam-
ple per class increases from 1 to 9. For the more challeng-
ing FERET database, IDAFace method has even better perfor-
mance, it changes from 75% to 94% for training images from
1 to 5.

Fig. 3 shows the recognition rates from Ranks 1 to 10 for
different training sample size with ORL in left and FERET in
right. From Fig. 3, we can see that, when the training sample
size is 5, the recognition rates of Rank 5 for both databases are
nearly 99%. These results indicate the effectiveness of our new
IDAFace method in real-world applications.

4.2. Comparison between IDAFace method and FisherFace
method

As we know, LDA is based on an assumption that all classes
are multivariate Gaussian with a common covariance matrix.
For ORL database or FERET database, the assumption is rea-
sonable since a great deal of experiments on these two database
using FisherFace algorithm have substantiated the efficiency
of this two-phase algorithm. However, when each class has



X.-S. Zhuang, D.-Q. Dai / Pattern Recognition 40 (2007) 1570–1578 1577

Fig. 4. The 3-D mesh surface of the within-class scatter matrix Sw with ORL database (left) and FERET database (right).

Table 3
Recognition rates of IDAFace method and FisherFace method with
ORLFERET database

Number of training samples 1 2 3 4 5
Recognition rate of FisherFace (%) N/A 74.9 83.8 86.3 87.5
Recognition rate of IDAFace (%) 66.7 75.1 85.3 89.6 92.5

different covariance matrix, this algorithm might not work very
well. Fig. 4 shows parts of 3-D mesh surface of the within-
class scatter matrix Sw for ORL database (left) and FERET
database (right). From it we can see that the variations of the
ORL database and the FERET database are different. Therefore,
the combination of the two databases would result in a bigger
database having different covariance matrix for different class.

In this experiment, we implement the PCA plus LDA al-
gorithm, test the performance of our IDAFace method with
the combined ORLREFRET database and compare it with the
result of FisherFace method. The experiment is repeated 50
times for each number of training sample per class running
through 1–5. Each time, the training samples selected from
the ORLFERET database are all the same for both IDAFace
method and FisherFace method. The result is shown in Table 3.

From Table 3, for our new IDAFace method, when the num-
ber of training sample per class increases from 1 to 5, the
recognition rate is from 66.7% to 92.5%, while for FisherFace
method, it is up to 87.5%. We notice that the IDAFace method
works even when the number of training images per class is
one. Moreover, from Fig. 5 we can see that IDAFace outper-
forms FisherFace for every number of training sample for each
class, taken 5 for example, the average recognition rates are
92.5% for IDAFace, while for FisherFace it is only 87.6%.
This experiment suggests that our IDAFace method can work
well even in the case that the covariance matrices for different
classes are not all the same.

5. Conclusion

In this paper, we proposed a new discriminant analysis frame-
work for high-dimensional data: PCA with selection plus IFDA.
Based on this framework, we present a new algorithm for recog-
nition tasks. The algorithm applied to face recognition is im-
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Fig. 5. Comparison between FisherFace and IDAFace.

plemented and experiments are also carried out to evaluate this
method. Comparison is made with the PCA plus LDA approach.
According to our theory and experiment results, a number of
conclusions can be drawn as follows.

Firstly, the projected between-class scatter matrix S′′
b in IFDA

procedure will never be singular after our PCA procedure with
selection, thereby guaranteeing the successful application of
IFDA after PCA_S, while this is not true for PCA plus LDA
approach.

Secondly, IDAFace can outperform FisherFace when dealing
with the situation that not all the covariance matrices are the
same for every class.
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