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a b s t r a c t

Interpolating scalar refinable functions with compact support are of interest in several
applications such as sampling theory, signal processing, computer graphics, and numerical
algorithms. In this paper, we shall generalize the notion of interpolating scalar refinable
functions to compactly supported interpolating d-refinable function vectors with any
multiplicity r and dilation factor d. More precisely, we are interested in a d-refinable
function vector φ = [φ1, . . . ,φr]

T such that φ is an r × 1 column vector of compactly
supported continuous functions with the following interpolation property

φ`

(
m

r
+ k

)
= δkδ`−1−m, ∀ k ∈ Z,m = 0, . . . , r − 1, ` = 1, . . . , r,

where δ0 = 1 and δk = 0 for k 6= 0. Now for any function f : R 7→ C, the function f can be
interpolated and approximated by

f̃ =
r∑
`=1

∑
k∈Z

f
(
`− 1

r
+ k

)
φ`(· − k)

=
∑
k∈Z

[
f (k), f

(1
r
+ k

)
, . . . , f

(
r − 1

r
+ k

)]
φ(· − k).

Since φ is interpolating, f̃ (k/r) = f (k/r) for all k ∈ Z, that is, f̃ agrees with f on r−1Z.
Moreover, for r > 2 or d > 2, such interpolating refinable function vectors can have the
additional orthogonality property: 〈φ`(·−k),φ`′ (·−k′)〉 = r−1δ`−`′δk−k′ for all k, k′ ∈ Z and
1 6 `, `′ 6 r, while it is well-known that there does not exist a compactly supported
scalar 2-refinable function with both the interpolation and orthogonality properties
simultaneously. In this paper, we shall characterize both interpolating d-refinable function
vectors and orthogonal interpolating d-refinable function vectors in terms of their masks.
We shall study their approximation properties and present a family of interpolatory masks,
for compactly supported interpolating d-refinable function vectors, of type (d, r) with
increasing orders of sum rules. To illustrate the results in this paper, we also present several
examples of compactly supported (orthogonal) interpolating refinable function vectors and
biorthogonal multiwavelets derived from such interpolating refinable function vectors.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Wavelet analysis has many applications in a broad range of scientific areas such as signal denoising, image processing,
computer graphics, and numerical algorithms. In general, a wavelet is derived from a d-refinable function vector via a
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multiresolution analysis. Throughout this paper, d denotes a dilation factor which is just an integer with |d| > 1; for
simplicity of presentation, we further assume in this paper that d > 1, and the results for a negative dilation factor can
be obtained similarly. We say that φ := [φ1, . . . ,φr]

T
: R 7→ Cr×1 is a d-refinable function vector if

φ(x) = d
∑
k∈Z

a(k)φ(dx− k), a.e. x ∈ R, (1.1)

where a : Z 7→ Cr×r is a finitely supported sequence of r× r matrices on Z, called the (matrix) mask with multiplicity r for the
refinable function vector φ. When the multiplicity r = 1, the function vector φ is simply a scalar function and therefore for
the case r = 1, φ is called a scalar d-refinable function. In the frequency domain, the matrix refinement equation in Eq. (1.1)
can be rewritten as

φ̂(dξ) = â(ξ)φ̂(ξ), ξ ∈ R, (1.2)

where â is the Fourier series of the mask a given by

â(ξ) :=
∑
k∈Z

a(k)e−ikξ, ξ ∈ R, (1.3)

where i denotes the imaginary unit such that i2
= −1. The Fourier transform f̂ of f ∈ L1(R) is defined to be f̂ (ξ) :=∫

R f (x)e−ixξ dx and can be extended to square integrable functions and tempered distributions. For simplicity, we also call â
the mask for φ. A wavelet ψ is generally derived from the refinable function vector φ via

ψ̂(dξ) := b̂(ξ)φ̂(ξ), ξ ∈ R (1.4)

for some r×r matrix b̂ of 2π-periodic trigonometric polynomials. According to various requirements of problems in different
applications, different desirable properties of the wavelet function vectorψ and the refinable function vector φ are needed.
Since the wavelet ψ is derived from the refinable function vector φ, many properties of ψ are generally determined by
those of φ and therefore, the construction of desirable refinable function vectors φ plays an important role in wavelet
analysis. Two particular important families of scalar refinable functions are interpolating refinable functions and orthogonal
refinable functions. We say that a compactly supported d-refinable function φwith mask a is interpolating if the function φ
is continuous and φ(k) = δk for all k ∈ Z, where δ denotes the Dirac sequence such that δ0 = 1 and δk = 0 for all k 6= 0. We
say that a compactly supported d-refinable function φ with mask a is orthogonal if

∫
R φ(x − k)φ(x) dx = δk for all k ∈ Z. By

the refinement equation (1.1), one can easily see that the mask a of a scalar interpolating d-refinable function must be an
interpolatory mask with the dilation factor d: a(dk) = d−1δk for all k ∈ Z, or equivalently,

∑d−1
m=0 â(ξ+ 2πm/d) = 1. Similarly,

the mask a for an orthogonal d-refinable function must be an orthogonal mask with dilation factor d:
∑d−1

m=0 |â(ξ+2πm/d)|2 =
1. A family of interpolatory masks {bn}∞n=1 with the dilation factor 2 has been obtained in [3] such that the interpolatory mask
bn is supported on [1−2n, 2n−1] and b̂n(ξ) contains the factor (1+e−iξ)2n. Also b̂n(ξ) > 0 for all ξ ∈ R [3]. It is well-known [2]
that the Daubechies orthogonal mask an of order n is closely related to the mask bn via |ân(ξ)|2 = b̂n(ξ). That is, the Daubechies
orthogonal mask ân of order n can be obtained from the interpolatory mask b̂n via the Riesz lemma.

Motivated by the wavelet applications in sampling theorems in signal processing, it is desirable to have compactly
supported refinable functions that are both interpolating and orthogonal [14–16]. However, it has been observed in [14–16]
that for the dilation factor d = 2, it is impossible to have a compactly supported scalar 2-refinable function such that it is
both interpolating and orthogonal. In order to achieve both interpolation and orthogonality, it is natural to consider either
the dilation factor d > 2 or the multiplicity r > 1. For d = r = 2, several interesting examples have been obtained in [14–16]
to show that one indeed can achieve both the interpolation and orthogonality properties of a refinable function vector
simultaneously. This paper is largely motivated in [14–16] on interpolating 2-refinable function vectors with multiplicity 2.
In this paper, we would like to consider the general case of interpolating d-refinable function vectors and investigate their
properties. More precisely, we are interested in a family of d-refinable function vectors with the following interpolation
property. We say that a refinable function vector φ = [φ1, . . . ,φr]

T
: R 7→ Cr×1 is interpolating if φ is continuous and

φ`

(
m

r
+ k

)
= δkδ`−1−m, ∀ k ∈ Z,m = 0, . . . , r − 1, ` = 1, . . . , r. (1.5)

For a function f : R 7→ C, the function f can be interpolated and approximated by

f̃ =
r∑
`=1

∑
k∈Z

f
(
`− 1

r
+ k

)
φ`(· − k) =

∑
k∈Z

[
f (k), f

(1
r
+ k

)
, . . . , f

(
r − 1

r
+ k

)]
φ(· − k).

Since φ is interpolating, f̃ (k/r) = f (k/r) for all k ∈ Z, that is, f̃ agrees with f on r−1Z. The contributions of this paper lie
in three parts. First, we generalize the notion of interpolating refinable function vectors from the special case d = r = 2
in [14–16] to the most general case d > 1 and r > 1. We notice that the papers [14–16] mostly concentrate on the design
of some masks for orthogonal interpolating 2-refinable function vectors with multiplicity 2 and only some mathematical
analysis has been provided in [16] for the case of orthogonal interpolating 2-refinable function vectors with multiplicity 2.
Second, we provide in this paper a complete mathematical analysis for such interpolating refinable function vectors and
orthogonal interpolating refinable function vectors. Third, for any dilation factor d, and multiplicity r, we propose a family
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of interpolatory masks for interpolating d-refinable function vectors with multiplicity r and with increasing orders of sum
rules.

The structure of this paper is as follows. In Section 2, we shall characterize both compactly supported interpolating d-
refinable function vectors and orthogonal interpolating d-refinable function vectors in terms of their masks. In Section 2,
we also study the sum rule structure of the interpolatory masks of type (d, r) for interpolating d-refinable function vectors
with multiplicity r, which will play a central role in our construction of interpolatory masks of type (d, r) with increasing
orders of sum rules in Section 3. In Section 3, for any dilation factor d and multiplicity r, we shall construct a family of
interpolatory masks of type (d, r) with increasing orders of sum rules. Some examples of (orthogonal) interpolating refinable
function vectors will be presented in Section 4. Next, in Section 5, we shall discuss biorthogonal multiwavelets derived from
interpolating refinable function vectors via the CBC (coset by coset) algorithm in [1,5,6] and some examples of biorthogonal
multiwavelets will be presented in Section 5. We complete the paper by some conclusions and remarks in Section 6.

2. Characterization of interpolating refinable function vectors

In this section, we shall generalize interpolating 2-refinable function vectors with multiplicity 2 in [14–16] to the general
setting of any dilation factors and multiplicities. Based on [6,8], we shall provide a complete characterization for a compactly
supported d-refinable function vector with a finitely supported mask with multiplicity r in terms of its mask. We also study
the approximation property and sum rules of such generalized interpolating refinable function vectors. As a consequence,
we obtain a criterion for a compactly supported interpolating refinable function vector whose shifts are orthogonal.

Throughout the paper, for a smooth function f , f (j) denotes the jth derivative of the function f . For 0 < α 6 1 and
1 6 p 6 ∞, we say that f ∈ Lip(α, Lp(R)) if there is a constant Cf such that ‖f − f (· − h)‖Lp(R) 6 Cfhα for all h > 0. The Lp
smoothness of a function f ∈ Lp(R) is measured by

νp(f ) := sup{n+ α : n ∈ N ∪ {0}, 0 < α 6 1, f (n) ∈ Lip(α, Lp(R))}. (2.1)

For a function vector φ = [φ1, . . . ,φr]
T, we denote νp(φ) := min16`6r νp(φ`).

By (`0(Z))m×n we denote the linear space of all finitely supported sequences of m × n matrices on Z. Similarly, u ∈
(`p(Z))m×n for 1 6 p 6∞means that u is a sequence of m× n matrices on Z and ‖u‖(`p(Z))m×n := (

∑
k∈Z ‖u(k)‖

p)
1/p <∞ for

1 6 p <∞ and ‖u‖(`∞(Z))m×n := supk∈Z ‖u(k)‖, where ‖ · ‖ denotes any matrix norm on m× n matrices.
Before proceeding further, let us recall a quantity ν2(a, d) from [8], which will play an important role in our investigation

of interpolating refinable function vectors. The convolution of two sequences u and v is defined to be

[u ∗ v](j) :=
∑
k∈Z

u(k)v(j− k), u ∈ (`0(Z))r×m, v ∈ (`0(Z))m×n.

Clearly, û ∗ v = ûv̂. For a matrix mask a with multiplicity r, we say that a satisfies the sum rules of order κ with a dilation
factor d [6,8] if there exists a sequence y ∈ (`0(Z))1×r such that ŷ(0) 6= 0 and

[ŷ(d·)â(·)](j)(2πm/d) = δmŷ(j)(0) ∀ j = 0, . . . , κ− 1 and m = 0, . . . , d− 1. (2.2)

For y ∈ (`0(Z))1×r and a positive integer κ, as in [8], we define the space Vκ,y by

Vκ,y := {v ∈ (`0(Z))r×1
: [ŷ(·)v̂(·)](j)(0) = 0 ∀ j = 0, . . . , κ− 1}. (2.3)

By convention, V0,y := (`0(Z))r×1. Note that the above equations in Eqs. (2.2) and (2.3) depend only on the values ŷ(j)(0),
j = 0, . . . , κ− 1. For a mask a with multiplicity r, a sequence y ∈ (`0(Z))1×r and a dilation factor d, we define

ρκ(a, d, y, p) := sup
{

lim sup
n→∞

‖an ∗ v‖
1/n
(`p(Z))r×1 : v ∈ Vκ,y

}
, κ ∈ N ∪ {0}, (2.4)

where ân(ξ) := â(dn−1ξ) · · · â(dξ)â(ξ). For 1 6 p 6∞, define

ρ(a, d, p) := inf{ρκ(a, d, y, p) : (2.2) holds for some κ ∈ N ∪ {0} and some y ∈ (`0(Z))1×r with ŷ(0) 6= 0}. (2.5)

As in [8, Page 61], we define the following important quantity:

νp(a, d) := 1/p− 1− log|d| ρ(a, d, p), 1 6 p 6∞. (2.6)

In the above definition of ρ(a, d, p), it seems that the sequences y (more precisely, the vectors ŷ(j)(0), j = 0, . . . , κ − 1) are
not uniquely determined. Up to a scalar multiplicative constant, we point out that the vectors ŷ(j)(0), j ∈ N ∪ {0} are quite
often uniquely determined [8, Proposition 3.1].

The above quantity νp(a, d) plays a very important role in characterizing the convergence of a vector cascade algorithm in
a Sobolev space and in characterizing the Lp smoothness of a refinable function vector. It was showed in [8, Theorem 4.3] (also
see [9, Theorem 3.1]) that the vector cascade algorithm associated with mask a and dilation factor d converges in the Sobolev
space Wk

p(R) := {f ∈ Lp(R) : f (j) ∈ Lp(R) ∀ j = 0, . . . , k} if and only if νp(a, d) > k. In general, νp(a, d) provides a lower bound
for the Lp smoothness exponent of a refinable function vector φ with mask a and dilation factor d, that is, νp(a, d) 6 νp(φ)
always holds. Moreover, if the shifts of the refinable function vector φ associated with mask a and dilation factor d are
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stable in Lp(R), then νp(φ) = νp(a, d) (see [8] and [9, Theorem 4.1]). That is, in this case, νp(a, d) indeed characterizes the Lp
smoothness exponent of a refinable function vector φ with mask a and dilation factor d. Interested readers should consult
[4–8,11] and many references therein for more details on the convergence of vector cascade algorithms, smoothness of
refinable function vectors and interpolating refinable functions.

Since the stability and linear independence of a refinable function vector will be needed in our proof of the main results
in this paper, let us recall their definitions here. For an r × 1 vector φ := [φ1, . . . ,φr]

T of compactly supported functions in
Lp(R) for 1 6 p 6∞, we say that the shifts of φ are stable in Lp(R) if there exist two positive constants C1 and C2 such that

C1

r∑
`=1

∑
k∈Z

|c`(k)|
p 6

∥∥∥∥∥ r∑
`=1

∑
k∈Z

c`(k)φ`(· − k)

∥∥∥∥∥
p

Lp(R)

6 C2

r∑
`=1

∑
k∈Z

|c`(k)|
p

for all finitely supported sequences c1, . . . , cr in `0(Z). For a compactly supported function vector φ = [φ1, . . . ,φr]
T, we say

that the shifts of φ are linearly independent if for any sequences c1, . . . , cr : Z 7→ C such that

r∑
`=1

∑
k∈Z

c`(k)φ`(x− k) = 0, a.e. x ∈ R, (2.7)

then one must have c`(k) = 0 for all ` = 1, . . . , r and k ∈ Z. Note that since φ is compactly supported, for any fixed
x ∈ R, the summation in

∑r
`=1

∑
k∈Z c`(k)φ`(x − k) = 0 is in fact finite. For a compactly supported function vector

φ = [φ1, . . . ,φr]
T in Lp(R), it is known in [13] that the shifts of φ are stable in Lp(R) (or linearly independent) if and only if

span{φ̂(ξ + 2πk) : k ∈ Z} = Cr×1 for all ξ ∈ R (or for all ξ ∈ C). Therefore, if the shifts of a compactly supported function
vector φ in Lp(R) are linearly independent, then the shifts of φmust be stable in Lp(R).

For 1 6 ` 6 r, let E` denote the `th unit coordinate column vector in Rr×1, that is, E` is the r × 1 column vector whose
only nonzero entry is located at the `th component with value 1.

Now we have the following result characterizing a compactly supported interpolating d-refinable function vector in terms
of its mask.

Theorem 2.1. Let d and r be positive integers such that d > 1. Let a : Z 7→ Cr×r be a finitely supported sequence of r × r

matrices on Z. Let φ = [φ1, . . . ,φr]
T be a compactly supported d-refinable function vector such that φ̂(dξ) = â(ξ)φ̂(ξ). Then φ is

interpolating, that is, φ is a continuous function vector and (1.5) holds if and only if the following statements hold:

(i) [1, . . . , 1]φ̂(0) = 1 (This is a normalization condition on the refinable function vector φ).
(ii) a is an interpolatory mask of type (d, r): [1, . . . , 1]â(0) = [1, . . . , 1] and

a(R` + dj)EQ`+1 = d−1δjE`+1, ∀ j ∈ Z; ` = 0, 1, . . . , r − 1, (2.8)

where R` ∈ Z and Q` ∈ {0, 1, . . . , r − 1} are defined to be

R` :=
⌊
d`

r

⌋
and Q` := r

(
d`

r
−

⌊
d`

r

⌋)
= d` mod r, ` = 0, . . . , r − 1, (2.9)

where bxc denotes the largest integer that is not larger than x.
(iii) ν∞(a, d) > 0.

Proof. Necessity: Suppose that (1.5) holds. Evidently, (1.5) can be equivalently rewritten as

φ(`/r + j) = δjE`+1 ∀ j ∈ Z and ` = 0, . . . , r − 1. (2.10)

By the definition of R` and Q` in (2.9), we observe that

d`

r
=

Q`
r
+ R`, ` = 0, . . . , r − 1. (2.11)

Now it follows from the refinement equation (1.1) and (2.10) that for ` = 0, . . . , r − 1,

φ

(
`

r
+ j

)
= d

∑
k∈Z

a(k)φ
(
d`

r
+ dj− k

)
= d

∑
k∈Z

a(k)φ
(
Q`
r
+ R` + dj− k

)
= d

∑
k∈Z

a(k)δR`+dj−kEQ`+1 = da(R` + dj)EQ`+1.

That is, by (2.10) again, we deduce that

δjE`+1 = φ

(
`

r
+ j

)
= da(R` + dj)EQ`+1.

Hence, (2.8) holds. If φ is interpolating, that is (2.10) holds, then it is easy to check that the shifts of φ must be linearly
independent. In fact, suppose that (2.7) holds for some sequences c1, . . . , cr on Z. Since φ = [φ1, . . . ,φr]

T is interpolating, φ



258 B. Han et al. / Journal of Computational and Applied Mathematics 227 (2009) 254–270

must be continuous and therefore, (2.7) must hold for all x ∈ R. By the interpolation property ofφ in (2.10), setting x = m/r+j
with j ∈ Z and m = 0, . . . , r − 1 in (2.7), we have

0 =
r∑
`=1

∑
k∈Z

c`(k)φ`(m/r + j− k) =
r∑
`=1

∑
k∈Z

c`(k)δ`−1−mδj−k = cm+1(j).

That is, we must have cm+1(j) = 0 for all m = 0, . . . , r − 1 and j ∈ Z. So, the shifts of φ are linearly independent. That
is, span{φ̂(ξ + 2πk) : k ∈ Z} = Cr×1 for all ξ ∈ C [13]. Since φ̂(dξ) = â(ξ)φ̂(ξ) and φ is continuous, it follows from [8,
Proposition 3.1] that 1 must be a simple eigenvalue of â(0) and all its other eigenvalues of â(0) are less than 1 in modulus.
Consequently, we must have φ̂(0) 6= 0; otherwise, φ must be identically zero by φ̂(dξ) = â(ξ)φ̂(ξ). Since 1 is a simple
eigenvalue of â(0) and â(0)φ̂(0) = φ̂(0) with φ̂(0) 6= 0, using the Jordan canonical form of the matrix â(0), we see that there
exists a (unique) nonzero row vector y such that yâ(0) = y and yφ̂(0) = 1. Now by φ̂(dξ) = â(ξ)φ̂(ξ) and [8, Proposition 3.2],
we must have yφ̂(2πk) = 0 for all k ∈ Z \ {0}. That is, combining with yφ̂(0) = 1, we have y

∑
k∈Z φ(x− k) = 1 for all x ∈ R,

since φ is continuous. Taking x = 0/r, 1/r, . . . , (r − 1)/r, since φ is interpolating, we deduce that

y = y
[
φ(0),φ

(1
r

)
, . . . ,φ

(
r − 1

r

)]
= y

[∑
k∈Z

φ

(0
r
− k

)
, . . . ,

∑
k∈Z

φ

(
r − 1

r
− k

)]
= [1, . . . , 1].

That is, y = [1, . . . , 1]. It follows from yâ(0) = y and yφ̂(0) = 1 that [1, . . . , 1]â(0) = [1, . . . , 1] and [1, . . . , 1]φ̂(0) = 1.
Therefore, both (i) and (ii) have been verified.

Since φ is continuous, it follows from the linear independence of φ that the shifts of φ are stable in C(R). Since φ is
continuous, in [8, Corollary 5.1], we must have ν∞(a, d) > 0. So, (iii) holds.

Sufficiency: Let y := [1, . . . , 1] and h(x) := max{0, 1−|x|} the hat function. Define a function vector f (x) := [h(rx), h(rx−
1), . . . , h(rx− (r − 1))]T. Then it is evident that f̂ (ξ) = r−1ĥ(ξ/r)[1, e−iξ/r, . . . , e−iξ(r−1)/r

]
T. Note that ĥ(ξ) = 4ξ−2 sin2(ξ/2).

Therefore, ĥ(0) = 1 and ĥ(2πk) = 0 for all k ∈ Z \ {0}. Now by calculation, we have yf̂ (0) = r−1ĥ(0)[1, . . . , 1][1, . . . , 1]T = 1
and for k ∈ Z \ {0},

yf̂ (2πk) = r−1ĥ(2πk/r)[1, . . . , 1][1, e−i2πk/r, . . . , e−i2πk(r−1)/r
]

T

=
1
r
ĥ
(2πk

r

)[r−1∑
`=0

e−i 2πk`
r

]
=

{
0, k ∈ Z \ rZ,
ĥ(2πk/r) = 0, k ∈ rZ \ {0}.

By our assumption in (ii), we have yâ(0) = [1, . . . , 1]â(0) = [1, . . . , 1] = y. Therefore, f is a suitable initial function vector
[8] in C(R) and f is a continuous function vector. Now by our assumption in (iii), we have ν∞(a, d) > 0. Therefore, in
[8, Theorem 4.3], ν∞(a, d) > 0 implies that the vector cascade algorithm associated with mask a and dilation factor d
converges in C(R). More precisely, there exists a compactly supported continuous function vector f∞ such that limn→∞ ‖fn−
f∞‖(C(R))r×1 = 0, where the cascade sequence fn, n ∈ N ∪ {0} is defined to be f0 := f and

fn := Qa,dfn−1 := d
∑
k∈Z

a(k)fn−1(d · −k), n ∈ N. (2.12)

Since yf̂0(0) = yf̂ (0) = 1 and yâ(0) = y, by induction we deduce that

yf̂n(0) = yâ(0)f̂n−1(0) = yf̂n−1(0) = · · · = yf̂0(0) = yf̂ (0) = 1.

Consequently, by limn→∞ ‖fn − f∞‖(C(R))r×1 = 0 and f̂n(dξ) = â(ξ)f̂n−1(ξ), we have f̂∞(dξ) = â(ξ)f̂∞(ξ) and yf̂∞(0) =

limn→∞ yf̂n(0) = 1. So, f∞ is not identically zero. By the assumption in (i), we also have yφ̂(0) = 1. Therefore, we have

y[f̂∞(0)− φ̂(0)] = 0 and f̂∞(dξ) = â(ξ)f̂∞(ξ), φ̂(dξ) = â(ξ)φ̂(ξ). (2.13)

On the other hand, it is easy to verify that span{f̂ (2πk) : k ∈ Z} = Cr×1. Since limn→∞ ‖fn− f∞‖(C(R))r×1 = 0 and f∞ 6≡ 0, in [8,
Proposition 3.1], we conclude that 1 is a simple eigenvalue of â(0) and all its other eigenvalues are less than 1 in modulus.
Consequently, up to a multiplicative constant, the solution to the refinement equation (1.1) is unique. Now by yâ(0) = y

and â(0)[f̂∞(0)− φ̂(0)] = f̂∞(0)− φ̂(0), since 1 is a simple eigenvalue of â(0), it follows from y[f̂∞(0)− φ̂(0)] = 0 in (2.13)
that f̂∞(0) = φ̂(0), which can be easily verified by considering the Jordan canonical form of the matrix â(0) and noting that
1 is a simple eigenvalue of â(0). Therefore, by (2.13), we have φ = f∞. That is, we conclude that φ is a compactly supported
continuous function vector and limn→∞ ‖fn − φ‖(C(R))r×1 = 0.

Now we show by induction on n that

fn

(
`

r
+ j

)
= δjE`+1 ∀ n ∈ N ∪ {0}, j ∈ Z, ` = 0, . . . , r − 1. (2.14)

Note that h(0) = 1 and h(k) = 0 for all k ∈ Z \ {0}. Clearly, by our definition of the initial function vector f0 (that is, f ), (2.14)
holds for n = 0. Suppose that (2.14) holds for n− 1. Now we show that (2.14) holds for n. By the definition of fn, we deduce
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that for ` = 0, . . . , r − 1 and j ∈ Z, by (2.11) and the induction hypothesis for n− 1,

fn

(
`

r
+ j

)
= d

∑
k∈Z

a(k)fn−1

(
d`

r
+ dj− k

)

= d
∑
k∈Z

a(k)fn−1

(
Q`
r
+ R` + dj− k

)
= d

∑
k∈Z

a(k)δR`+dj−kEQ`+1

= da(R` + dj)EQ`+1 = δjE`+1,

where we used (2.8) in the last identity. So, (2.14) holds for n. Now by induction, (2.14) holds for all n ∈ N ∪ {0}. Since
limn→∞ ‖fn−φ‖(C(R))r×1 = 0, in particular, we have limn→∞ fn(x) = φ(x) for all x ∈ R. Now (1.5) or equivalently (2.10) follows
directly from (2.14). �

As a consequence of Theorem 2.1, we have the following result characterizing compactly supported orthogonal
interpolating refinable function vectors.

Corollary 2.2. Let d and r be positive integers such that d > 1. Let a : Z 7→ Cr×r be a finitely supported sequence of r × r

matrices on Z and φ be a compactly supported d-refinable function vector such that φ̂(dξ) = â(ξ)φ̂(ξ). Then φ is an orthogonal
interpolating function vector, that is, φ is continuous, (1.5) holds and∫

R
φ(x− j)φ(x)

T
dx =

1
r
δjIr ∀ j ∈ Z, (2.15)

if and only if, (i)–(iii) of Theorem 2.1 hold and a is an orthogonal mask:

d−1∑
m=0

â(ξ+ 2πm/d)â(ξ+ 2πm/d)
T
= Ir. (2.16)

Proof. Necessity: Suppose that φ is an orthogonal interpolating d-refinable function vector. Then in particular, φ is an
interpolating d-refinable function vector. Hence, by Theorem 2.1, (i)–(iii) hold. Now we show that (2.15) implies (2.16).
Since φ is a compactly supported d-refinable function vector satisfying the refinement equation (1.1), noting that the mask
a is finitely supported, we deduce from (2.15) that

1
r
δjIr =

∫
R
φ(x− j)φ(x)

T
dx

= d2
∫

R

∑
k∈Z

a(k)φ(dx− dj− k)
∑
k′∈Z

a(k′)φ(dx− k′)
T

dx

= d2
∑
k∈Z

∑
k′∈Z

a(k)
[∫

R
φ(dx− dj− k)φ(dx− k′)

T
dx
]
a(k′)

T

= d
∑
k∈Z

∑
k′∈Z

a(k)
[∫

R
φ(x− (dj+ k− k′))φ(x)

T
dx
]
a(k′)

T
.

Now by (2.15) again, we deduce

1
r
δjIr = d

∑
k∈Z

∑
k′∈Z

a(k)
1
r
δdj+k−k′ Ira(k′)

T
=

d

r

∑
k∈Z

a(k)a(dj+ k)
T
.

That is, (2.15) implies∑
k∈Z

a(k)a(dj+ k)
T
= d−1δjIr ∀ j ∈ Z. (2.17)

It is known and can be easily verified by a direct calculation that (2.16) is equivalent to (2.17).
Sufficiency: Since (i)–(iii) of Theorem 2.1 hold, by Theorem 2.1, we see that φ is continuous and (1.5) holds. To complete

the proof, we show that (2.15) holds. Since (iii) of Theorem 2.1 holds, we have ν∞(a, d) > 0. By [8, (4.7)], we have
ν∞(a, d) 6 ν2(a, d). Consequently, we get ν2(a, d) > ν∞(a, d) > 0. So, by [8, Theorem 4.3], the vector cascade algorithm
associated with mask a and dilation factor d converges in L2(R).

Define f0 := [g(r·), g(r · −1), . . . , g(r · −(r − 1))]T and fn as in (2.12), where g = χ[0,1], the characteristic function of the
interval [0, 1]. Denote y := [1, . . . , 1] ∈ R1×r . By calculation, we have ĝ(ξ) = 1−e−iξ

iξ
. Therefore, ĝ(0) = 1 and ĝ(2πk) = 0 for

all k ∈ Z \ {0}. By the same argument as in the proof of Theorem 2.1, we can check that yf̂0(0) = 1 and yf̂0(2πk) = 0 for all
k ∈ Z \ {0}. Since yâ(0) = y by (ii) of Theorem 2.1, f0 is a suitable initial function vector in L2(R). On the other hand, by (i),
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we have yφ̂(0) = 1. Now by [8, Theorem 4.3] and ν2(a, d) > 0, we see that limn→∞ ‖fn − φ‖(L2(R))r×1 = 0. Now we prove by
induction on n that∫

R
fn(x− j)fn(x)

T
dx =

1
r
δjIr ∀ j ∈ Z, n ∈ N ∪ {0}. (2.18)

By the definition of g = χ[0,1], it is obvious that
∫

R g(x − j)g(x) dx = δj for all j ∈ Z. By the definition of the function vector
f0 = [g(r·), g(r · −1), . . . , g(r · −(r− 1))]T, now it is straightforward to check that (2.18) holds for n = 0. Suppose that (2.18)
holds for n− 1. Now we show that (2.18) must hold for n. By the definition of fn in (2.12), noting that a is finitely supported,
by the induction hypothesis for n− 1 and (2.17), we deduce that∫

R
fn(x− j)fn(x)

T
dx = d2

∫
R

∑
k∈Z

a(k)fn−1(dx− dj− k)
∑
k′∈Z

a(k′)fn−1(dx− k′)
T

dx

= d2
∑
k∈Z

∑
k′∈Z

a(k)
[∫

R
fn−1(dx− dj− k)fn−1(dx− k′)

T
dx
]
a(k′)

T

= d
∑
k∈Z

∑
k′∈Z

a(k)
[∫

R
fn−1(x− (dj+ k− k′))fn−1(x)

T
dx
]
a(k′)

T

= d
∑
k∈Z

∑
k′∈Z

a(k)
1
r
δdj+k−k′ Ira(k′)

T

=
d

r

∑
k∈Z

a(k)a(dj+ k)
T

= r−1δjIr.

Hence, (2.18) has been verified for n. By induction, (2.18) holds for all n ∈ N ∪ {0}. Now it is easy to conclude from
limn→∞ ‖fn − φ‖(L2(R))r×1 = 0 and (2.18) that (2.15) is true. �

In the rest of this section, we shall investigate the structure of the vector ŷ in the definition of the sum rules in (2.2) for
the particular family of interpolatory masks of type (d, r) given in (2.8). Notice that the sum rule condition in (2.2) can be
rewritten as

ŷ(dξ)â(ξ+ 2π`/d) = δ`ŷ(ξ)+ O(|ξ|κ), ξ→ 0, ` = 0, . . . , d− 1. (2.19)

Now we shall express the sum rule condition above in terms of the cosets of â(ξ). Define the cosets âm(ξ) of â(ξ) by

âm(ξ) :=
∑
k∈Z

a(m+ dk)e−iξ(m+dk), m = 0, . . . , d− 1. (2.20)

By a simple calculation, from (2.20) we have âm(ξ + 2π`/d) = e−i2π`m/dâm(ξ) for all ` ∈ Z. Since â(ξ) =
∑d−1

m=0 âm(ξ), now
(2.19) becomes

d−1∑
m=0

e−i2π`m/dŷ(dξ)âm(ξ) = δ`ŷ(ξ), ` = 0, . . . , d− 1.

Rewrite the above identities in the form of a matrix, we have

Ud


ŷ(dξ)â0(ξ)

ŷ(dξ)â1(ξ)
...

ŷ(dξ)âd−1(ξ)

 =

ŷ(ξ)

0
...
0

 with Ud :=


1 1 · · · 1
1 e−i 2π

d · · · e−i 2π(d−1)
d

...
...

...

1 e−i 2π(d−1)
d · · · e−i 2π(d−1)2

d

 .

Note that UdUd
T
= dId. Now it follows from the above relation that (2.19) is equivalent to

ŷ(dξ)âm(ξ) = d−1ŷ(ξ)+ O(|ξ|κ), ξ→ 0,m = 0, . . . , d− 1. (2.21)

The following result determines the ŷ vector in the definition of sum rules in (2.2) for interpolatory masks of type (d, r);
this result will play an important role in later sections for our construction of interpolatory masks of type (d, r) with high
orders of sum rules.

Theorem 2.3. Let d and r be positive integers such that d > 1. Let a : Z 7→ Cr×r be a finitely supported sequence of r× r matrices
on Z. Suppose that a is an interpolatory mask of type (d, r), that is, [1, . . . , 1]â(0) = [1, . . . , 1] and (2.8) holds. If a satisfies the
sum rules of order κ in (2.2) with a sequence y ∈ (`0(Z))1×r and ŷ(0) = [1, . . . , 1], then

ŷ(j)(0) = ijr−j[δj, 1j, 2j, . . . , (r − 1)j], j = 0, . . . , κ− 1. (2.22)

In other words, ŷ(ξ) = Ŷ(ξ)+ O(|ξ|κ) as ξ→ 0, where Y(ξ) := [1, eiξ/r, . . . , ei(r−1)ξ/r
].



B. Han et al. / Journal of Computational and Applied Mathematics 227 (2009) 254–270 261

Proof. Using the cosets of the mask a, it is easy to see that (2.8) can be equivalently rewritten as

âR`(ξ)EQ`+1 = d−1e−iR`ξE`+1 ∀ ` = 0, . . . , r − 1. (2.23)

Since a satisfies the sum rules of order κwith the vector ŷ, we have (2.21). In particular, using (2.21) with m = R`, we deduce
from (2.23) that

d−1ŷ(ξ)EQ`+1 = ŷ(dξ)âR`(ξ)EQ`+1 + O(|ξ|κ) = d−1e−iR`ξŷ(dξ)E`+1 + O(|ξ|κ).

Denote [ŷ1(ξ), . . . , ŷr(ξ)] := ŷ(ξ), that is, we denote ŷj to be the jth component of the row vector ŷ. Then the above identity
can be rewritten as

ŷQ`+1(ξ) = e−iR`ξŷ`+1(dξ)+ O(|ξ|κ).

That is, by ŷ(0) = [1, . . . , 1], we must have

ŷ`+1(0) = 1, ŷ`+1(dξ) = eiR`ξŷQ`+1(ξ)+ O(|ξ|κ), ξ→ 0, ` = 0, . . . , r − 1. (2.24)

Note that the above relation is just a system of linear equations on the unknowns ŷ(j)(0) for j = 1, . . . , κ − 1. In the
following, we shall argue that the above system of linear equations in (2.24) has a unique solution for the unknowns
{ŷ(j)(0) : j = 1, . . . , κ− 1}. Moreover, we shall prove that the unique solution to (2.24) must be given in (2.22).

For simplicity of discussion, let us rewrite Q` in the form of an operator. Define an operator Q : {0, . . . , r − 1} 7→
{0, . . . , r − 1} by Q(`) := Q` = d` mod r. For all ` ∈ {0, . . . , r − 1} and n ∈ N, employing (2.24) iteratively, we have

ŷ`+1(ξ) = eid−1R`ξŷQ`+1(d
−1ξ)+ O(|ξ|κ) = eiξ(d−2RQ(`)+d

−1R`)ŷQ2(`)+1(d
−2ξ)+ O(|ξ|κ)

= e
iξ(

n∑
k=1

d−kR
Qk−1(`)

)

ŷQn(`)+1(d
−nξ)+ O(|ξ|κ).

That is, we have

ŷ`+1(ξ) = e
iξ(

n∑
k=1

d−kR
Qk−1(`)

)

ŷQn(`)+1(d
−nξ)+ O(|ξ|κ) ∀ ` = 0, . . . , r − 1, n ∈ N. (2.25)

Note that ŷ(0) = [1, . . . , 1] is equivalent to ŷ`+1(0) = 1 for all ` = 0, . . . , r − 1. Let S denote the set of all ` ∈ {0, . . . , r − 1}
such that ` ∈ S means that there exists n` ∈ N such that Qn`(`) = `. For every ` ∈ S, since ŷ`+1(0) = 1, by [8, Lemma 2.2],
(2.25) with n = n` has a unique solution {ŷ(j)

`+1(0) : j = 1, . . . , κ − 1}, which can be obtained recursively. More precisely,
since for ` ∈ S, we have Qn`(`) = ` for some n` ∈ N. Therefore, (2.25) becomes

ŷ`+1(ξ) := X`(ξ)ŷ`+1(d
−n`ξ)+ O(|ξ|κ), ` ∈ S with X`(ξ) := e

iξ
(

n∑̀
k=1

d−kR
Qk−1(`)

)
.

Now applying the Leibniz differentiation formula to the above relation, we have

ŷ(j)
`+1(0) =

j∑
k=0

j!

k!(j− k)!
X(j−k)(0)d−n`kŷ(k)

`+1(0)

= X(0)d−n` jŷ(j)
`+1(0)+

j−1∑
k=0

j!

k!(j− k)!
X(j−k)(0)d−n`kŷ(k)

`+1(0), j = 1, . . . , κ− 1.

Since X(0) = 1 and n` > 1, we have d−n` j < 1 for j > 1. Now it follows from the above relation that the value ŷ(j)
`+1(0) is

completely determined by the values ŷ(k)
`+1(0), k = 0, . . . , j− 1 via the following recursive formula:

ŷ(j)
`+1(0) = [1− d−n` j]−1

j−1∑
k=0

j!

k!(j− k)!
X(j−k)(0)d−n`kŷ(k)

`+1(0), j = 1, . . . , κ− 1.

Therefore, for any ` ∈ S, the values ŷ(j)
`+1(0), j = 1, . . . , κ− 1 are completely determined by the relation (2.24).

For ` ∈ {0, . . . , r−1}\S, since QN(`) ∈ {0, . . . , r−1} for all N ∈ N, there must exist N` ∈ N such that QN`(`) ∈ S. Therefore,
by (2.25) with n = N`, we have

ŷ`+1(ξ) = e
iξ(

N∑̀
k=1

d−kR
Qk−1(`)

)

ŷQN` (`)+1(ξ)+ O(|ξ|κ), ξ→ 0 (2.26)

with QN`(`) ∈ S. By what has been proved, all ŷ(j)

QN` (`)+1
(0), j = 0, . . . , κ− 1 are completely determined by (2.24). It follows

from (2.26) that for every ` ∈ {0, . . . , r − 1} \ S, the values ŷ(j)
`+1(0), j = 1, . . . , κ − 1 are completely determined by (2.26)

and, therefore, are uniquely determined by the system of linear equations in (2.24).
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That is, we proved that if (2.24) holds, then all ŷ(j)
`+1(0), ` = 0, . . . , r− 1 and j = 0, . . . , κ− 1 are uniquely determined by

(2.24). Therefore, if there is a solution to the system of linear equations in (2.24), then the solution must be unique according
to the above argument.

In the following, we show that the system of linear equations in (2.24) indeed has a solution. Let Y`+1(ξ) = ei`ξ/r ,
` = 0, . . . , r − 1. By (2.11), d`/r = R` + Q`/r and we have

Y(0) = [1, . . . , 1] and Y`+1(dξ) = eid`ξ/r
= eiR`ξeiQ`ξ/r = eiR`ξYQ`+1(ξ).

Therefore, if we take ŷ(j)
`+1(0) = Ŷ(j)

`+1(0) for all ` = 0, . . . , r − 1 and j = 0, . . . , κ − 1, then it is a solution to the system of
linear equations in (2.24). By the uniqueness of the solution to (2.24), we must have (2.22), which completes the proof. �

3. General construction of interpolatory masks of type (d, r)

Based on the results in Section 2, in this section, we shall present a family of interpolatory masks of type (d, r) with
increasing orders of sum rules.

Before we present the construction of interpolatory masks of type (d, r) in this section, let us lay out the whole picture of
our construction and the idea of the proof first. Our construction in this section largely follows the key idea of the proposed
CBC (coset by coset) algorithm in [6]. Roughly speaking, a mask a : Z 7→ Cr×r can be regarded as a disjoint union of its cosets:
{a(k)}k∈Z = ∪

d−1
m=0{a(m+ dk)}k∈Z. So, in order to obtain a mask a with multiplicity r with some desirable properties, it suffices

to design its d cosets {a(m+dk)}k∈Z, m = 0, . . . , d−1 appropriately. That is, a desired mask can be constructed coset by coset.
Following the notation of matlab, for a matrix A, we denote [A]:,n the nth column of the matrix A and [A]k,n the (k, n)-entry of
A. For each coset m+dZ, we can further split the mask a on the coset m+dZ as a disjoint union of columns. More precisely, in
order to design {a(m+ dk)}k∈Z on the coset m+ dZ, one needs to design its columns: {[a(m+ dk)]:,n}k∈Z for each n = 1, . . . , r.
The condition (2.8) for an interpolatory mask of type (d, r) can be expressed as

[a(R` + dk)]:,Q`+1 = d−1δkE`+1, k ∈ Z, ` = 0, . . . , r − 1. (3.1)

In other words, the Q` + 1 columns of the mask a on the coset R` + dZ, that is, {[a(R` + dk)]:,Q`+1}k∈Z, ` = 0, . . . , r − 1, are
completely determined by the condition (2.8) for an interpolatory mask of type (d, r). Denote

Γd,r := {(m, n) : m = 0, . . . , d− 1, n = 1, . . . , r} \ {(R`,Q` + 1) : ` = 0, . . . , r − 1}. (3.2)

Therefore, in order to construct an interpolatory mask a of type (d, r) with the sum rules of order κ, it suffices to construct
{[a(m+ dk)]:,n}k∈Z for every (m, n) ∈ Γd,r such that the sum rule conditions in (2.21) are satisfied.

We have the following result on interpolatory masks of type (d, r) with increasing orders of sum rules.

Theorem 3.1. Let d and r be positive integers such that d > 1. Let N be a positive integer. Suppose that for every (m, n) ∈ Γd,r ,
Sm,n is a subset of Z such that #Sm,n = N, where #Sm,n denotes the cardinality of the set Sm,n. Then there exists a unique finitely
supported mask a : Z 7→ Cr×r such that

(1) a is an interpolatory mask of type (d, r), that is, [1, . . . , 1]â(0) = [1, . . . , 1] and (2.8) holds.
(2) For every (m, n) ∈ Γd,r , [a(m+ dk)]:,n = 0 for all k ∈ Z \ Sm,n, where [a(m+ dk)]:,n denotes the n-th column of the r× r matrix

a(m+ dk), that is, the nth column of the mask a on the coset m+ dZ vanishes outside the set m+ dSm,n for all (m, n) ∈ Γd,r .
(3) a satisfies the sum rules of order rN.

In fact, the unique mask a must be real-valued, that is, a : Z 7→ Rr×r .

Proof. Note that (2.8) is equivalent to (3.1), that is, [âR`(ξ)]:,Q`+1 = d−1e−iR`ξE`+1 for ` = 0, . . . , r − 1. Let ŷ(ξ) :=

[1, eiξ/r, . . . , eiξ(r−1)/r
]. Then by d`/r = R` + Q`/r, it is straightforward to see that (3.1) implies

ŷ(dξ)[âR`(ξ)]:,Q`+1 = d−1ŷ(dξ)e−iR`ξE`+1 = d−1ŷ`+1(dξ)e−iR`ξ = d−1eiξd`/re−iξR`

= d−1eiξQ`/r = d−1ŷQ`+1(ξ) ∀ ξ→ 0, ` = 0, . . . , r − 1. (3.3)

For an interpolatory mask a of type (d, r) such that a satisfies the sum rules of order rN in (2.21), by Theorem 2.3 and
(3.3), it is necessary and sufficient to require

ŷ(dξ)[âm(ξ)]:,n = d−1ŷn(ξ)+ O(|ξ|rN), ξ→ 0, (m, n) ∈ Γd,r. (3.4)

Since [a(m + dk)]:,n = 0 for all k ∈ Z \ Sm,n, we have [âm(ξ)]:,n =
∑

k∈Sm,n
[a(m + dk)]:,ne−i(m+dk)ξ. Since ŷ(ξ) =

[1, eiξ/r, . . . , eiξ(r−1)/r
], we deduce that (3.4) is equivalent to

r−1∑
`=0

∑
k∈Sm,n

[a(m+ dk)]`+1,neiξ(d`/r−m−dk)
= d−1eiξ(n−1)/r

+ O(|ξ|rN), (m, n) ∈ Γd,r. (3.5)

Finding a mask a such that a satisfies all the three conditions in (1), (2) and (3) is now equivalent to solving the system of
linear equations in (3.5) for each pair (m, n) ∈ Γd,r .
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Taking jth derivatives on both sides of (3.5) and evaluating them at ξ = 0, we see that (3.5) is equivalent to: for each
(m, n) ∈ Γd,r ,

r−1∑
`=0

∑
k∈Sm,n

[a(m+ dk)]`+1,n(d`/r − m− dk)j = d−1
(
n− 1

r

)j

, j = 0, . . . , rN − 1. (3.6)

Since #Sm,n = N and Sm,n ⊆ Z, we see that for each (m, n) ∈ Γd,r , the set {d`/r −m− dk : k ∈ Sm,n, ` = 0, . . . , r − 1} consists
of rN distinct points on R. So, the coefficient matrix ((d`/r−m− dk)j)k∈Sm,n,`=0,...,r−1;j=0,...,rN−1 is a Vandermonde matrix and
therefore, it is invertible. Also note that for each (m, n) ∈ Γd,r , the number of unknowns in {[a(m+ dk)]`+1,n : k ∈ Sm,n, ` =
0, . . . , r − 1} is also rN. So, the solution to the system of linear equations in (3.6) is unique. Moreover, it is straightforward
to see that the unique solution {[a(m + dk)]`+1,n : k ∈ Sm,n, ` = 0, . . . , r − 1} to (3.6) must be real-valued. This completes
the proof. �

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2. Let d and r be positive integers such that d > 1. Let S be any subset of Z such that N = #(S ∩ (m + dZ)) for all
m ∈ Z and R` ∈ S for all ` = 0, . . . , r − 1. Then there exists a unique mask a : Z 7→ Rr×r such that

(1) a is an interpolatory mask of type (d, r).
(2) a is supported inside S, that is, a(k) = 0 for all k ∈ Z \ S.
(3) a satisfies the sum rules of order rN.

In particular, if S = [−N0, dN − N0 − 1] ∩ Z for any N0 ∈ Z, then #(S ∩ (m+ dZ)) = N for all m ∈ Z.

Proof. By calculation, for each (m, n) ∈ Γd,r , we have Sm,n = {k ∈ Z : m+ dk ∈ S}. By our assumption on S, it is not difficult
to check that #Sm,n = N. Now the claim follows directly from Theorem 3.1. �

Let us consider the condition (2.8) for interpolatory masks with the special choice r | d, that is, d = rr′ for some r′ ∈ N.
In this case, by the definition of Q` and R` in (2.9), we have Q` = 0 and R` = r′` for all ` = 0, . . . , r − 1. Consequently, for
d = rr′, (2.8) becomes

âr
′`(ξ)E1 = d−1e−ir′`ξE`+1, ` = 0, . . . , d− 1. (3.7)

Note that â(ξ) =
∑d−1

m=0 âm(ξ). In particular, if d = r, that is, r′ = 1, then the interpolatory condition in (2.8) is equivalent to

â(ξ) =
1
d


1 ∗ · · · ∗

e−iξ
∗ · · · ∗

...
...

. . .
...

e−i(d−1)ξ
∗ · · · ∗

 , (3.8)

where ∗ denotes some 2π-periodic trigonometric polynomial.
To understand better the definition of an interpolatory mask of type (d, r) in (2.8) (or equivalently in (3.1)), in the

following we present another equivalent expression for an interpolatory mask of type (d, r). For a matrix mask a : Z 7→ Cr×r

with multiplicity r, there correspond r scalar sequences A1, . . . , Ar
: Z 7→ C, which are as

A`(k) := [a(bk/rc)]`,k−rbk/rc+1, k ∈ Z, ` = 1, . . . , r,

where bxc denotes the largest integer that is no greater than x. Or equivalently, the scalar sequences A1, . . . , Ar are uniquely
determined by the following relation:

[a(k)]`,m = A`(rk+ m− 1), k ∈ Z, `,m = 1, . . . , r.

Informally speaking, each scalar sequence A` is just obtained from the `th row of the matrix mask a by regarding the `th
row {[a(k)]`,:}k∈Z of the matrix mask a as one scalar sequence.

Then a is an interpolatory mask of type (d, r) if and only if

A`(d(k+ `− 1)) = d−1δk ∀ k ∈ Z, ` = 1, . . . , r.

That is, each scalar sequence A` is an interpolatory mask with the dilation factor d and with the center A`(d(`− 1)) = 1/d,
` = 1, . . . , r.

For the case d = r = 2, we have the following result on interpolatory masks of type (2, 2) with symmetry.

Corollary 3.3. For any positive integer N, there exists a unique interpolatory mask a of type (2, 2) such that

(1) a is supported inside [1− N,N].
(2) The mask a is real-valued and satisfies the sum rules of order 2N − 1.
(3) The mask a is symmetric: â(ξ) = diag(1, ei2ξ)â(ξ)diag(1, e−iξ). In other words, φ1(−x) = φ1(x) and φ2(1 − x) = φ2(x) for

all x ∈ R, where [φ1,φ2]
T is the compactly supported 2-refinable function vector associated with mask a.
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Table 1

N 1 2 3 4 5 6 7 8

ν2(a(2,2,N), 2) 0.5 1.891641 2.310887 2.665375 2.864820 3.022116 3.148026 3.255143
ν2(a

sym
(2,2,N)

, 2) 0.5 1.839036 2.159779 2.676161 2.850528 3.022694 3.147442 3.255166
ν2(a(3,2,N), 3) 0.5 1.699021 2.119868 2.384743 2.569875 2.705482 2.808354 2.889563
ν2(a(3,3,N), 3) 0.5 1.307524 2.239411 2.346999 2.685627 2.738300 2.942924 2.969225

The first row lists the quantities ν2(a(2,2,N), 2) for the interpolatory masks a(2,2,N) constructed in Corollary 3.2 with d = r = 2 and S := [1 − N,N]. The
second row lists the quantities ν2(a

sym
(2,2,N)

, 2) for the interpolatory masks a
sym
(2,2,N)

constructed in Corollary 3.3. The third and fourth rows list the quantities
ν2(a(3,2,N), 3) and ν2(a(3,3,N), 3), respectively, for the interpolatory masks a(3,r,N) constructed in Corollary 3.2 with d = 3 and S := [−N0, 3N − N0 − 1]
with N0 := b3(N − 1)/2c. Note that we always have ν∞(a, d) > ν2(a, d)− 1/2 for any mask a [8].

Fig. 1. The graphs of φ1 (left) and φ2 (right) in the symmetric interpolating 2-refinable function vector φ = [φ1,φ2]
T of Example 4.1. Moreover,

ν2(φ) ≈ 1.839036 and φ1(−x) = φ1(x) and φ2(1− x) = φ2(x) for all x ∈ R.

Proof. Since d = r = 2, by the interpolatory condition in (3.8), we see that {[a(k)]:,1}k∈Z is completely determined by
(3.8). By the symmetry condition in (3), we see that {[a(2k+ 1)]:,2}k∈Z is completely determined by {[a(2k)]:,2}k∈Z. Note that
#([1−N,N]∩(2Z)) = N. The unknowns of the second column of the mask a on the coset 2Z are [a(k)]:,2, k ∈ [1−N,N]∩(2Z),
plus one extra requirement [a(N)]1,2 = 0 if N is even, or [a(1− N)]2,2 = 0 if N is odd, due to the condition in (1). The proof is
now completed by a similar proof as in Theorem 3.1. �

To complete this section, let us present in Table 1 the smoothness of some families of the interpolatory masks constructed
in Corollaries 3.2 and 3.3.

4. Some examples of interpolating refinable function vectors

In this section, we shall present several examples of interpolatory masks of type (d, r), as well as several examples of
masks for orthogonal interpolating refinable function vectors.

Example 4.1. Let d = r = 2 and N = 2 in Corollary 3.3. Then we have a symmetric interpolatory mask a of
type (2, 2) satisfying the sum rules of order 3 given by

a(−1) =
1

16

[
0 6
0 −1

]
, a(0) =

1
16

[
8 6
0 3

]
, a(1) =

1
16

[
0 0
8 3

]
, a(2) =

1
16

[
0 0
0 −1

]
,

with a(k) = 0 for all k ∈ Z \ {−1, 0, 1, 2}. Then we have ν2(a, 2) ≈ 1.839036. Therefore, ν∞(a, 2) > ν2(a, 2) − 1/2 ≈
1.339036 > 0. By Theorem 2.1, its associated refinable function vector φ = [φ1,φ2]

T is interpolating. Moreover, φ1(−x) =
φ1(x) and φ2(1−x) = φ2(x) for all x ∈ R. See Fig. 1 for the graph of the interpolating 2-refinable function vector φ associated
with the mask a.

Example 4.2. Let d = 3, r = 2, and S = {−2,−1, 0, 1, 2, 3} in Corollary 3.2. Then we have an interpolatory mask a of type
(3, 2) satisfying the sum rules of order 4. The mask a is supported inside [−2, 3] and is given by

a(−2) =
1

243

[
−21 0

4 0

]
, a(−1) =

1
243

[
30 60
−4 −5

]
, a(0) =

1
243

[
81 84
0 14

]
,

a(1) =
1

243

[
14 0
84 81

]
, a(2) =

1
243

[
−5 −4
60 30

]
, a(3) =

1
243

[
0 4
0 −21

]
,

with a(k) = 0 for all k ∈ Z \ {−2,−1, 0, 1, 2, 3}. Then we have ν2(a, 3) ≈ 1.348473. Therefore, ν∞(a, 3) > ν2(a, 3)− 1/2 ≈
0.848473 > 0. By Theorem 2.1, its associated refinable function vector φ = [φ1,φ2]

T is interpolating. See Fig. 2 for the graph
of the interpolating 3-refinable function vector φ associated with the mask a.
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Fig. 2. The graphs of φ1 (left) and φ2 (right) in the interpolating 3-refinable function vector φ = [φ1,φ2]
T of Example 4.2. Moreover, ν2(φ) ≈ 1.348473.

Fig. 3. The graphs of φ1 (left), φ2 (middle) and φ3 (right) in the interpolating 3-refinable function vector φ = [φ1,φ2,φ3]
T of Example 4.3. Moreover,

ν2(φ) ≈ 2.589443.

Example 4.3. Let d = r = 3 and S = {−2,−1, 0, 1, 2, 3} in Corollary 3.2. Then we have an interpolatory mask a of type
(3, 3) satisfying the sum rules of order 6. The mask a is supported inside [−2, 3] and is given by

a(−2) =
1

2187

0 −176 −175
0 55 50
0 −8 −7

 , a(−1) =
1

2187

0 280 560
0 −56 −70
0 7 8

 ,

a(0) =
1

2187

729 700 440
0 175 440
0 −14 −22

 , a(1) =
1

2187

 0 −22 −14
729 440 175

0 440 700

 ,

a(2) =
1

2187

 0 8 7
0 −70 −56

729 560 280

 , a(3) =
1

2187

0 −7 −8
0 50 55
0 −175 −176

 ,

with a(k) = 0 for all k ∈ Z \ {−2,−1, 0, 1, 2, 3}. Then we have ν2(a, 3) ≈ 2.589443. Therefore, ν∞(a, 3) > ν2(a, 3)− 1/2 ≈
2.089443 > 0. By Theorem 2.1, its associated refinable function vector φ = [φ1,φ2,φ3]

T is interpolating and belongs to
C2(R). See Fig. 3 for the graph of the interpolating 3-refinable function vector φ.

Examples of orthogonal interpolating 2-refinable function vectors with multiplicity 2 have been given in [14–16]. Next,
let us present some examples of orthogonal interpolating d-refinable function vectors.

Example 4.4. Let d = 3 and r = 2. The orthogonal and interpolatory mask a of type (3, 2) is supported inside [−2, 3] and is
given by

a(−2) =


−

17
702
−

√
17

351
0

−
8

351
+

5
√

17
702

0

 , a(−1) =


85

702
−

8
√

17
351

68
351
+

29
√

17
702

1
351
+

√
17

702
11

702
−

7
√

17
351

 ,
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Fig. 4. The graphs of φ1 (left) and φ2 (right) in the orthogonal interpolating 3-refinable function vector φ = [φ1,φ2]
T of Example 4.4. Moreover,

ν2(φ) ≈ 1.046673 and φ2(1/2− x) = φ1(x) for all x ∈ R.

a(0) =


1
3

119
351
−

11
√

17
702

0
29

702
+

4
√

17
351

 ,

a(1) =


29

702
+

4
√

17
351

0

119
351
−

11
√

17
702

1
3

 , a(2) =


11

702
−

7
√

17
351

1
351
+

√
17

702
68

351
+

29
√

17
702

85
702
−

8
√

17
351

 , a(3) =


0 −

8
351
+

5
√

17
702

0 −
17

702
−

√
17

351

 ,

with a(k) = 0 for all k ∈ Z \ {−2,−1, 0, 1, 2, 3}. The mask a satisfies the sum rules of order 2 and is an orthogonal
interpolatory mask. Then we have ν2(a, 3) ≈ 1.046673. Therefore, ν∞(a, 3) > ν2(a, 3) − 1/2 ≈ 0.546673 > 0. By
Corollary 2.2, the associated 3-refinable function vector φ = [φ1,φ2]

T associated with the mask a is interpolating and
orthogonal. See Fig. 4 for the graph of the orthogonal interpolating 3-refinable function vector φ.

Example 4.5. Let d = 2 and r = 3. The orthogonal and interpolatory masks a of type (2, 3) is supported on [−1, 2] and is
given by

a(−1) =



15
482
−

8
√

15
241

0
225
482
+

√
15

482

0 0 −

√
15

32

0 0
1

32


, a(0) =



1
2

1
482
+

15
√

15
482

0

0
15
32

1
2

0 −

√
15

32
0


,

a(1) =


0 0 0

1
482
+

15
√

15
482

0
15

482
−

15
√

15
7712

225
482
+

√
15

482
1/2 −

225
7712

+
15
√

15
482

 , a(2) =


0 0 0

0 −
15

7712
+

√
15

482
0

0
15

482
−

15
√

15
7712

0

 ,

with a(k) = 0 for k ∈ Z \ {−1, 0, 1, 2}. The mask a satisfies the sum rules of order 1 and is an orthogonal interpolatory mask
of type (2, 3). Then we have ν2(a, 2) ≈ 0.892777. Therefore, ν∞(a, 2) > ν2(a, 2) − 1/2 ≈ 0.392777 > 0. By Corollary 2.2,
the associated 2-refinable function vector φ = [φ1,φ2,φ3]

T is interpolating and orthogonal. See Fig. 5 for the graph of the
orthogonal interpolating 2-refinable function vector φ.

In passing, we mention that several examples of symmetric (interpolating) orthogonal scalar 4-refinable functions have
been reported in [4].

5. Biorthogonal multiwavelets derived from interpolating refinable function vectors

It is of interest to construct biorthogonal multiwavelets from interpolating refinable function vectors, due to their
interesting interpolation property. In this section, let us discuss how to derive biorthogonal multiwavelets from interpolating
refinable function vectors that have been investigated and constructed in this paper. To do so, let us introduce some
necessary concepts.
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Fig. 5. The graphs of φ1 (left), φ2 (middle) and φ3 (right) in the orthogonal interpolating 2-refinable function vector φ = [φ1,φ2,φ3]
T of Example 4.5.

Moreover, ν2(φ) ≈ 0.892777.

For two r×1 vectors φ and φ̃ of compactly supported functions in L2(R), we say that (φ, φ̃) is a pair of dual function vectors
(or φ̃ is a dual function vector of φ) if∫

R
φ(x− j)φ̃(x)

T
dx = δjIr, j ∈ Z. (5.1)

For two r × r matrices â and ˆ̃a of 2π-periodic trigonometric polynomials, we say that (a, ã) is a pair of dual masks (or ã is a
dual mask of a) with a dilation factor d if

d−1∑
m=0

â(ξ+ 2πm/d) ˆ̃a(ξ+ 2πm/d)
T
= Ir. (5.2)

If a is a dual mask of itself, then (5.2) becomes (2.16) and a is an orthogonal mask. Let φ and φ̃ be two compactly supported
d-refinable function vectors with masks a and ã, respectively. Assume that φ̂(0) and ˆ̃φ(0) are appropriately normalized so

that φ̂(0)
T
ˆ̃
φ(0) = 1. Then it is known that (φ, φ̃) is a pair of dual d-refinable function vectors in L2(R), if and only if, (a, ã) is a

pair of dual masks, and both ν2(a, d) > 0 and ν2(ã, d) > 0. In wavelet analysis, for a given mask a, it is of interest to construct
a dual mask ã of a such that ã can attain the sum rules of any preassigned order κ̃with a sequence ỹ, that is, ˆ̃y(0) 6= 0 and

ˆ̃y(dξ) ˆ̃a(ξ+ 2πm/d) = δm ˆ̃y(ξ)+ O(|ξ|κ̃), ξ→ 0,m = 0, . . . , d− 1. (5.3)

A systematic way, called the CBC (coset by coset) algorithm, of constructing such desirable dual masks ã has been introduced
in [5] and further developed in [1,6]. There are two key ingredients in the proposed CBC algorithm in [1,5,6]. In the following,
let us outline the main ideas of the CBC algorithm and use it to construct biorthogonal multiwavelets for the interpolating
refinable function vectors obtained in this paper.

The first key ingredient of the CBC algorithm in [1,5,6] is the following interesting fact, whose proof is given in [6], as
well as [5] for the scalar case. For the purpose of completeness, we shall provide a self-contained proof here.

Proposition 5.1. Let d be a dilation factor. Let â be an r × r matrix of 2π-periodic trigonometric polynomials such that 1 is a
simple eigenvalue of â(0) and for every j ∈ N, dj is not an eigenvalue of â(0). Suppose that ã is a dual mask of a and ã satisfies
the sum rules of order κ̃ in (5.3) with a sequence ỹ. Then up to a multiplicative constant, the values ˆ̃y

(j)
(0), j = 0, . . . , κ̃ − 1 are

uniquely determined by the mask â via the following recursive formula: ˆ̃y(0) = ˆ̃y(0)â(0)
T

and

ˆ̃y
(j)

(0) =

[
j−1∑
k=0

j!

k!(j− k)!
ˆ̃y
(k)

(0)â(j−k)(0)
T
]
[djIr − â(0)

T
]
−1, j = 1, . . . , κ̃. (5.4)

In other words, if φ is a compactly supported d-refinable function vector satisfying φ̂(dξ) = â(ξ)φ̂(ξ) and φ̂(0) 6= 0, then
ˆ̃y(ξ) = cφ̂(ξ)

T
+ O(|ξ|κ̃) as ξ→ 0 for some nonzero constant c.

Proof. By (5.2), we deduce that

ˆ̃y(dξ)
T
=

d−1∑
m=0

â(ξ+ 2πm/d) ˆ̃a(ξ+ 2πm/d)
T
ˆ̃y(dξ)

T
=

d−1∑
m=0

â(ξ+ 2πm/d) ˆ̃y(dξ) ˆ̃a(ξ+ 2πm/d)
T
.

Now by (5.3) we get

ˆ̃y(dξ)
T
= â(ξ) ˆ̃y(ξ)

T
+ O(|ξ|κ̃), ξ→ 0.
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That is, the vector ˆ̃y must satisfy

ˆ̃y(dξ) = ˆ̃y(ξ)â(ξ)
T
+ O(|ξ|κ̃), ξ→ 0. (5.5)

By Leibniz differentiation formula, it follows from (5.5) that

dj ˆ̃y
(j)

(0) = ˆ̃y
(j)

(0)â(0)
T
+

j−1∑
k=0

j!

k!(j− k)!
ˆ̃y
(k)

(0)â(j−k)(0)
T
, j = 1, . . . , κ̃.

Since 1 is a simple eigenvalue of â(0) and dj is not an eigenvalue of â(0) for all j ∈ N, now the recursive formula in (5.4) can

be easily deduced from the above relation. Moreover, the relation ˆ̃y(ξ) = cφ̂(ξ)
T
+O(|ξ|κ̃) follows directly from (5.5) and the

identity φ̂(dξ) = â(ξ)φ̂(ξ). �

By obtaining the values ˆ̃y
(j)

(0), j ∈ N ∪ {0} from a given mask a via the recursive formula in (5.4) of Proposition 5.1, the
CBC algorithm reduces the system of nonlinear equations (in terms of both ã(k), k ∈ Z and ˆ̃y

(j)
(0), j = 0, . . . , κ̃ − 1) in

(5.3) into a system of linear equations, since now ˆ̃y
(j)

(0), j = 0, . . . , κ̃− 1 are known. On the other hand, both conditions in
Eqs. (5.2) and (5.3) can be equivalently rewritten in terms of the cosets of the masks a and ã. More precisely, it is easy to
verify that (5.2) is equivalent to

d−1∑
m=0

âm(ξ) ˆ̃a
m
(ξ)

T
= d−1Ir, (5.6)

where ˆ̃a
m
(ξ) :=

∑
k∈Z ã(m+ dk)e−iξ(m+dk), and (5.3) is equivalent to

ˆ̃y(dξ) ˆ̃a
m
(ξ) = d−1 ˆ̃y(ξ)+ O(|ξ|κ̃), ξ→ 0,m = 0, . . . , d− 1. (5.7)

The second key ingredient of the CBC algorithm lies in that using Proposition 5.1, the CBC reduces the big system of linear
equations in both Eqs. (5.3) and (5.2) into small systems of linear equations using the idea of coset by coset construction and
the equations in Eqs. (5.6) and (5.7). Moreover, the CBC algorithm in [6] guarantees that as long as a possesses at least one
finitely supported dual mask, for any given positive integer κ̃, there always exists a finitely supported dual mask ã of a such
that ã satisfies the sum rules of order κ̃, see [6, Theorem 3.4] and [1,5] for more details on the CBC algorithm.

We also mention that due to Theorem 2.3, all biorthogonal multiwavelets derived from interpolating refinable function
vectors in this paper have the highest possible balancing order, that is, its balancing order matches the order of sum rules.
See [10] and references therein on balanced biorthogonal multiwavelets and balanced dual multiframelets.

In the following, let us present several examples of dual masks for some given interpolatory masks constructed in this
paper.

Example 5.2. Let d = r = 2. Let a denote the mask given in Example 4.1. By (5.4) of Proposition 5.1 with κ̃ = 3, we have

ˆ̃y(0) = [3/2, 1],
−i
1!
ˆ̃y
(1)

(0) = [0, 1/2],
(−i)2

2!
ˆ̃y
(2)

(0) = [3/136, 7/68],

where i here denotes the imaginary unit with i2
= −1. By the CBC algorithm in [6], we have a dual mask ã of a such that ã

satisfies the sum rules of order 3. The dual mask ã is supported inside [−1, 3] and is given by

ã(−1) =
1

384

[
−28 112
21 −36

]
, ã(0) =

1
384

[
216 112
−18 60

]
, ã(1) =

1
384

[
−28 0
330 60

]
,

ã(2) =
1

384

[
0 0
−18 −36

]
, ã(3) =

1
384

[
0 0

21 0

]
with ã(k) = 0 for k ∈ Z\{−1, 0, 1, 2, 3}. By calculation, we have ν2(ã, 2) ≈ 1.117992. So, the associated 2-refinable function
vectors φ and φ̃ with masks a and ã indeed satisfy the biorthogonal relation in (5.1). See Fig. 6 for the graph of the dual 2-
refinable function vector φ̃ = [φ̃1, φ̃2]

T. Note that φ̃1(−x) = φ̃1(x) and φ̃2(1− x) = φ̃2(x) for all x ∈ R.

Example 5.3. Let d = 3 and r = 2. Let a denote the mask given in Example 4.2. By (5.4) of Proposition 5.1 with κ̃ = 2, we
have

ˆ̃y(0) = [1, 1],
−i
1!
ˆ̃y
(1)

(0) = [16/387, 355/774].

By the CBC algorithm in [6], we have a dual mask ã of a such that ã satisfies the sum rules of order 2. The dual mask ã is
supported inside [−2, 3] and is given by

ã(−2) =
1

34884

[
1292 −4773
−969 1866

]
, ã(−1) =

1
34884

[
2844 9682
386 −1284

]
,
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Fig. 6. The graphs of φ̃1 (left) and φ̃2 (right) in the symmetric dual 2-refinable function vector φ̃ = [φ̃1, φ̃2]
T constructed in Example 5.2 for the

interpolating 2-refinable vector in Example 4.1. Moreover, ν2(φ̃) ≈ 1.117992 and φ̃1(−x) = φ̃1(x) and φ̃2(1− x) = φ̃2(x) for all x ∈ R.

Fig. 7. The graphs of φ̃1 (left) and φ̃2 (right) in the dual 3-refinable function vector φ̃ = [φ̃1, φ̃2]
T constructed in Example 5.3 for the interpolating

3-refinable vector in Example 4.2. Moreover, ν2(φ̃) ≈ 0.736519.

ã(0) =
1

34884

[
17496 8715
−2961 2590

]
, ã(1) =

1
34884

[
2590 −2961
8715 17496

]
,

ã(2) =
1

34884

[
−1284 386
9682 2844

]
, ã(3) =

1
34884

[
1866 −969
−4773 1292

]
with ã(k) = 0 for k ∈ Z \ {−2,−1, 0, 1, 2, 3}. By calculation, we have ν2(ã, 3) ≈ 0.736519. So, the associated 3-refinable
function vectors φ and φ̃ with masks a and ã indeed satisfy the biorthogonal relation in (5.1). See Fig. 7 for the graph of the
dual 3-refinable function vector φ̃ = [φ̃1, φ̃2]

T. Note that φ̃1(x) = φ̃2(1/2− x) for all x ∈ R.

6. Conclusions and remarks

In this paper, we present in Theorem 2.1 a complete characterization of a generalized interpolating refinable function
vector in terms of its mask. As a consequence, we have a criterion for orthogonal interpolating refinable function vectors in
Corollary 2.2. We introduce the notion of an interpolatory mask of type (d, r) and study its sum rule structure in Theorem 2.3.
We provide in Section 3 a family of interpolatory masks of type (d, r) with arbitrarily high orders of sum rules and address
in Section 5 how to construct biorthogonal multiwavelets using the CBC algorithm in [6] from the interpolatory masks of
type (d, r) obtained in this paper. Examples are given in Sections 4 and 5 to illustrate the theoretical results of this paper.

Symmetry property is one of the most important and desired properties in wavelet analysis (e.g. [2,4,7,12]). Though we
provide a family of symmetric interpolatory masks of type (2, 2) in Corollary 3.3, we did not address the symmetry properties
of a general interpolatory mask of type (d, r) and its associated refinable function vector. When the dilation factor d > 2
and the multiplicity r > 1, except for some special cases (e.g. [12]), it seems that little is known in the literature about the
connections between the symmetry property of a matrix mask and that of its associated refinable function vector. For an
interpolating refinable function vector φ = [φ1, . . . ,φr]

T with an interpolatory mask a of type (d, r), it is natural that each
function φ`, ` = 1, . . . , r, is symmetric about the point (`−1)/r, more precisely, φ`(2(`−1)/r−·) = φ`. However, for d > 2
and r > 1, it is unclear to us so far under which kind of symmetry conditions on its interpolatory mask a, the interpolating
refinable function vector φ is guaranteed to possess the desired symmetry property. That is, what is the right symmetry
condition for an interpolatory mask of type (d, r) so that its associated interpolating refinable function vector possesses
certain desired symmetry.

For the families of interpolatory masks of type (d, r) in Section 3, it is desirable that the smoothness quantity ν2(a, d)
could increase linearly with respect to the order of sum rules of the mask a (or equivalently, with respect to the length of
the support of the mask a). Though Table 1 seems to suggest that this is true for our families of interpolatory masks, we
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are unable to prove this at this moment. We shall leave these questions as well as other related problems on generalized
interpolating refinable function vectors for future study.
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