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If T1 and T2 are two singular integral operators associated with isotropic and
anisotropic homogeneity, respectively, then T1, T2 and T1 ◦ T2 are bounded on
different Hardy spaces and BMO spaces (see [7,8,12]). In our paper, we show that
these operators are actually bounded on a common Hardy space and a common
BMO space.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the classical singular integral operators and anisotropic singular integral operators
are both bounded on Lp(Rm) (1 < p < ∞). But for the endpoint spaces, this situation is changed. We have
already known that the first one is bounded on the classical isotropic Hardy spaces and isotropic BMO
spaces, and the second one is bounded on the anisotropic Hardy spaces and anisotropic BMO spaces,
respectively. These Hardy spaces and BMO spaces are essentially different. A natural question is weather
there exist a common Hardy space and a common BMO space on which these operators are all bounded.
The purpose of this paper is to answer this question. We will show that these operators are all bounded on
the product Hardy spaces Hp(Rm−1 × R) and the product BMO space BMO(Rm−1 × R).

Our results can be immediately applied to the compositions of operators with different kind of homo-
geneities which arise naturally in the ∂̄-Neumann problem. More precisely, let e(ξ) and h(ξ) be homogeneous
functions on Rm of degree 0 in the classical isotropic sense and the anisotropic sense, respectively, and smooth
away from the origin. It is well-known that the Fourier multipliers T1 defined by T̂1(f)(ξ) = e(ξ)f̂(ξ) and T2

E-mail addresses: cqtan@stu.edu.cn (C. Tan), xzhuang7@cityu.edu.hk (X. Zhuang).
1 C.T. was supported by SRF for the Doctoral Program of Higher Education (Grant No. 20104402120002).
2 X.Z. was supported by Research Grants Council of Hong Kong (Project No. CityU 108913).

0022-247X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.12.037



Author's personal copy

C. Tan, X. Zhuang / J. Math. Anal. Appl. 414 (2014) 480–487 481

given by T̂2(f)(ξ) = h(ξ)f̂(ξ) are both bounded on Lp(Rm) for 1 < p < ∞, and satisfy various other
regularity properties such as being of weak-type (1, 1). Rivieré in [14] asked the following question: Is the
composition T1 ◦ T2 still of weak-type (1, 1)? Phong and Stein in [11] answered this question affirmatively.
Recently, in [8], a new Hardy space was introduced and it was proved that the composition T1 ◦ T2 is
bounded on this new Hardy space. In [7], a new BMOcom and the Lipschitz spaces CMOp

com, 0 < p � 1
are established and it was also shown that the composition T1 ◦ T2 is bounded on them. These results are
interesting. However they make the Hardy spaces and the BMO spaces too complicated due to the existence
of too many such spaces. It is meaningful if we can find a common Hardy space and a common BMO space
on which the operators T1, T2 and T1 ◦ T2 are all bounded. Actually, we will show that the common spaces
exist and they are the product space Hp(Rm−1 × R) and the product space BMO(Rm−1 × R).

To describe our questions and our results more precisely, we begin with considering all functions and
operators defined on Rm. For x ∈ Rm, we write x = (x1, x2), where x1 ∈ Rm−1 and x2 ∈ R. We denote by
|x| = (|x1|2 + |x2|2)

1
2 and |x|h = (|x1|2 + |x2|)

1
2 . The usual norm |x| is isotropic in the sense that |tx| = t|x|

for t � 0 while the norm |x|h is non-isotropic and it induces the parabolic dilation in the sense that
|ρtx|h = t|x|h with ρt = diag(t, . . . , t, t2), t � 0. The parabolic dilation together with rotation operators
or shear operators play a crucial role in the recent development of directional multiscale representation
systems in wavelet analysis, e.g. [1,2]. These types of systems can be used to capture anisotropic features
such as curve singularities in 2D or surface singularities in 3D, etc., which leads to sparse approximation of
high-dimensional data that concentrate near low-dimensional structures; see [10] and references therein for
more details.

In this paper, the Calderón–Zygmund singular integral operators associated with isotropic homogeneity
(we refer readers to [12]) are defined as follows.

Definition 1.1. T1 is said to be a Calderón–Zygmund singular integral operator associated with isotropic
homogeneity, if T1 is bounded on L2(Rm) and T1f(x) = p.v.(K1 ∗ f)(x) with K1 ∈ C2(Rm\{0}) and
|∂α

xK1(x)| � C
|x|m+|α| for all x ∈ Rm\{0}, α ∈ Nm

0 with |α| � 1.

The Calderón–Zygmund singular integral operators associated with anisotropic homogeneity is defined
as follows.

Definition 1.2. T2 is said to be a Calderón–Zygmund singular integral operator associated with anisotropic
homogeneity, if T2 is bounded on L2(Rm) and T2f(x) = p.v.(K2 ∗ f)(x) with K2 ∈ C2(Rm\{0}) and
|∂α

x1∂
β
x2K2(x1, x2)| � C

|x|m+1+|α|+2β
h

for all x ∈ Rm\{0}, α ∈ Nm−1
0 , β ∈ N0 with |α|, |β| � 1.

Note that K1 is invariant under isotropic dilation, i.e. for all δ > 0, δmK1(δx) satisfies the same estimates
as K1. Meanwhile, K2 is invariant under anisotropic dilation, i.e. for all δ > 0, δm+1K2(δx1, δ

2x2) satisfies
the same estimates as K2. It is well known that T1 and T2 are both bounded on Lp(Rm) for 1 < p < ∞.
But for the endpoint spaces, things become different. It is known that T1 is bounded on the isotropic BMO
space and the classical isotropic Hardy space Hp(Rm) for p � 1 but p is close to 1. And T2 is bounded on
the anisotropic BMO space and the anisotropic Hardy space Hp

h(Rm) for p � 1 but p is close to 1 (see [12]).
The purpose of this paper is to show that T1 and T2 are bounded on the product Hardy spaces

Hp(Rm−1 × R) and the product BMO space BMO(Rm−1 × R). Before doing so, we first recall the defi-
nitions of the product Hardy space Hp(Rm−1 × R) and the product BMO space BMO(Rm−1 × R) (see [3]
and [6] for more details).

For j, k,N ∈ Z, we let Qj,k = {R = I × J : I, J are dyadic rectangles on Rm−1 and R with side-lengths
�(I) = 2−j and �(J) = 2−k, respectively} and Qj,k

N = Qj+N,k+N .
Given p � 1 but p is close to 1 and a function ψ ∈ S(Rm) with the support contained in the unit ball

and satisfying
∫

Rm−1 ψ(x1, x2)xα
1 dx1 =

∫
R ψ(x1, x2)xβ

2 dx2 = 0 for all 0 � |α|, |β| � Mp where Mp is a large
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integer depending on p, and
∑

j,k∈Z |ψ̂(2−jξ1, 2−kξ2)|2 = 1 for all ξ = (ξ1, ξ2) ∈ Rm−1 × R with ξ1 �= 0 and
ξ2 �= 0. The product Littlewood–Paley square function of f is defined by

gψ(f)(x) =
(∑

j,k∈Z

∣∣ψj,k ∗ f(x)
∣∣2) 1

2

,

where ψj,k(x) = 2j(m−1)+kψ(2jx1, 2kx2).
And the discrete product Littlewood–Paley square function is defined by

gdψ(f)(x) =
(∑

j,k∈Z

∑
R=I×J∈Qj,k

∣∣ψj,k ∗ f(cR)
∣∣2χR(x)

) 1
2

,

where χR(x) is the characteristic function and cR = (cI , cJ) is the center of R.
The product Hardy space Hp(Rm−1 × R) and the product BMO space BMO(Rm−1 × R) are defined as

follows.

Definition 1.3. Let f ∈ S ′ \ P, where S ′ \ P denotes the space of temper distributions modulo polynomials.

(a) We say f ∈ Hp(Rm−1 × R) if f ∈ S ′ \ P with the finite norm:

‖f‖Hp(Rm−1×R) =
∥∥gdψ(f)

∥∥
Lp(Rm).

(b) We say f ∈ BMO(Rm−1 × R) if f ∈ S ′ \ P with the finite norm:

‖f‖BMO(Rm−1×R) = sup
Ω

{(
1
|Ω|

∑
j,k∈Z

∑
R=I×J∈Qj,k

R⊂Ω

|R|
∣∣ψj,k ∗ f(cR)

∣∣2) 1
2

: Ω ⊂ Rm open sets
}
.

Now we are ready to introduce our main result and the remaining part of this paper is devoted to the
proof of this result.

Theorem 1.4. Suppose that T1 and T2 are Calderón–Zygmund singular integral operators associated
with isotropic and anisotropic homogeneity, respectively. Then T1, T2 and T1 ◦ T2 are all bounded on
BMO(Rm−1 × R) and Hp(Rm−1 × R), for 1 − 1

m < p � 1.

Throughout the paper, the notation A � B means A � CB, for some positive constant C, while the
notation A ≈ B means C1A � B � C2A for some positive constants C1, C2. And j∧ j′ means the minimum
of j and j′.

Remark 1.5. It has been known that the definitions of product Hardy space Hp(Rm−1 × R) and the prod-
uct BMO space BMO(Rm−1 × R) are the independent choice of ψ, and ‖gψ(f)‖Lp(Rm) ≈ ‖gdψ(f)‖Lp(Rm).
See [9] for more details.

2. Proof of Theorem 1.4

In [13], we have shown that T1 is bounded on the product Hardy space Hp(Rm−1 × R) and the product
BMO space BMO(Rm−1 × R). So we just need to obtain the same result for T2. The key estimate in the
proof of Theorem 1.4 is the following orthogonal estimate.
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Lemma 2.1. Suppose that φ(x) ∈ C∞
0 (Rm) with

∫
Rm−1 φ(x1, x2) dx1 =

∫
R φ(x1, x2) dx2 = 0. If K2 is a

Calderón–Zygmund convolution kernel associated with anisotropic homogeneity as given in Definition 1.2,
then

∣∣φj,k ∗ K2 ∗ φj′,k′(x)
∣∣ � Cφ2−|j−j′|2−|k−k′| 2(j∧j′)(m−1)

1 + |2j∧j′x1|m
2(k∧k′)

1 + |2k∧k′x2|2

for all x = (x1, x2) ∈ Rm−1 × R, where Cφ is a constant depending only on φ.

Based on the following two observations: (1) convolution operation is commutative, i.e., φj,k ∗ K2 ∗
φj′,k′(x) = K2 ∗ (φj,k ∗ φj′,k′)(x); (2) φj,k ∗ φj′,k′ satisfies the same estimates as φj∧j′,k∧k′ with the bound
C2−|j−j′|2−|k−k′|, Lemma 2.1 can be reduced to the following.

Lemma 2.2. Suppose that φ(x) ∈ C∞
0 (Rm) with

∫
Rm−1 φ(x1, x2) dx1 =

∫
R φ(x1, x2) dx2 = 0. If K2 is a

Calderón–Zygmund convolution kernel associated with anisotropic homogeneity as given in Definition 1.2,
then

∣∣K2 ∗ φj,k(x)
∣∣ � Cφ

2j(m−1)

1 + |2jx1|m
2k

1 + |2kx2|2

for all x = (x1, x2) ∈ Rm−1 × R, where Cφ is a constant depending only on φ.

Proof. Without loss of generality, we may assume that supp(φ) ⊂ {x: |x| � 1}. We prove the required
estimate in four cases: (I) |x1| � 2−j+1, |x2| � 2−k+1; (II) |x1| � 2−j+1, |x2| < 2−k+1; (III) |x1| < 2−j+1,
|x2| � 2−k+1; (IV) |x1| < 2−j+1, |x2| < 2−k+1.

For case (I) |x1| � 2−j+1, |x2| � 2−k+1, we first point out that:

lim
ε→0

∫∫
|x−y|h>ε

K2(x1 − y1, x2)φ
(
2jy1, 2ky2

)
dy1 dy2 = 0 (2.1)

and

lim
ε→0

∫∫
|x−y|h>ε

K2(x1, x2 − y2)φ
(
2jy1, 2ky2

)
dy1 dy2 = 0. (2.2)

The equality (2.1) can be obtained by the facts that: (1) if φ(2jy1, 2ky2) �= 0, then |x−y|2h � |x1 −y1|2 �
2−2j ; (2)

∫∫
Rm |K2(x1 − y1, x2)φ(2jy1, 2ky2)| dy1 dy2 < ∞; (3)

∫
R φ(2jy1, 2ky2) dy2 = 0. The equality (2.2)

can be obtained in a similar way.
Now by (2.1) and (2.2), we have

∣∣K2 ∗ φj,k(x)
∣∣ = 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|x−y|h>ε

[(
K2(x1 − y1, x2 − y2) −K2(x1, x2 − y2)

)

−
(
K2(x1 − y1, x2) −K2(x1, x2)

)]
φ
(
2jy1, 2ky2

)
dy1 dy2

∣∣∣∣.
Note that

(
K2(x1 − y1, x2 − y2) −K2(x1, x2 − y2)

)
−
(
K2(x1 − y1, x2) −K2(x1, x2)

)
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=
1∫

0

1∫
0

∂1
s∂

1
t

[
K2(x1 − sy1, x2 − ty2)

]
ds dt

=
1∫

0

1∫
0

m−1∑
i=1

y1iy2∂
1
x1i∂

1
x2

[
K2(x1 − sy1, x2 − ty2)

]
ds dt,

where y1 = (y11, y12, . . . , y1(m−1)). Applying the hypothesis on K2, that is, the second-order difference
smoothness condition, yields

∣∣K2 ∗ φj,k(x)
∣∣ � 2j(m−1)+k

∫
R

∫
Rm−1

|y1||y2|
(|x1|2 + |x2|)(m+4)/2

∣∣φ(2jy1, 2ky2
)∣∣ dy1 dy2

� 2−j

(|x1|2 + |x2|)m/2
2−k

(|x1|2 + |x2|)2

� 2−j

|x1|m
2−k

|x2|2
� 2j(m−1)

1 + |2jx1|m
2k

1 + |2kx2|2
.

For case (II) |x1| � 2−j+1, |x2| < 2−k+1, similar to case (I), we have

lim
ε→0

∫∫
|x−y|h>ε

K2(x1, x2 − y2)φ
(
2jy1, 2ky2

)
dy1 dy2 = 0. (2.3)

So, we can write

∣∣K2 ∗ φj,k(x)
∣∣ = 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|x−y|h>ε

(
K2(x1 − y1, x2 − y2) −K2(x1, x2 − y2)

)
φ
(
2jy1, 2ky2

)
dy1 dy2

∣∣∣∣.
Applying the mean value theorem and the hypothesis on K2 implies

∣∣K2 ∗ φj,k(x)
∣∣ � 2j(m−1)+k

∫
R

∫
|y1|�2−j

|y1|
(|x1|2 + |x2 − y2|)(m+2)/2 dy1 dy2

� 2−j

|x1|m
2k � 2j(m−1)

1 + |2jx1|m
2k

1 + |2kx2|2
.

For case (III) |x1| < 2−j+1, |x2| � 2−k+1. Similarly,

lim
ε→0

∫∫
|x−y|h>ε

K2(x1 − y1, x2)φ
(
2jy1, 2ky2

)
dy1 dy2 = 0. (2.4)

Hence, we can write

∣∣K2 ∗ φj,k(x)
∣∣ = 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|x−y|h>ε

(
K2(x1 − y1, x2 − y2) −K2(x1 − y1, x2)

)
φ
(
2jy1, 2ky2

)
dy1 dy2

∣∣∣∣.
Also apply the mean value theorem and the hypothesis on K2, we get
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∣∣K2 ∗ φj,k(x)
∣∣ � 2j(m−1)+k

∫
|y2|�2−k

∫
Rm−1

|y2|
(|x1 − y1|2 + |x2|)(m+3)/2 dy1 dy2

� 2j(m−1) 2−k

|x2|2
� 2j(m−1)

1 + |2jx1|m
2k

1 + |2kx2|2
.

For the last case (IV) |x1| < 2−j+1, |x2| < 2−k+1, let η1 ∈ C∞
0 (Rm−1) with 0 � η1(x1) � 1 and η1(x1) = 1

when |x1| � 4, and η1(x1) = 0 when |x1| � 8. Set η2(x2) similarly. Then

∣∣K2 ∗ φj,k(x)
∣∣ = 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|y|h>ε

K2(y1, y2)φ
(
2j(x1 − y1), 2k(x2 − y2)

)

× η1
(
2j(x1 − y1)

)
η2
(
2k(x2 − y2)

)
dy1 dy2

∣∣∣∣
� 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|y|h>ε

K2(y1, y2)
(
φ
(
2j(x1 − y1), 2k(x2 − y2)

)

− φ
(
2jx1, 2kx2

))
η1
(
2j(x1 − y1)

)
η2
(
2k(x2 − y2)

)
dy1 dy2

∣∣∣∣
+ 2j(m−1)+k

∣∣∣∣limε→0

∫∫
|y|h>ε

K2(y1, y2)η1
(
2j(x1 − y1)

)
η2
(
2k(x2 − y2)

)
φ
(
2jx1, 2kx2

)
dy1 dy2

∣∣∣∣.
Using the condition on K2 and the smoothness condition on φ for the above first term, and the fact that

K̂2 is bounded for the above second term, give

∣∣K2 ∗ φj,k(x)
∣∣ � 2j(m−1)+k

∫
|y2|�2−k+3

∫
|y1|�2−j+3

1
(|y1|2 + |y2|)(m+1)/2

(∣∣2jy1
∣∣+ ∣∣2ky2

∣∣) dy1 dy2

+
∣∣∣∣∫
R

∫
Rm−1

K̂2(ξ1, ξ2)η̂1
(
2−jξ1

)
η̂2
(
2−kξ2

)
dξ1 dξ2

∣∣∣∣
� 2j(m−1)+k � 2j(m−1)

1 + |2jx1|m
2k

1 + |2kx2|2
.

The proof of Lemma 2.2 is complete. �
Thanks to Lemma 2.1, the remaining steps are routine. For the convenience of readers, we complete the

proof as follows.
We introduce two lemmas needed for the proof. The first necessary lemma is the so-called discrete

Calderón’s identity. For its proof, we refer readers to [9].

Lemma 2.3. Given 0 < p � 1. Suppose that φ(x) ∈ C∞
0 (Rm) with supp(φ) ∈ {x: |x| � 1},∫

Rm−1 φ(x1, x2)xα
1 dx1 =

∫
Rn φ(x1, x2)xβ

2 dx2 = 0 for 0 � |α|, |β| � Mp,Mp is a fixed large integer depending
on p and

∑
j,k∈Z |φ̂(2−jξ1, 2−kξ2)|2 = 1 for all ξ1 �= 0 and ξ2 �= 0. For a given f ∈ L2(Rm)∩Hp(Rm−1×R),

there exist a function h ∈ L2(Rm) ∩ Hp(Rm−1 × R) and a large integer N > 0 such that f(x1, x2) =∑
j,k∈Z

∑
R∈Qj,k

N
|R|φj,k(x−cR)(φj,k∗h)(cR), where the series converges in both L2(Rm) and Hp(Rm−1×R).

Moreover, ‖f‖L2(Rm) ≈ ‖h‖L2(Rm) and ‖f‖Hp(Rm−1×R) ≈ ‖h‖Hp(Rm−1×R).

The other necessary lemma is as follows. For its proof, we refer readers to [5].
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Lemma 2.4. Suppose that m−1
m < δ � 1, F ∈ L2(Rm), j, k, j′, k′ ∈ Z and N is an integer. If I ′×J ′ ∈ Qj′,k′ ,

then for any u = (u1, u2), v = (v1, v2) ∈ I ′ × J ′, we have

∑
R=I×J∈Qj,k

N

2(j∧j′)(m−1)

(1 + 2j∧j′ |u1 − cI |)m
2(k∧k′)

(1 + 2k∧k′ |u2 − cJ |)2
∣∣F (cR)

∣∣
� C2(m−1){(j∧j′)(1−1/δ)+j/δ}2(k∧k′)(1−1/δ)+k/δ

{
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣F (cR)
∣∣2χR

)δ/2]}1/δ
(v),

where Ms is the strong maximal function.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. In [13], we have shown that T1 is bounded on the product Hardy space Hp(Rm−1×R)
and the product BMO space BMO(Rm−1 × R). So we only need to prove boundedness of T2.

Since L2(Rm) ∩Hp(Rm−1 × R) is dense in Hp(Rm−1 × R), we only need to show that

‖T2f‖Hp(Rm−1×R) � C‖f‖Hp(Rm−1×R)

for all f ∈ L2(Rm)∩Hp(Rm−1 ×R). By the definition of Hp(Rm−1 ×R), we only need to show that for any
fixed ψ, we have

∥∥gdψ(T2f)
∥∥
Lp(Rm) � C‖f‖Hp(Rm−1×R).

Note that

∣∣gdψ(T2f)(x)
∣∣2 =

∑
j′,k′∈Z

∑
R′=I′×J ′∈Qj′,k′

∣∣ψj′,k′ ∗ K2 ∗ f(cR′)
∣∣2χR′(x).

For any R′ = I ′×J ′ ∈ Qj′,k′ with x ∈ R′, we first apply Lemma 2.3, and then apply Lemma 2.1, and finally
apply Lemma 2.4 with F = ψj,k ∗ h and m−1

m < δ < p. We get

∣∣ψj′,k′ ∗ K2 ∗ f(cR′)
∣∣ �

∑
j,k∈Z

2−j(m−1)−k2−|j−j′|2−|k−k′|2(m−1){(j∧j′)(1−1/δ)+j/δ}

× 2(k∧k′)(1−1/δ)+k/δ

{
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR

)δ/2]}1/δ
(x),

where Ms is the strong maximal function.
Denote c(j, k, j′, k′) = 2−j(m−1)−k2−|j−j′|2−|k−k′|2(m−1){(j∧j′)(1−1/δ)+j/δ}2(k∧k′)(1−1/δ)+k/δ. Then

∣∣gdψ(T2f)(x)
∣∣2 �

∑
j′,k′∈Z

[∑
j,k∈Z

c
(
j, k, j′, k′

){
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR

)δ/2]}1/δ
(x)

]2
.

Note that
∑

j,k∈Z c(j, k, j′, k′) � 1 and
∑

j′,k′∈Z c(j, k, j′, k′) � 1. As a consequence, by applying the Cauchy–
Schwartz inequality, we get
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∣∣gdψ(T2f)(x)
∣∣2 �

∑
j′,k′∈Z

(∑
j,k∈Z

c
(
j, k, j′, k′

){
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR

)δ/2]}2/δ
(x)

)

�
∑
j,k∈Z

{
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR

)δ/2]}2/δ
(x).

Now, applying the Fefferman–Stein vector-valued strong maximal inequality (see [4] and [12] for more
details) on Lp/δ(�2/δ) yields∥∥T2(f)

∥∥
Hp(Rm−1×R) =

∥∥gdψ(T2f)
∥∥
Lp(Rm)

�
∥∥∥∥{∑

j,k∈Z

{
Ms

[( ∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR

)δ/2]}2/δ} 1
2
∥∥∥∥
Lp(Rm)

�
∥∥∥∥{∑

j,k∈Z

∑
R=I×J∈Qj,k

N

∣∣ψj,k ∗ h(cR)
∣∣2χR(x)

} 1
2
∥∥∥∥
Lp(Rm)

= ‖h‖Hp(Rm−1×R) � ‖f‖Hp(Rm−1×R).

Finally, by the dual argument, we get that T2 is also bounded on the product BMO space BMO(Rm−1×R).
Here we omit the details. The proof of Theorem 1.4 is complete. �
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