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1. Introduction

It is well known that the classical singular integral operators and anisotropic singular integral operators
are both bounded on LP(R™) (1 < p < oo). But for the endpoint spaces, this situation is changed. We have
already known that the first one is bounded on the classical isotropic Hardy spaces and isotropic BMO
spaces, and the second one is bounded on the anisotropic Hardy spaces and anisotropic BMO spaces,
respectively. These Hardy spaces and BMO spaces are essentially different. A natural question is weather
there exist a common Hardy space and a common BMO space on which these operators are all bounded.
The purpose of this paper is to answer this question. We will show that these operators are all bounded on
the product Hardy spaces H?(R™~! x R) and the product BMO space BMO(R™~! x R).

Our results can be immediately applied to the compositions of operators with different kind of homo-
geneities which arise naturally in the d-Neumann problem. More precisely, let e(¢) and h(€) be homogeneous
functions on R™ of degree 0 in the classical isotropic sense and the anisotropic senwpectively, and smooth

o~

away from the origin. It is well-known that the Fourier multipliers T} defined by T4 (f)(£) = e(§) f(€) and T4
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—

given by To(f)(€) = h(€)f(€) are both bounded on LP(R™) for 1 < p < oo, and satisfy various other
regularity properties such as being of weak-type (1,1). Rivieré in [14] asked the following question: Is the
composition 77 o Ty still of weak-type (1,1)? Phong and Stein in [11] answered this question affirmatively.
Recently, in [8], a new Hardy space was introduced and it was proved that the composition 77 o Ty is
bounded on this new Hardy space. In [7], a new BMO¢on and the Lipschitz spaces CMO?, ;0 < p < 1
are established and it was also shown that the composition T; o T5 is bounded on them. These results are
interesting. However they make the Hardy spaces and the BMO spaces too complicated due to the existence
of too many such spaces. It is meaningful if we can find a common Hardy space and a common BMO space
on which the operators T3, 15 and T3 o 15 are all bounded. Actually, we will show that the common spaces
exist and they are the product space HP(R™~! x R) and the product space BMO(R™~! x R).

To describe our questions and our results more precisely, we begin with considering all functions and
operators defined on R™. For z € R™, we write x = (z1,22), where 1 € R™™! and x5 € R. We denote by
2| = (|z1|2 + |22]?)2 and |#|, = (|z1]2 + |22])2. The usual norm || is isotropic in the sense that |tz = t|z|
for ¢ > 0 while the norm |x|; is non-isotropic and it induces the parabolic dilation in the sense that
\pex|p, = t|z|p with p, = diag(t,...,t,t?), t > 0. The parabolic dilation together with rotation operators
or shear operators play a crucial role in the recent development of directional multiscale representation
systems in wavelet analysis, e.g. [1,2]. These types of systems can be used to capture anisotropic features
such as curve singularities in 2D or surface singularities in 3D, etc., which leads to sparse approximation of
high-dimensional data that concentrate near low-dimensional structures; see [10] and references therein for
more details.

In this paper, the Calderén—Zygmund singular integral operators associated with isotropic homogeneity
(we refer readers to [12]) are defined as follows.

Definition 1.1. 7 is said to be a Calderéon-Zygmund singular integral operator associated with isotropic
homogeneity, if Ty is bounded on L?(R™) and Tif(z) = p.v.(K1 x f)(z) with K; € C?*(R™\{0}) and
1091C1 ()] < W% for all x € R™\{0}, a € NI with |a| < 1.

The Calderén—Zygmund singular integral operators associated with anisotropic homogeneity is defined
as follows.

Definition 1.2. 75 is said to be a Calderén—Zygmund singular integral operator associated with anisotropic
homogeneity, if Ty is bounded on L?(R™) and Tof(z) = p.v.(Ke x f)(z) with Ko € C?*(R™\{0}) and
102,08 Ko (21, 22)| < W for all z € R™\{0}, « € Nj*~!, B € Ny with |al,|8] < 1.

Note that K; is invariant under isotropic dilation, i.e. for all 6 > 0, §""/C; (dx) satisfies the same estimates
as K7. Meanwhile, Ko is invariant under anisotropic dilation, i.e. for all § > 0, ™1y (dz1, 6%22) satisfies
the same estimates as Ko. It is well known that 77 and T are both bounded on LP(R™) for 1 < p < oo.
But for the endpoint spaces, things become different. It is known that 73 is bounded on the isotropic BMO
space and the classical isotropic Hardy space HP(R™) for p < 1 but p is close to 1. And T3 is bounded on
the anisotropic BMO space and the anisotropic Hardy space H! (R™) for p < 1 but p is close to 1 (see [12]).

The purpose of this paper is to show that 77 and 75 are bounded on the product Hardy spaces
HP(R™! x R) and the product BMO space BMO(R™~! x R). Before doing so, we first recall the defi-
nitions of the product Hardy space HP(R™~! x R) and the product BMO space BMO(R™~! x R) (see [3]
and [6] for more details).

For j,k,N € Z, we let Q% = {R =1 x J: I, J are dyadic rectangles on R™~! and R with side-lengths
(1) =277 and £(J) = 27%, respectively} and Q4F = QITNA+N,

Given p < 1 but p is close to 1 and a function ¢ € S(R™) with the support contained in the unit ball
and satisfying [p,.—1 ¥(21, 22)xs dzy = wa(xl,arg)xg dzo = 0 for all 0 < |af, |8 < M, where M, is a large
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integer depending on p, and 3~ ;5 [(277€1,27F€)|2 = 1 for all £ = (£1,&) € R x R with & # 0 and
&5 # 0. The product Littlewood—Paley square function of f is defined by

3s(N@) = (3 I f(a?)f)%,

j,kEZ

where 1 (z) = 27 (M= D+ ke (2731 2k z5).
And the discrete product Littlewood—Paley square function is defined by

g2 (/)(@) = ( Y e f(cR>|2xR<as>) "

J,k€EL R=IxJEQi:k

where y () is the characteristic function and cg = (c¢r, cy) is the center of R.
The product Hardy space H?(R™~! x R) and the product BMO space BMO(R™~! x R) are defined as
follows.

Definition 1.3. Let f € &'\ P, where S’ \ P denotes the space of temper distributions modulo polynomials.
(a) We say f € HP(R™! x R) if f € 8’ \ P with the finite norm:

|’f”HP(Rm*1><R) = Hgf/l;(f)HLp(Rm)'

(b) We say f € BMOR™ ! x R) if f € S’ \ P with the finite norm:

1 2\ °* m
£l BMO@®™—1xR) = s?zp{ <W Z Z |R| |1 * f(cr)| > : 2 C R™ open sets}.

Jk€Z R=Ix JcQ’F
RCS2

Now we are ready to introduce our main result and the remaining part of this paper is devoted to the
proof of this result.

Theorem 1.4. Suppose that Ty and T are Calderon—Zygmund singular integral operators associated
with isotropic and anisotropic homogeneity, respectively. Then Ty, Ty and 17 o Ty are all bounded on
BMOR™ ! x R) and HP(R™™* x R), for 1 — L <p < 1.

Throughout the paper, the notation A < B means A < CB, for some positive constant C, while the
notation A &~ B means C1 A < B < C3A for some positive constants C7, Cs. And j A j’ means the minimum
of j and 7.

Remark 1.5. It has been known that the definitions of product Hardy space H?(R™~! x R) and the prod-
uct BMO space BMO(R™~! x R) are the independent, choice of 9, and [lgy(f)llr@m) = (195 (f)llLe@m)-
See [9] for more details.

2. Proof of Theorem 1.4
In [13], we have shown that T} is bounded on the product Hardy space HP(R™~! x R) and the product

BMO space BMO(R™™! x R). So we just need to obtain the same result for T5. The key estimate in the
proof of Theorem 1.4 is the following orthogonal estimate.
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Lemma 2.1. Suppose that ¢(x) € C3°(R™) with [p,—. ¢(x1,22)dry = [p ¢(x1,20)dxe = 0. If Ko is a
Calderon—Zygmund convolution kernel associated with anisotropic homogeneity as given in Definition 1.2,
then

9(iAF" ) (m—1) 9(kAK)
1+ ‘Qj/\j/.%‘l‘m 1+ ‘2kAk/CL'2’2

‘d)],k? * IC2 * ¢j’,k’ (x)| < C¢2_‘j_j/|2—‘k—k"\

for all x = (x1,22) € R™™1 x R, where Cy is a constant depending only on ¢.

Based on the following two observations: (1) convolution operation is commutative, i.e., ¢ * g *
bjr () = Ko x (51 * jrir)(2); (2) @)k * @jr v satisfies the same estimates as ¢jnj xar with the bound
C2-1i=3"19= k=K ' Lemma 2.1 can be reduced to the following.

Lemma 2.2. Suppose that ¢(x) € C5°(R™) with me,lqb(a:l,:vg)dxl = fR d(x1,22)dre = 0. If Ko is a
Calderon—Zygmund convolution kernel associated with anisotropic homogeneity as given in Definition 1.2,
then

o 2](m 1) 2k
< Cory 2721 1 4 |2k, |2

‘K2*¢jk

for all x = (z1,22) € R™™! x R, where Cy is a constant depending only on ¢.

Proof. Without loss of generality, we may assume that supp(¢) C {x: |z| < 1}. We prove the required
estimate in four cases: (I) |z1| = 27711, |zo| = 27F L (1) |2y | > 279FY |2o| < 27FFL; (T00) |y | < 27771,
|z2| = 27FFL (IV) |aq| < 2791, |2g| < 2 kt1,

For case (I) |zy| > 27711, |x2| > 27k+1 we first point out that:

lim // Ka(z1 — y1,22)6(27y1, 2% y2) dyr dy> = 0 (2.1)
lz—y|n>e
and
615% // ’Cg(l'l,xg — y2)¢(2jy1, Qkyz) dyl dy2 =0. (22)
lz—y|p>e€

The equality (2.1) can be obtained by the facts that: (1) if ¢(27y1, 28y2) # 0, then |z —y|2 > |21 —y1]? =
272 (2) [[gm K2(x1 — y1,22)¢(27y1, 2%ys)| dys dya < 005 (3) [ #(27y1,2y2) dy2 = 0. The equality (2.2)
can be obtained in a similar way.

Now by (2.1) and (2.2), we have

‘ICQ *¢]k } _ 2j(m 1)+k

e—0
|lz—y|n>€

lim // [(Ka(21 — y1, 2 — ya) — Ka(z1, 22 — y2))

— (Ka(z1 — y1,22) — Ka(w1,22)) (2751, 2Fy2) dys dys|.
Note that

(Ka(x1 — y1, 22 — y2) — Ka(z1, 22 — 42)) — (Ka(z1 — 41, 22) — Ka(21,22))
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8518151 [IC2(9U1 — SY1, T2 — tyg)] ds dt

3
L

o O~

Y1:y20; . Oy, [Ka (w1 — sy, m2 — tyo)] ds dt,

T2
1

o O~

7

where y1 = (y11,¥12,---,Y1(m-1))- Applying the hypothesis on Ky, that is, the second-order difference
smoothness condition, yields

K . < 2j(m—1)+k/ / |y1||y2‘ 97 ok du+ d
Ko ¢ ()| S (|x1|2+|$2|)(m+4)/2}¢( y1,2%y2) | dys dyo
R Rm-—1
277 2k
~ (e + 22 ))™/2 (|21 2 + [22])?
—j —k j(m—1) k
279 27k Y 2

Nz |™ w2 Y 1+ 202 | 1+ |2k a2

For case (II) |z1| = 277F, |ag| < 27%+1 similar to case (I), we have

lim // Ka(z1, 22 — y2)¢(27y1, 28 y2) dys dys = 0. (2.3)

e—0
‘$_y|h>€

So, we can write

|Ka * ¢ (z)| = 9i(m—1)+k

e—0
lz—y|p>e€

lim // (Ka(21 — y1, 20 — y2) — Ka(z1, 2 — y2)) 6(27y1, 2%y0) dyy dys|.

Applying the mean value theorem and the hypothesis on Ko implies

K . <2j(m1)+k/ / 9] dyy d
| 2*¢],k($)‘w (\x1\2+\x2—y2|)(m+2)/2 y1dy2

R |y1|<2-7

277 - 93 (m—1) ok
~ |.Z‘1‘m ~ 1+|2Jx1\m1+|2kx2\2

For case (II) |z1| < 277F) |xa| > 27%F1, Similarly,

lim // ICQ(.’L’l — y1,$2)¢(2jy1, 2ky2) dy1 dy2 =0. (24)

e—0
|z—y|n>e

Hence, we can write

Ko * ¢ ()| = 27(m= DTk

e—0
lz—y|n>e

R // (Ko(z1 — y1, 22 — y2) — Ka(21 — y1,22))0(27y1, 25 y2) dyn dys|.

Also apply the mean value theorem and the hypothesis on Ko, we get
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o % & < 9i(m—1)+k / / 2| dv d
| 2 X gbhk(l’)’ ~ (|3§'1 _y1|2 i ’$2|)(m+3)/2 Y1 ays

|y2|<2_kRmfl
- i(m—1 k

< gilm=1) 2 2/m~ D 2

|£C2|2 ~ 14+ |27.’L’1|m 1+ |2k$2‘2

For the last case (IV) |x1| < 279+, |23 < 27%+! let gy € C°(R™ 1) with 0 < my(21) < Land ny(2;) = 1
when |z1| < 4, and 71 (z1) = 0 when ]a:1| 8. Set m2(x2) similarly. Then

"CQ *(b]k ‘ _ 2j(m 1)+k

h@ﬁ&%MWWﬁMWWM»

e—0
ly|n>e

< 1 (27 (z1 — 1)) m2 (28 (22 — y2)) dy dyo

g i(m—1)+k

lim / Ka(y1,y2) (6(2 (21 — 1), 2" (22 — 2))

|y|n>e€

— ¢(2721,2%2) ) (27 (21 — v1) )02 (28 (2 — 2)) dyn dyo

4 2i(m—1)+k hm / Koy, y2)m (27 (z1 — 1)) m2 (28 (2 — y2)) 6(27 21, 25 22) dyy dys|.

ly|n>e

Using the condition on K2 and the smoothness condition on ¢ for the above first term, and the fact that
K is bounded for the above second term, give

. 1 .
Ko % ()| S P Hk / / T+ ooy (2] + (20 o o
ly2|<27F+3 |y, |<279+3

‘//&&@MJ@(%MW&

Rm 1
2](m71) 2k

< 2](m 1)+k <
1 + |2]£L'1|m 1 + |2k1'2|2

The proof of Lemma 2.2 is complete. O

Thanks to Lemma 2.1, the remaining steps are routine. For the convenience of readers, we complete the
proof as follows.

We introduce two lemmas needed for the proof. The first necessary lemma is the so-called discrete
Caldero6n’s identity. For its proof, we refer readers to [9].

Lemma 2.3. Given 0 < p < 1. Suppose that ¢(x) € C§°(R™) with supp(¢) € {x: |z| < 1},
me L O(xy, x0)xl doy = fRn (z1,z2) :E2 dze =0 for 0 < |a,|5| < My, M, is a fized large integer depending
onpand} ;icq 16(277¢1,27%6,)|2 = 1 for all & # 0 and & # 0. For a given f € L2(R™)NHP(R™! x R),
there exist a function h € L*(R™) N HP(R™! x R) and a large integer N > 0 such that f(xq,22) =
2. j ket ZREQ# |R|¢ji(z—cr)(¢jrxh)(cr), where the series converges in both L*(R™) and HP(R™ ™! x R).
Moreover, || f|r2@®m) = [hllL2@m) and || fl|me@m-1xr) = |7l ge@mn-1xR)-

The other necessary lemma is as follows. For its proof, we refer readers to [5].
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Lemma 2.4. Suppose that % <6< 1, FeL*(R™), j,k,j', k' € Z and N is an integer. If I' x J' € Qi"K
then for any u = (uy,us),v = (vi,v2) € I’ X J', we have

9(iAT") (m—1) o(kAK')

Z . (1 + 2j/\j'|u1 — C]|)m (1 + QkAk/‘UQ — CJ‘
R=IxJeQ%iF

)2 ‘F(CR)‘

5/2741/6
< C2<m_1){(j/\j/)(1_1/5)+j/5}2(’“”“/)(1_1/5)““/5{Ms[ Z ’F(CR)IQXR> }} (v),
R=IxJeQ%*

where My is the strong maximal function.
Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4. In [13], we have shown that T} is bounded on the product Hardy space HP(R™~! xR)

and the product BMO space BMO(R™~! x R). So we only need to prove boundedness of T5.
Since L2(R™) N HP(R™~! x R) is dense in H?(R™~! x R), we only need to show that

HT?fHHP(Rm*lX}R) < CHfHHP(Rm*lxR)

for all f € L?(R™)N HP(R™~! x R). By the definition of H?(R™~! x R), we only need to show that for any
fixed 1, we have

“gchlJ(Tzf)HLp(Rm) < C‘|fHHP(Rm*1><R)-

Note that

2XR/(LL').

FACHIGIEEY S ey Kok flerr)

JKEL R =1"xJ €Qi’ K

For any R’ = I’ x J' € Q7% with z € R’, we first apply Lemma 2.3, and then apply Lemma 2.1, and finally
apply Lemma 2.4 with F' = 1;  * h and mT_l < 40 < p. We get

[y # Ko v fler)| S 3 9—d(m=1)=ko—|j—j'|g—Ik=k'|g(m—1){(jAj")(1~1/8)+j/5}
J,kEZ

/274 1/6
y 2(k/\k’)(11/5)+k/5{Ms K Z |9k * h(cR)}zxza) ] } (2),

j.k
R=IxJeQ%

where My is the strong maximal function.
Denote c(j, k, j', k') = 273 (m=D=kg=li=i"lg=Ik=k|g(m=1){(iAj")(1=1/8)+j/6} g(kAK)(1=1/8)+k/6 " Thep

pmnePs [ ks ¥ s henfrn) |} @)
3’k €L "5,ke R=IxJeQ%}F

Note that Ej,keZ c(j, k,j' k') < 1and Zj, wez gk, 3’ k") S 1. As a consequence, by applying the Cauchy—
Schwartz inequality, we get
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in@f s 3 (X sl X |wj,k*h(cR>\2xR)6/2]}2/6(m>)

iK' € NjkeZ R=IxJeQ%F

N Z {Ms K Z |4j.1 * h(CR)‘QXR) 6/2] }2/6(53)-

JkEZ R=IxJeQ)r

Now, applying the Fefferman—Stein vector-valued strong maximal inequality (see [4] and [12] for more
details) on LP/%(¢£%/%) yields

||T2(f)”Hp(Rm*1 xR) = Hg’i(TQf)”LP(Rm)

) 5/279y2/6 %
Sl 5 nemenrn) ]}
J,kEZ R:IXJGQ‘?\}IC Lr(R™)
N H{ DD D h(CR)|2XR($)}2
L (R™)

Jk€L R=Tx Je Q%

= ||Allzr@m-1xr) S I fll P @Rm-1xR)-

Finally, by the dual argument, we get that T is also bounded on the product BMO space BMO(R™~1 xR).
Here we omit the details. The proof of Theorem 1.4 is complete. O
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