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Finding efficient directional representations is one of the most challenging and 
extensively sought problems in mathematics. Representation using shearlets recently 
receives a lot of attention due to their desirable properties in both theory and 
applications. Using the framework of frequency-based affine systems as developed 
in [16], in this paper we introduce and systematically study affine shear tight frames 
which include all known shearlet tight frames as special cases. Our results in this 
paper resolve several important questions on shearlets. We provide a complete 
characterization for an affine shear tight frame and then use it to construct smooth 
directional affine shear tight frames with all their generators in the Schwartz class. 
Though multiresolution analysis (MRA) together with filter banks is the foundation 
and key features of wavelet analysis for the fast numerical implementation of a 
wavelet transform, most papers on shearlets do not concern the underlying filter 
bank structure and its connection to MRA. In order to study affine shear tight 
frames with MRA structure, following the lines developed in [16], we introduce the 
notion of a sequence of affine shear tight frames and then we provide a complete 
characterization for such a sequence. Based on our characterizations, we present two 
different approaches, i.e., non-stationary and quasi-stationary, for the construction 
of sequences of directional affine shear tight frames with MRA structure such that all 
their generators are smooth (in the Schwartz class) and they have underlying filter 
banks. Consequently, their associated transforms can be efficiently implemented 
using filter banks and are very similar to the standard fast wavelet transform. 
Moreover, we provide concrete examples of directional affine shear tight frames 
with filter banks and apply them to the image denoising problem. Our numerical 
experiments show that our constructed directional affine shear tight frames perform 
better than known directional multiscale representation systems such as curvelets 
and shearlets for the image denoising problem.
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1. Introduction and motivation

In the era of information, everyday and everywhere, huge amount of information is acquired, processed, 
stored, and transmitted in the form of high-dimensional digital data through Internet, TVs, cell phones, 
satellites, and various other modern communication technologies. One of the main goals in today’s scientific 
research is the efficient representation and extraction of information in high-dimensional data. It is well 
known that high-dimensional data usually exhibit anisotropic phenomena due to data clustering of various 
types of structures. For example, cosmological data normally consist of many morphological distinct ob-
jects concentrated near lower-dimensional structures such as points (stars), filaments, and sheets (nebulae). 
The anisotropic features of high-dimensional data thus encode a large portion of significant information. 
Mathematical representation systems that are capable of capturing such anisotropic features are therefore 
undoubtedly the key for the efficient representation of high-dimensional data.

During the past decade, directional multiscale representation systems have become more and more popu-
lar due to their abilities of resolving anisotropic features in high-dimensional data, see [1,2,12,16,19,21,28,32]
and many references therein. Our focus in this paper is on investigation and construction of a general type 
of directional multiscale representation systems: affine shear tight frames. Such a type of directional multi-
scale representation systems has many desirable properties including directionality, multiresolution analysis 
(MRA), smooth generators, etc. Moreover, the affine shear systems have an underlying filter banks associ-
ated with the directional affine (wavelet) systems as considered in [16].

Before proceeding, let us first introduce necessary notation and definitions. Let U be a d × d real-valued 
invertible matrix. Throughout the paper we shall use the following notation:

fU ;k,n(x) = f[[U ;k,n]](x) = [[U ; k, n]]f(x) := |detU |1/2f(Ux− k)e−in·Ux, k, n, x ∈ Rd.

Here U , k, and n refer to dilation, translation, and modulation, respectively. We shall adopt the convention 
that fU ;k := fU ;k,0 and fk,n := fId;k,n with Id being the d × d identity matrix. Note that such a notation 
fU ;k,n is consistent with the usual notation ψj,k for wavelets in 1D, since ψ2j ;k = 2j/2ψ(2j · −k).

Though all the discussion and results in this paper can be carried over to any dimensions Rd with d ≥ 2, 
for simplicity of presentation, we restrict ourselves to the two-dimensional case only, which is the most 
important case in the area of directional multiscale representations. We shall use the following matrices 
throughout this paper:

E :=
[

0 1
1 0

]
, Sτ :=

[
1 τ

0 1

]
, Sτ :=

[
1 0
τ 1

]
, Aλ :=

[
λ2 0
0 λ

]
,

Bλ := (Aλ)−T =
[
λ−2 0
0 λ−1

]
, (1.1)

where τ ∈ R and λ > 1. Sτ and Sτ are the shear operations while Aλ is the dilation matrix. Define 
N0 := N ∪ {0} and define δ : Zd → R to be the Kronecker/Dirac sequence such that δ(0) = 1 and δ(k) = 0
for all k ∈ Zd\{0}.

An affine shear system is obtained by applying shear, dilation, and translation to generators at different 
scales. Note that f(Sτ ·) could be highly tilted when τ is very large for a compactly supported function f . 
To balance the shear operation, one usually considers cone-adapted systems [8,10,13,22]. A cone-adapted 
system usually consists of three subsystems: one subsystem covers the low frequency region, one subsystem 
covers the horizontal cone {ξ = (ξ1, ξ2) ∈ R2 : |ξ2/ξ1| ≤ 1}, and one subsystem covers the vertical cone 
{ξ = (ξ1, ξ2) ∈ R2 : |ξ1/ξ2| ≤ 1} in the frequency plane. Throughout the paper, ξ is used as a one- or 
two-dimensional variable for the frequency domain with ξ = (ξ1, ξ2) if ξ ∈ R2. The vertical-cone subsystem 
could be constructed to be the ‘flipped’ version of the horizontal-cone subsystem. More precisely, a function 
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ϕ ∈ L2(R2) serves as the generator for the low frequency region, a function ψ ∈ L2(R2) generates an affine 
system covering certain region of the horizontal cone in the frequency domain, and {ψj,� ∈ L2(R2) : |�| =
rj + 1, . . . , sj} is a set of generators at the scale level j that generates elements along the seamlines (i.e., 
diagonal directions {ξ ∈ R2 : ξ2/ξ1 = ±1}) to serve the purpose of tightness of the system. Note that 
ψj,�, |�| = rj + 1, . . . , sj may not come from a single generator. Define Ψj to be the set of generators in 
L2(R2) as

Ψj :=
{
ψ
(
S−�·
)

: � = −rj , . . . , rj
}
∪
{
ψj,�
(
S−�·
)

: |�| = rj + 1, . . . , sj
}
, (1.2)

where rj and sj are nonnegative integers. An affine shear system (with the initial scale J = 0) is then 
defined to be

AS
(
ϕ; {Ψj}∞j=0

)
=
{
ϕ(· − k) : k ∈ Z2} ∪ {hAj

λ;k, hAj
λE;k : k ∈ Z2, h ∈ Ψj

}∞
j=0. (1.3)

For a function f defined on R2, observe that fE;0(x, y) = f(y, x); that is, fE;0 is the ‘flipped’ version of f
along the line y = x. Note that the system {hAj

λ;k : k ∈ Z2, h ∈ Ψj} is for the high frequency region at the 

scale level j with respect to the horizontal cone, while its ‘flipped’ version {hAj
λE;k : k ∈ Z2, h ∈ Ψj} is for 

the high frequency region at the scale level j with respect to the vertical cone in the frequency plane.

1.1. Related work

In 1D, it is well known that wavelet representation systems provide optimally sparse representations for 
functions f ∈ L2(R) that are smooth except for finitely many discontinuity ‘jumps’ [5]. In high dimensions, 
wavelet representation systems could be obtained by using tensor product of 1D wavelets. However, tensor 
product real-valued wavelets usually lack directionality since they only favor certain directions such as 
the horizontal and vertical directions. Though directionality of tensor product real-valued wavelets can be 
improved by using complex wavelets [32] or complex tight framelets [17,19], the limitation of directionality 
selectivity is intrinsic in any tensor product approach and therefore, tensor product wavelets or framelets 
fail to provide optimally sparse approximation for 2D piecewise smooth functions with singularities along a 
closed smooth curve (anisotropic features). To achieve flexible directionality selectivity, additional operation 
other than dilation and translation is needed.

For a function f ∈ L1(Rd), the Fourier transform f̂ of f in this paper is defined to be

f̂(ξ) = Ff(ξ) :=
∫
Rd

f(x)e−ix·ξdx, ξ ∈ Rd,

which can be extended to square-integrable functions in L2(Rd) and tempered distributions through duality. 
Note that the Plancherel identity holds in L2(Rd): 〈f, g〉 = 1

(2π)d 〈f̂ , ̂g〉 for f, g ∈ L2(Rd), where 〈f, g〉 :=∫
Rd f(x)g(x)dx. We also define ‖f‖2

2 := 〈f, f〉. Note that f̂U ;k = f̂U−T;0,k.
Directional tight framelets in [14,16], directly built from the frequency plane, achieve directionality by 

separating the frequency plane into annulus at different scales and further splitting each annulus into 
different wedge shapes. More precisely, in the frequency domain, considering the polar coordinate (r, θ)
(i.e., (x, y) = (r cos θ, r sin θ)), one first constructs a pair {η(r), ζ(r)} of 1D scaling and wavelet functions 
in the frequency domain such that |η|2 +

∑
j∈N0

|ζ(2−j ·)|2 = 1. Then, a 2D scaling function ϕ is defined by 

ϕ̂(r, θ) := η(r), while the 2D radial wavelet function ψ is defined by ψ̂(r, θ) := ζ(r). The function ψ̂(2−j ·)
is supported on an annulus {(r, θ) : 2jc1 ≤ r ≤ 2jc2, θ ∈ [0, 2π)}. Obviously, ψ is an isotropic function. But 
directionality can be easily achieved by splitting ψ̂ in the angular direction θ with a smooth partition of 
unity αj,�(θ) for [0, 2π): 

∑sj |αj,�(θ)|2 = 1, θ ∈ [0, 2π). Generators at the scale level j is then given by 
�=1
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ψ̂j,�(r, θ) = ζ(r)αj,�(θ), � = 1, . . . , sj . The directional tight framelet systems are then obtained by applying 
the isotropic dilation M = 2I2 and translation to the generators, which result in wavelet atoms of the form 
ψj,�

Mj ;k and the whole system is a tight frame for L2(R2) with all its generators in the Schwartz class.
Although directional tight framelets can easily achieve directionality, yet they still use the isotropic 

dilation matrices. The system is thus too ‘dense’ to provide optimally sparse approximation for 2D piecewise 
C2 functions with singularity along a closed C2 curve. By using the parabolic dilation A = diag(2, 

√
2)

instead of an isotropic dilation, the curvelets introduced in [2] not only can achieve directionality selectivity, 
but also provide optimally sparse approximation for 2D piecewise C2 functions away from a closed C2 curve; 
see [2,10,25,26] for more details on the optimally sparse approximation. The curvelet atom is of the form 
ψj,�

AjRθj,�
;k with Rθj,� being a rotation operation determined by the angle θj,�. In other words, each generator 

ψj,� is attached with a dilation matrix Mj,� := AjRθj,� that is determined by both scaling and rotation.
The curvelets use parabolic scaling and rotation and can achieve both directionality and optimally sparse 

approximation. However, the rotation operation Rθ destroys the preservation of the integer lattice Z2 since 
RθZ

2 is not necessarily an integer lattice, yet the integer lattice preservation is a very much desired property 
in applications. Shearlets, introduced in [7,8,10], replace rotation Rθ by shear S�. The shear operator not 
only preserves the integer lattice S�Z

2 = Z2, but also enables a shearlet system with only a few generators; 
that is, ψj,� could come from the shear versions of several generators (even one single generator in the case 
of non-cone-adapted shearlets [9]). Let A1 := diag(4, 2) and A2 := diag(2, 4). A cone-adapted shearlet system
in [8,10] is generated by three generators ϕ (for the low frequency region), ψ1 (for the horizontal cone in the 
frequency plane), and ψ2 := ψ1(E·) (for the vertical cone in the frequency plane), through shear, parabolic 
scaling, and translation:

CSH
(
ϕ;
{
ψ1, ψ2}) =

{
ϕ(· − k) : k ∈ Z2}
∪
{
23j/2ψ1(S�Aj

1 · −k
)

: � = −2j , . . . , 2j , k ∈ Z2, j ∈ N0
}

∪
{
23j/2ψ2(S�Aj

2 · −k
)

: � = −2j , . . . , 2j , k ∈ Z2, j ∈ N0
}
. (1.4)

It is obvious that the above shearlet system is indeed a special case of the affine shear systems defined in 
(1.3) by noting that 23j/2ψ(S�Aj

1 · −k) = 23j/2ψ(S�(Aj
1 · −S−�k)) = ψ̊Aj

1;S−�k with ψ̊ := ψ(S�·). The system 
defined above in (1.4) is in general not a tight frame for L2(R2). In the case of bandlimited generators, such 
a system can be modified into a tight frame for L2(R2) by using projection techniques [10], which cut the 
seamline elements ψ1(S�Aj

1 · −k), ψ2(S�Aj
2 · −k) with � = ±2j into half pieces in the frequency domain and 

then restrict them strictly in each cone. Such projection techniques will result in non-smooth shearlets in 
the frequency domain along the seamlines: ψ1,±(S±2jAj

1 · −k), ψ2,±(S±2jAj
2 · −k).

The non-smoothness of the seamline elements breaks down the arguments in the proof of the optimally 
sparse approximation for 2D piecewise C2 functions with singularities along a closed C2 curve in [10], in 
which at least twice differentiability is needed for the shearlet atoms in the frequency domain. Recently, 
Guo and Labate in [13] proposed another type of shearlet-like construction. The idea is still the frequency 
splitting; but this time for the rectangular strip from the Fourier transform ϕ̂ of the Meyer 2D tensor 
product scaling function. The splitting is applied to ψ̂j :=

√
|ϕ̂(2−2j−2·)|2 − |ϕ̂(2−2j ·)|2. A gluing procedure 

is applied to the two pieces along the seamlines coming from different cones. With appropriate construction, 
the gluing procedure is smooth and the system in [13] consists of smooth shearlet-like atoms. However, due 
to the inconsistency of the two cones, a different dilation matrix is needed for the glued shearlet-like atom. 
We shall discuss the connections of such systems to our affine shear systems in more details in Subsection 4.4.

Though there are various constructions of shearlets available in the literature [8,10,13,22], several key 
problems remain unresolved. In particular, the following three issues:
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Q1) Existence of smooth shearlets. The cone-adapted shearlet system is obtained by applying shear, 
parabolic scaling, and translation to a few generators. To achieve tightness of the system, the shearlet 
atoms along the seamlines need to be cut into half pieces. One way to achieve smoothness is by using 
the gluing procedure as in [13]. However, the system no longer has a full shear structure and is not 
affine-like. Are there affine shear tight frames using one or a few generators?

Q2) Shearlets with MRA structure. The cone-adapted shearlets achieve directionality by using a parabolic 
dilation Aλ (in fact it essentially uses two parabolic dilations: Aλ = diag(λ2, λ) for the horizontal 
cone, and EAλE = diag(λ, λ2) for the vertical cone) and the shear matrices S�, S� while try to keep 
the generators ψj,� at all scales to be the same. In essence, directionality is achieved in a shearlet (or 
curvelet) system by using infinitely many dilation matrices so that the initial direction of the generator 
ψ is dilated and sheared (or rotated) to other directions. This is the main difficulty to build a shearlet 
system having a multiresolution structure where only a single dilation matrix is employed. It is shown 
in [20] that there is no traditional shearlet MRA {Vj}j∈Z with scaling function ϕ having nice decay 
property, where Vj = span{ϕS�Aj

λ;k : k ∈ Z2, � ∈ Ij} for some index set Ij . In this case, the space Vj

uses many (possibly infinitely many) dilation matrices. Are there MRA structures in certain setting 
for shearlet systems?

Q3) Filter bank association. Once we have an MRA for a shear system, it is then natural to ask whether 
there also exists an associated filter bank system for the shear system. [18,27] have studied the filter 
bank system with shear operation directly in the discrete setting and provide characterization for such 
a shear filter bank system. However, it is still not clear whether a filter bank system exists and can be 
naturally induced from the constructed shear system.

Recently, smooth shearlet-like tight frames have been constructed in [13] using Meyer wavelets with filters. 
The availability of filters in such shearlet systems in [13] indeed facilitates the computation of coefficients in 
a shearlet representation. However, to have a fast discrete transform similar to the traditional fast wavelet 
transform, one must have a sequence of affine shear tight frames with MRA structure and filter banks at 
every scale level [15,16]. A fast wavelet transform simply transforms between two sets of coefficients in the 
representations under a sequence of wavelet bases at two consecutive scale levels. Detailed discussion will 
be given in Subsection 4.4 about the connections and differences of our constructions in this paper with 
other constructions in [8,10,13].

1.2. Our contributions

In this paper, since shear operation has many nice properties in both theory (optimally sparse approx-
imation, rich group structures, etc., see [23,25]) and applications (edge detection, inpainting, separation, 
etc., see [11,12,21,24]), we shall focus on the construction of directional multiscale representation systems 
with shear operation: affine shear systems. Along the way, we will focus on the above issues as discussed in 
Q1–Q3.

For smoothness, we show that by using one inner smooth generator ψ and only a few smooth boundary 
generators ψj,� (at most 8 boundary generators in total for each scale level j and they are actually generated 
by only 2 generators through shear and ‘flip’ for the non-stationary construction), we can indeed construct 
smooth affine shear tight frames with all generators in the Schwartz class. In addition, in this paper, we study 
sequences of affine shear systems. We show that a sequence of affine shear tight frames naturally induces 
an MRA structure. We would like to point out here that almost all existing approaches and constructions 
of shearlets [8,10,13] study only one shear system, while it is of fundamental importance to investigate 
sequences of shear systems as discussed in [15,16].

We propose two approaches for the construction of sequences of smooth affine shear tight frames. One 
is non-stationary construction and the other is quasi-stationary construction. The function ϕj for the non-
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stationary construction is different at different scale levels j, while the quasi-stationary construction has a 
fixed scaling function ϕj = ϕ. These two approaches actually share the similar idea of frequency splitting 
as that for the construction of directional tight framelets: at the scale level j, a smooth 2D wavelet function 
ωj = (|ϕ̂j+1(λ−2·)|2−|ϕ̂j |2)1/2 is constructed; then a smooth partition of unity γj,�, � = 1, . . . , sj for R2\{0}
such that 

∑sj
�=1 |γj,�|2 = 1 is created using shear operations for two cones instead of rotation for the case of 

directional tight framelets [16] or curvelets [2]; eventually, generators ψ̂j,� in the frequency domain at the 
scale level j are obtained by applying γj,� to ωj .

By carefully designing the function ωj , we show that we can indeed generate a smooth affine shear tight 
frame (or a sequence of affine shear tight frames), which contains a subsystem (or a sequence of subsystems) 
that is generated by only one generator. In fact, for the non-stationary case, we will see that ψj,� = ψ for 
all � except those � with respect to seamline elements (at most 8 in total and they can be generated by only 
2 elements). In other words, the shear operations in the non-stationary construction can reach arbitrarily 
close to the seamlines. For the quasi-stationary construction, we will see that ψj,� = ψ for a total number of 
� that is proportional to λj . In this case, the shear operators in each cone are restricted inside an area with 
a fixed opening angle. We shall discuss these two types of constructions in Section 4 with more details.

The non-stationary construction and quasi-stationary construction induce two types of MRA structure: 
non-stationary MRA and stationary MRA. Both of these two types of MRAs are the traditional wavelet 
MRAs in the sense that the space Vj is generated by the function (ϕ or ϕj) using a fixed dilation matrix M =
λ2I2. On the other hand, the space Wj is generated by ψ and ψj,� using many dilation matrices determined 
by shears and parabolic scalings. We show that such types of constructions have a very close relation with 
the directional tight framelets developed in [14,16]. By a simple modification, we show that the construction 
of directional tight framelets developed in [14,16] using tensor product on the polar coordinate can be 
easily adapted to the setting of Cartesian coordinate under the cone-adapted setting. For the directional 
tight framelets, it is natural and easy to build a directional tight frame with MRA structure and with 
an underlying filter bank. We show that certain affine shear tight frames can be regarded as a subsystem 
of certain directional tight framelets. Therefore, such affine shear tight frames have an inherited MRA 
structure and filter banks from the corresponding directional tight framelets. This observation implies 
that the transform of such affine shear tight frames can be implemented through the filter banks of their 
corresponding directional tight framelets.

1.3. Contents

The structure of this paper is as follows. In Section 2, we shall provide a characterization of an affine 
shear system to be a tight frame in L2(R2). Based on the characterization, simple characterization conditions 
can be obtained for affine shear systems with nonnegative generators in the frequency domain. Then, we 
shall present a toy example of bandlimited affine shear tight frames generated by Shannon-like functions 
(characteristic functions in the frequency domain). In Section 3, since sequences of affine shear systems play 
a very important role in our study of the MRA structure of affine shear systems, we shall characterize a 
sequence of affine shear systems to be a sequence of affine shear tight frames for L2(R2). Correspondingly, 
simple characterization conditions on sequences of affine shear tight frames with nonnegative generators in 
the frequency domain shall be given. Based on the characterization results, in Section 4, we provide details 
for the construction of smooth affine shear tight frames with all generators in the Schwartz class. Two 
approaches shall be introduced, one is the non-stationary construction and the other is the quasi-stationary 
construction. The connection of our construction of affine shear systems to other existing shear systems 
shall also be addressed. In Section 5, we shall investigate the relation between our affine shear systems 
and the directional tight framelets in [14,16]. By modifying the generators for directional tight framelets, 
we shall construct cone-adapted directional tight framelets, with which a natural filter bank is associated. 
We shall show that for Aλ with an integer λ > 1, an affine shear tight frame is in fact a subsystem of 
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a cone-adapted directional tight framelet and therefore an affine shear system has also an inherited filter 
bank. In Section 6 we shall discuss how to construct a particular family of smooth quasi-stationary affine 
shear tight frames with MRA structure through the construction of directional tight framelet filter banks. 
Numerical implementation of our affine shear tight frames, its application to image denoising, as well as 
performance comparison to curvelets and shearlets will be discussed in Section 6. Some extension and 
discussion shall be given in Section 7. Some proofs are postponed to Section 8.

2. Affine shear tight frames

Affine systems and their properties have been studied by many researchers, e.g., see [4,6,14–16,31]. In this 
section we introduce and characterize affine shear tight frames. Based on the characterization, we show that 
simple characterization conditions could be obtained for affine shear tight frames with generators being 
nonnegative in the frequency domain. To prepare our study of smooth affine shear tight frames in later 
sections, we shall present a toy example of bandlimited affine shear tight frames at the end of this section.

For AS(ϕ; {Ψj}∞j=0) given as in (1.3) with Ψj being given as in (1.2), we define the following functions:

Ik
ϕ(ξ) := ϕ̂(ξ)ϕ̂(ξ + 2πk), k ∈ Z2, ξ ∈ R2;

Ik
Ψj

(ξ) :=
sj∑

�=−sj

ψ̂j,�(S�ξ)ψ̂j,�
(
S�(ξ + 2πk)

)
, k ∈ Z2, ξ ∈ R2, ψj,� = ψ for |�| ≤ rj ;

Ik
ϕ(ξ) = Ik

Ψj
(ξ) := 0, k ∈ R2\Z2, ξ ∈ R2. (2.1)

We say that AS(ϕ; {Ψj}∞j=0) is an affine shear tight frame for L2(R2) if all generators {ϕ} ∪{Ψj}∞j=0 ⊆ L2(R2)
and

‖f‖2
2 =
∑
k∈Z2

∣∣〈f, ϕ(· − k)
〉∣∣2 +

∞∑
j=0

∑
h∈Ψj

∑
k∈Z2

(∣∣〈f, hAj
λ;k〉
∣∣2 +

∣∣〈f, hAj
λE;k〉
∣∣2) ∀f ∈ L2

(
R2). (2.2)

The analysis of AS(ϕ; {Ψj}∞j=0) often takes place in the frequency domain. Since we shall apply the results 
from [16], following [15,16], we define a frequency-based affine shear system to be

FAS
(
ϕ̂; {Ψ̂j}∞j=0

)
=
{
ϕ̂0,k : k ∈ Z2} ∪ {hBj

λ;0,k,hBj
λE;0,k : k ∈ Z2,h ∈ Ψ̂j

}∞
j=0,

where Ψ̂j := {ĥ : h ∈ Ψj}. Observe that f̂U ;k = f̂U−T;0,k. Within the framework of tempered distributions, 
it is straightforward to see that FAS(ϕ̂; {Ψ̂j}∞j=0) is just the image of AS(ϕ; {Ψj}∞j=0) under the Fourier 
transform. The word frequency-based here simply means that all discussions take place in the frequency 
domain and it is not a synonym at all for the word bandlimited (i.e., compactly supported in the frequency 
domain). As argued in [15,16], it is more convenient and important to study the frequency-based system 
FAS(ϕ̂; {Ψ̂j}∞j=0) than the spatially-defined system AS(ϕ; {Ψj}∞j=0). Since we are only interested in affine 

shear tight frames in this paper, due to the Plancherel identity 〈f, g〉 = 1
(2π)2 〈f̂ , ̂g〉 for f, g ∈ L2(R2), it is 

straightforward to check [15,16] that AS(ϕ; {Ψj}∞j=0) is an affine shear tight frame for L2(R2) if and only if 
FAS(ϕ̂; {Ψ̂j}∞j=0) is a frequency-based affine shear tight frame for L2(R2), that is, {ϕ̂} ∪ {Ψ̂j}∞j=0 ⊆ L2(R2)
and

(2π)2‖f‖2
2 =
∑
k∈Z2

∣∣〈f , ϕ̂0,k〉
∣∣2 +

∞∑
j=0

∑
̂
∑
k∈Z2

(∣∣〈f ,hBj
λ;0,k〉

∣∣2 +
∣∣〈f ,hBj

λE;0,k〉
∣∣2) ∀f ∈ L2

(
R2).
h∈Ψj
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For the convenience of the reader, in this paper we state all results in the spatial domain and try to avoid 
the direct appearance of frequency-based systems. However, to better understand our analysis and proofs 
in this paper, it is quite helpful to keep in mind the close relations of an affine shear system AS(ϕ; {Ψj}∞j=0)
with the frequency-based affine shear system FAS(ϕ̂; {Ψ̂j}∞j=0).

We now characterize the system in (1.3) to be an affine shear tight frame. We have the following charac-
terization.

Theorem 1. Let AS(ϕ; {Ψj}∞j=0) be defined as in (1.3). Define Λ :=
⋃∞

j=0([A
j
λZ

2] ∪ [EAj
λZ

2]). Then 
AS(ϕ; {Ψj}∞j=0) is an affine shear tight frame for L2(R2) if and only if

I0
ϕ(ξ) +

∞∑
j=0

[
I0
Ψj

(
Bj
λξ
)

+ I0
Ψj

(
Bj
λEξ
)]

= 1, a.e. ξ ∈ R2 (2.3)

and

Ik
ϕ(ξ) +

∞∑
j=0

[
IBj

λk
Ψj

(
Bj
λξ
)

+ IBj
λEk

Ψj

(
Bj
λEξ
)]

= 0, a.e. ξ ∈ R2, k ∈ Λ\{0}, (2.4)

where the sum in (2.3) converges absolutely and the infinite sum in (2.4) is finite for almost every ξ ∈ R2.

Proof. Since λ > 1, the set Br(0) ∩ Λ is finite for any ball Br(0) with radius r > 0. Hence, Λ has no 
accumulation point. Moreover,{

j ∈ N ∪ {0} : Bj
λk ∈ Z2 or Bj

λEk ∈ Z2} is a finite set for every k ∈ Λ\{0}, (2.5)

since limj→∞ Bj
λk = 0 and limj→∞ Bj

λEk = 0. Now the claim follows directly from [16, Theorem 11 and 
Corollary 12]. �

When all generators ϕ, ψ, ψj,� are nonnegative in the frequency domain; that is ϕ̂ ≥ 0, ψ̂ ≥ 0, and ψ̂j,� ≥ 0
for all j, �, the characterization in Theorem 1 becomes

Corollary 1. Let AS(ϕ; {Ψj}∞j=0) be defined as in (1.3). Suppose

ĥ(ξ) ≥ 0, a.e. ξ ∈ R2, ∀h ∈ {ϕ} ∪ {Ψj}∞j=0. (2.6)

Then AS(ϕ; {Ψj}∞j=0) is an affine shear tight frame for L2(R2) if and only if

∣∣ϕ̂(ξ)
∣∣2 +

∞∑
j=0

∑
h∈Ψj

(∣∣ĥ(Bj
λξ
)∣∣2 +

∣∣ĥ(Bj
λEξ
)∣∣2) = 1 (2.7)

for a.e. ξ ∈ R2 and

ĥ(ξ)ĥ(ξ + 2πk) = 0, a.e. ξ ∈ R2, ∀k ∈ Z2\{0}, and ∀h ∈ {ϕ} ∪ {Ψj}∞j=0. (2.8)

Proof. Obviously, (2.3) is equivalent to (2.7). When all generators are nonnegative in the frequency domain, 
(2.4) is equivalent to (2.8). Now the claim follows directly from Theorem 1. �

By Corollary 1, we see that when all generators are nonnegative in the frequency domain, condition (2.7)
is essentially saying that a partition of unity on the frequency plane is required for the system AS(ϕ; {Ψj}∞j=0)
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Fig. 1. Frequency tiling of AS(ϕ; {Ψj}∞
j=0) generated by functions in (2.9) and (2.10) with λ = 2. Inner rectangle: ϕ̂. Middle rectangle: 

ψ̂, ψ̂0,−1(S−1·), ̂ψ0,+1(S1·) and their flipped versions. Outer rectangle: ψ̂(S�B2·), � = −1, 0, 1, ψ̂1,−2(S−2B2·), ̂ψ1,+2(S2B2·) and 
their flipped versions.

to be a tight frame for L2(R2). Condition (2.8) says that each generator in the frequency domain should 
not overlap with its 2π-shifted version. In summary, the characterization in Theorem 1 is simplified to a 
partition of unity condition and a non-overlapping condition.

To prepare for our study of smooth affine shear tight frames in later sections, we next give a simple exam-
ple of bandlimited affine shear tight frames whose generators are characteristic functions in the frequency 
domain.

Let λ > 1 and define �λj := �λj − 1/2� + 1. Choose 0 < ρ ≤ 1. Let

Q :=
{
ξ ∈ R2 : −1/2 ≤ ξ2/ξ1 ≤ 1/2, |ξ1| ∈ (λ−2ρπ, ρπ]

}
,

Qj,+ :=
{
ξ ∈ R2 : −1/2 ≤ ξ2/ξ1 ≤ λj − �λj , |ξ1| ∈ (λ−2ρπ, ρπ]

}
,

Qj,− :=
{
ξ ∈ R2 : −λj + �λj ≤ ξ2/ξ1 ≤ 1/2, |ξ1| ∈ (λ−2ρπ, ρπ]

}
.

Define

ϕ̂ := χ[−λ−2ρπ,λ−2ρπ]2 , ψ̂ := χQ, ψ̂j,�λj := χQj,− , ψ̂j,−�λj := χQj,+ . (2.9)

Let

Ψj :=
{
ψ
(
S−�·
)

: � = −�λj + 1, . . . , �λj − 1
}
∪
{
ψj,�λj

(
S−�λj ·

)
, ψj,−�λj

(
S�λj ·

)}
. (2.10)

Using Corollary 1, we have the following result whose proof will be given in Section 8.

Corollary 2. Let AS(ϕ; {Ψj}∞j=0) be defined as in (1.3) with ϕ and Ψj being given as in (2.9) and (2.10). 
Then AS(ϕ; {Ψj}∞j=0) is an affine shear tight frame for L2(R2).

See Fig. 1 for an illustration of AS(ϕ; {Ψj}∞j=0) with λ = 2. One of the main goals of this paper is to 
construct smooth affine shear tight frames that in certain sense can be regarded as the smoothened version 
(in the frequency domain) of AS(ϕ; {Ψj}∞j=0) in Corollary 2.

3. Sequences of affine shear tight frames

Most current papers in the literature have investigated only one single affine system. However, to have 
MRA structure, as argued in [15,16], it is of fundamental importance to study a sequence of affine systems. 
In order to study the MRA structure of affine shear systems, we next study sequences of affine shear systems. 
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We first characterize a sequence of affine shear systems to be a sequence of affine shear tight frames for 
L2(R2). Then, corresponding to Corollary 1, a simple characterization will be given for a sequence of affine 
shear tight frames with generators being nonnegative in the frequency domain. For λ �= 0, we define the 
following 2 × 2 matrices

Mλ := λ2I2, Nλ := M−T
λ = λ−2I2, and Dλ := diag(1, λ). (3.1)

We shall use Mλ with λ > 1 as the dilation matrix for the underlying MRA of the affine shear systems in 
this paper. Let J be an integer. Let ϕj, ψ, ψj,�, |�| = rj + 1, . . . , sj , j ≥ J be functions in L2(R2). Let Ψj

be defined as in (1.2) and Aλ, Bλ, S�, S�, E be defined as in (1.1). An affine shear system ASJ(ϕJ ; {Ψj}∞j=J)
(with the initial scale J) is then defined to be

ASJ

(
ϕJ ; {Ψj}∞j=J

)
:=
{
ϕJ

MJ
λ;k : k ∈ Z2} ∪ {hAj

λ;k, hAj
λE;k : k ∈ Z2, h ∈ Ψj

}∞
j=J

. (3.2)

Considering all integers J ≥ J0 for some integer J0, we then can define a sequence ASJ(ϕJ ; {Ψj}∞j=J), 
J ≥ J0 of affine shear systems. We denote by D(Rd) the linear space of all compactly supported C∞ (test) 
functions with the usual topology and recall that Bλ = (Aλ)−T and Nλ = (Mλ)−T. We have the following 
characterization for a sequence of affine shear systems ASJ(ϕJ ; {Ψj}∞j=J), J ≥ J0 to be a sequence of affine 
shear tight frames for L2(R2).

Theorem 2. Let J0 be an integer and ASJ (ϕJ ; {Ψj}∞j=J) be defined as in (3.2) with integers J ≥ J0. Then 
the following statements are equivalent to each other.

(1) ASJ(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2), i.e., all generators are from L2(R2) and 
for all f ∈ L2(R2),

‖f‖2
2 =
∑
k∈Z2

∣∣〈f, ϕJ
MJ

λ;k
〉∣∣2 +

∞∑
j=J

∑
h∈Ψj

∑
k∈Z2

(∣∣〈f, hAj
λ;k〉
∣∣2 +

∣∣〈f, hAj
λE;k〉
∣∣2) (3.3)

for every integer J ≥ J0.
(2) The following identities hold: for all f̂ ∈ D(R2) and for all integers j ≥ J0

lim
j→∞

∑
k∈Z2

∣∣〈f, ϕj

Mj
λ;k

〉∣∣2 = ‖f‖2
2 (3.4)

and ∑
k∈Z2

∣∣〈f, ϕj+1
Mj+1

λ ;k

〉∣∣2 =
∑
k∈Z2

∣∣〈f, ϕj

Mj
λ;k

〉∣∣2 +
∑
h∈Ψj

∑
k∈Z2

(∣∣〈f, hAj
λ;k〉
∣∣2 +

∣∣〈f, hAj
λE;k〉
∣∣2). (3.5)

(3) The following identities hold:

lim
j→∞

〈∣∣ϕ̂j
(
Nj

λ·
)∣∣2,h〉 = 〈1,h〉 ∀h ∈ D

(
R2) (3.6)

and for all integers j ≥ J0,

INj
λk

ϕj

(
Nj

λξ
)

+
(
IBj

λk
Ψj

(
Bj
λξ
)

+ IBj
λEk

Ψj

(
Bj
λEξ
))

= INj+1
λ k

ϕj+1

(
Nj+1

λ ξ
)

(3.7)

for a.e. ξ ∈ R2, k ∈ ([Mj
λZ

2] ∪ [Mj+1
λ Z2] ∪ [Aj

λZ
2] ∪ [EAj

λZ
2]), where Ik

ϕj , Ik
Ψj

are similarly defined as in 
(2.1).
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Proof. The claim follows directly from [16, Theorem 13 and Corollary 12]. Since this result plays a central 
role in this paper, for the convenience of the reader, we provide a proof here by following the lines developed 
in [16, Theorem 13].

Note that by our assumption on Mλ and Aλ, it is easy to show that{
j ∈ Z : j ≥ J0,

[
Nj

λBc(0)
]
∩ Z2 �= {0}

}
is a finite set for every c ∈ [1,∞). (3.8)

(1)⇒(2). Consider (3.3) with two consecutive J and J + 1 with J ≥ J0. Then the difference gives (3.5). 
Now by (3.5), it is easy to deduce that,

∑
k∈Z2

∣∣〈f, ϕJ ′

MJ′
λ ;k

〉∣∣2 =
∑
k∈Z2

∣∣〈f, ϕJ
MJ

λ;k
〉∣∣2 +

J ′−1∑
j=J

∑
h∈Ψj

∑
k∈Z2

(∣∣〈f, hAj
λ;k〉
∣∣2 +

∣∣〈f, hAj
λE;k〉
∣∣2) ∀J ′ ≥ J. (3.9)

Therefore, by (3.3) and letting J ′ → ∞, we see that (3.4) holds.
(2)⇒(1). By (3.5), we deduce that (3.9) holds. Letting J ′ → ∞ and in view of (3.4), we conclude that 

(3.3) holds.
(2)⇔(3). By [16, Lemma 10], we can show that (3.5) is equivalent to∫

R2

∑
k∈Λj

f̂(ξ)f̂(ξ + 2πk)
([
INj

λk
ϕj

(
Nj

λξ
)

+ IBj
λk

Ψj

(
Bj
λξ
)

+ IBj
λEk

Ψj

(
Bj
λEξ
)]

− INj+1
λ k

ϕj+1

(
Nj+1

λ ξ
))
dξ = 0, (3.10)

where Λj = [Mj
λZ

2] ∪ [Mj+1
λ Z2] ∪ [Aj

λZ
2] ∪ [EAj

λZ
2]. Since Mλ = λ2I2 and Aλ = diag(λ2, λ) with λ > 1, we 

see that the lattice Λj is discrete. By the same argument as in the proof of [16, Theorem 13], we see that 
(3.10) is equivalent to (3.7).

By [16, Lemma 10] and the Plancherel identity 〈f, g〉 = 1
(2π)2 〈f̂ , ̂g〉 for f, g ∈ L2(R2), we see that (3.4) is 

equivalent to

lim
j→∞

∫
R2

∑
k∈[Mj

λZ
2]

f̂(ξ)f̂(ξ + 2πk)INj
λk

ϕj

(
Nj

λξ
)

= ‖f̂‖2
2 ∀f̂ ∈ D

(
R2). (3.11)

Since f̂ ∈ D(R2) is compactly supported, there exists c > 0 such that f̂(ξ)f̂(ξ + 2πk) = 0 for all ξ ∈ R2

and |k| ≥ c. By (3.8), there exists J ′′ ≥ J0 such that f̂(ξ)f̂(ξ + 2πk) = 0 for all ξ ∈ R2, k ∈ [Mj
λZ

2]\{0}, 
and j ≥ J ′′. Consequently, for j ≥ J ′′, (3.11) becomes

lim
j→∞

∫
R2

∣∣f̂(ξ)
∣∣2I0

ϕj

(
Nj

λξ
)

= ‖f̂‖2
2 ∀f̂ ∈ D

(
R2),

which is equivalent to (3.6). �
As argued in [15,16], the relation in (3.5) is critical for a fast transform algorithm. If all elements ϕ̂j , ψ̂, ψ̂j,�

are nonnegative, we have the following simple characterization (also see [16, Corollary 18]):

Corollary 3. Let J0 be an integer and ASJ(ϕJ ; {Ψj}∞j=J ) be defined as in (3.2) with J ≥ J0. Suppose that

ĥ ≥ 0 for all h ∈
{
ϕj : j ≥ J0

}
∪ {Ψj}∞j=J0

. (3.12)

Then, for all integers J ≥ J0, ASJ(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2) if and only if
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ĥ(ξ)ĥ(ξ + 2πk) = 0, a.e., ξ ∈ R2, k ∈ Z2\{0} and h ∈
{
ϕj : j ≥ J0

}
∪ {Ψj}∞j=J0

, (3.13)∣∣ϕ̂j+1
(
Nj+1

λ ξ
)∣∣2 =

∣∣ϕ̂j
(
Nj

λξ
)∣∣2 +

∑
h∈Ψj

(∣∣ĥ(Bj
λξ
)∣∣2 +

∣∣ĥ(Bj
λEξ
)∣∣2), a.e., ξ ∈ R2, j ≥ J0, (3.14)

and (3.6) holds.

Proof. When (3.12) holds, by item (3) of Theorem 2, for k ∈ Z2\{0}, (3.7) is equivalent to (3.13). For k = 0, 
(3.7) is equivalent to (3.14). Together with the condition (3.6) and by item (3) of Theorem 2, the claim 
follows from the equivalence between item (1) and item (3) of Theorem 2. �
The condition in (3.6) can be further simplified as in the following lemma.

Lemma 1. Suppose that there exist two positive numbers c and C such that

∣∣ϕ̂j(ξ)
∣∣ ≤ C, a.e. ξ ∈ [−c, c]2 and ∀j ≥ J0. (3.15)

Assume that g(ξ) := limj→∞ |ϕ̂j(Nj
λξ)|2 exists for almost every ξ ∈ R2. Then (3.6) holds if and only if 

g(ξ) = 1, a.e. ξ ∈ R2.

Proof. Given h ∈ D(R2). Since h has compact support and N−1
λ = Mλ is expansive, there exists J ∈ N

such that |ϕ̂j(Nj
λξ)|2|h(ξ)| ≤ C2|h(ξ)| for all j ≥ J and ξ ∈ R2. Since h ∈ L1(R2), by Lebesgue Dominated 

Convergence Theorem, we have limj→∞〈|ϕ̂j(Nj
λ·)|2, h〉 = 〈limj→∞ |ϕ̂j(Nj

λ·)|2, h〉 = 〈g, h〉. Now it is trivial 
to see that (3.6) holds if and only if 〈g, h〉 = 〈1, h〉 for all h ∈ D(R2), which is equivalent to g(ξ) = 1 for 
almost every ξ ∈ R2. �

Consider the toy example in Corollary 2. Define ϕj := ϕ and Ψj := {ψ(S−�·) : � = −�λj + 1, . . . , �λj −
1} ∪ {ψj,±�λj (S∓�λj ·)} with ψ, ψj,±�λj being constructed as in Corollary 2. Then condition (3.6) holds by 
Lemma 1 since ϕj satisfies (3.15) and g(ξ) = limj→∞ |ϕ̂j(Nj

λξ)|2 = 1 a.e., ξ ∈ R2. Condition (3.13) directly 
follows from the proof of Corollary 2 (see Section 8). Condition (3.14) holds by our construction. Therefore, 
by Corollary 3, ASJ (ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2) for any integer J ≥ 0.

A sequence of affine shear tight frames naturally induces an MRA structure {Vj}∞j=J0
with Vj :=

span{ϕj(Mj
λ · −k) : k ∈ Z2}. But so far, the generators in the above toy example and its induced se-

quence of systems are discontinuous in the frequency domain. In the next section, we shall focus on the 
construction of smooth affine shear tight frames for L2(R2) in the Schwartz class that have many desir-
able properties. We shall show that not only our systems can have smooth generators, but also have shear 
structure and more importantly, an MRA structure could be deduced from such type of systems.

4. Construction of smooth affine shear tight frames

In this section we shall provide two types of constructions of smooth affine shear tight frames: one is 
non-stationary construction and the other is quasi-stationary construction. Both these two types of con-
structions use the idea of normalization in the frequency domain. In essence, we first construct a smooth 
affine shear frame for L2(R2) and then a normalization procedure is applied to such a frame. The non-
stationary construction uses different functions ϕj for different scale levels j, while the quasi-stationary 
construction employs a single function ϕ for every scale level. We first need some auxiliary results and then 
provide details on the two types of constructions.
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Fig. 2. Graphs of αλ,t,ρ (dotted line), αλ,t,ρ(λ−2·) (solid line), and βλ,t,ρ (dashed-dot line) for λ = 2 and ρ = t = 1. Note that 
βλ,t,ρ overlaps with α(λ−2·) for ξ ≥ λ−2ρπ.

4.1. Auxiliary results

We shall use a function ν ∈ C∞(R) such that ν(x) = 0 for x ≤ −1, ν(x) = 1 for x ≥ 1, and |ν(x)|2 +
|ν(−x)|2 = 1 for all x ∈ R. There are many choices of such functions. For example, as in [14], we define 
f(x) := e−1/x2 for x > 0 and f(x) := 0 for x ≤ 0, and let g(x) :=

∫ x
−1 f(1 + t)f(1 − t)dt. Define

ν(x) := g(x)√
|g(x)|2 + |g(−x)|2

, x ∈ R. (4.1)

Then ν ∈ C∞(R) is a desired function. Using such a function ν, we now construct our building blocks 
αλ,t,ρ, βλ,t,ρ of Meyer-type scaling and wavelet functions with λ > 1, 0 < t ≤ 1, and 0 < ρ ≤ λ2 as follows 
(see Fig. 2):

αλ,t,ρ(ξ) :=

⎧⎨⎩
ν( ξ+c

ε1
) if ξ < −c + ε,

1 if − c + ε ≤ ξ ≤ c− ε,

ν(−ξ+c
ε ) if ξ > c− ε,

βλ,t,ρ(ξ) :=
(∣∣αλ,t,ρ

(
λ−2ξ

)∣∣2 − ∣∣αλ,t,ρ(ξ)
∣∣2)1/2, (4.2)

where c = λ−2(1 − t/2)ρπ and ε = λ−2tρπ/2. Then αλ,t,ρ, βλ,t,ρ ∈ C∞
c (R), where C∞

c (R) denotes the linear 
space consisting of all compactly supported functions in C∞(R). Moreover,

suppαλ,t,ρ =
[
−λ−2ρπ, λ−2ρπ

]
and suppβλ,t,ρ =

[
−ρπ,−λ−2(1 − t)ρπ

]
∪
[
λ−2(1 − t)ρπ, ρπ

]
.

Furthermore, define a 2π-periodic function μλ,t,ρ and υλ,t,ρ as follows:

μλ,t,ρ(ξ) :=
{

αλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if |ξ| ≤ λ−2ρπ,

0 if λ−2ρπ < |ξ| ≤ π,

υλ,t,ρ(ξ) :=
{

βλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if λ−4(1 − t)ρπ ≤ |ξ| ≤ λ−2ρπ,

gλ,t,ρ(ξ) if ξ ∈ [−π, π)\ suppβλ,t,ρ(λ2·),
(4.3)

where gλ,t,ρ is a function in C∞(T) such that [ dn

dξn gλ,t,ρ(ξ)]|ξ=±λ−2ρπ = δ(n) for all n ∈ N0. The purpose 

of gλ,t,ρ is to make the function υλ,t,ρ smooth. Such a gλ,t,ρ exists. In fact, noting that βλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) = 1 for 

|ξ| ≥ λ−4ρπ and 
βλ,t,ρ(λ2ξ) = 0 for |ξ| ≤ λ−4(1 − t)ρπ, we can simply define gλ,t,ρ to be gλ,t,ρ(ξ) := 1
αλ,t,ρ(ξ)
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for λ−4ρπ ≤ |ξ| ≤ π and gλ,t,ρ(ξ) := 0 for |ξ| ≤ λ−4(1 − t)ρπ. In this case, gλ,t,ρ extends periodically 
as a constant 1 near the boundary of T. If λ−2ρ < 1, then another way to make υλ,t,ρ(ξ) smooth is by 
defining gλ,t,ρ to be gλ,t,ρ(ξ) := 1 for λ−4ρπ ≤ |ξ| ≤ λ−2ρπ, and gλ,t,ρ(ξ) := 0 for |ξ| ≤ λ−4(1 − t)ρπ or 
λ−2ρ0π ≤ |ξ| ≤ π with ρ0 being a positive constant such that λ−2ρ < λ−2ρ0 < 1, which can be achieved by 
using smoothing kernel. We have the following result (see Section 8 for its proof).

Proposition 1. Let λ > 1, 0 < t ≤ 1, and 0 < ρ ≤ λ2. Let αλ,t,ρ, βλ,t,ρ, and μλ,t,ρ, υλ,t,ρ be defined as in 
(4.2) and (4.3), respectively. Then αλ,t,ρ, βλ,t,ρ ∈ C∞

c (R) and μλ,t,ρ, υλ,t,ρ ∈ C∞(T). Moreover,

∣∣αλ,t,ρ(ξ)
∣∣2 +

∣∣βλ,t,ρ(ξ)
∣∣2 =

∣∣αλ,t,ρ

(
λ−2ξ

)∣∣2, ξ ∈ R,

and

αλ,t,ρ

(
λ2ξ
)

= μλ,t,ρ(ξ)αλ,t,ρ(ξ), βλ,t,ρ

(
λ2ξ
)

= υλ,t,ρ(ξ)αλ,t,ρ(ξ), ξ ∈ R.

The functions αλ,t,ρ and βλ,t,ρ shall be used for the horizontal direction. We next define ‘bump’ function 
γε for splitting pieces along the vertical direction. Roughly speaking, the core generator for our affine 
shear systems in the frequency domain looks like βλ,t,ρ(ξ1)γε(ξ2/ξ1), which is a wedge shape generator. 
Application of parabolic scaling, shear, and translation operations to such a generator induces our affine 
shear systems. Further technical treatments are then applied on such systems to achieve tightness; see next 
subsections for details.

In what follows, ε shall be fixed as a constant such that 0 < ε ≤ 1/2. Define a function γε to be

γε(x) =

⎧⎨⎩
1 if |x| ≤ 1/2 − ε,

ν(−|x|+1/2
ε ) if 1/2 − ε ≤ |x| ≤ 1/2 + ε,

0 otherwise.
(4.4)

Then it is easy to check that γε ∈ C∞
c (R) and 

∑
�∈Z |γε(· + �)|2 = 1.

For λ > 1, define �λ := �λ − (1/2 + ε)� + 1 = �λ + (1/2 − ε)�. Define the corner pieces γ±
λ,ε,ε0

by

γ+
λ,ε,ε0

(λx− �λ) :=
{
γε(λx− �λ) if λ−1(�λ − 1/2 − ε) ≤ x ≤ λ−1(�λ − 1/2 + ε),
ν(1 + λ2

ε0
(1 − x)) if λ−1(�λ − 1/2 + ε) ≤ x ≤ 1 + 2ε0

λ2 ,

γ−
λ,ε,ε0

(λx + �λ) :=
{
γε(λx + �λ) if λ−1(−�λ + 1/2 − ε) ≤ x ≤ λ−1(−�λ + 1/2 + ε),
ν(1 + λ2

ε0
(1 + x)) if − 1 − 2ε0

λ2 ≤ x ≤ λ−1(−�λ + 1/2 + ε). (4.5)

That is,

γ+
λ,ε,ε0

(x) =
{
γε(x) if − 1/2 − ε ≤ x ≤ −1/2 + ε,

ν(1 + λ2

ε0
− λ

ε0
(x + �λ)) if − 1/2 + ε ≤ x ≤ λ(1 + 2ε0/λ

2) − �λ,

γ−
λ,ε,ε0

(x) =
{
γε(x) if 1/2 − ε ≤ x ≤ 1/2 + ε,

ν(1 + λ2

ε0
+ λ

ε0
(x− �λ)) if − λ(1 + ε0/λ

2) + �λ ≤ x ≤ 1/2 − ε.
(4.6)

Here ε0 > 0 is a parameter to control the overlap of corner pieces around the seamlines. Note that γ±
λ,ε,ε0

are also C∞
c functions. Then, for λ ≥ 1,(

�λ−1∑
�=−�λ+1

∣∣γε(λx + �)
∣∣2)+

∣∣γ+
λ,ε,ε0

(λx− �λ)
∣∣2 +

∣∣γ−
λ,ε,ε0

(λx + �λ)
∣∣2 = 1 ∀|x| ≤ 1 (4.7)

and
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�λ∑
�=−�λ

∣∣γε(λx + �)
∣∣2 = 1 ∀|x| ≤ �λ + 1/2 − ε

λ
. (4.8)

Accordingly, we next define two functions Γj and Γj , which will be used for frequency splitting along the 
shear directions. We have the following result (see Section 8 for its proof).

Proposition 2. Let j ∈ N0. Define

Γj(ξ) :=
[ �λj−1∑
�=−�λj +1

(∣∣γε

(
λjξ2/ξ1 + �

)∣∣2 +
∣∣γε

(
λjξ1/ξ2 + �

)∣∣2)]+
∣∣γ+

λj ,ε,ε0

(
λjξ2/ξ1 − �λj

)∣∣2
+
∣∣γ−

λj ,ε,ε0

(
λjξ2/ξ1 + �λj

)∣∣2 +
∣∣γ+

λj ,ε,ε0

(
λjξ1/ξ2 − �λj

)∣∣2 +
∣∣γ−

λj ,ε,ε0

(
λjξ1/ξ2 + �λj

)∣∣2 (4.9)

and

Γj(ξ) :=
�λj∑

�=−�λj

(∣∣γε

(
λjξ2/ξ1 + �

)∣∣2 +
∣∣γε

(
λjξ1/ξ2 + �

)∣∣2). (4.10)

Then Γj , Γj ∈ C∞(R2\{0}) have the following properties.

(i) 1 ≤ Γj(ξ) ≤ 2, Γj(Eξ) = Γj(ξ), and Γj(tξ) = Γj(ξ) for all t �= 0 and ξ �= 0.
(ii) 0 < Γj(ξ) ≤ 2, Γj(Eξ) = Γj(ξ), and Γj(tξ) = Γj(ξ) for all t �= 0 and ξ �= 0.
(iii) Γj and Γj satisfy

Γj(ξ) = 1, ξ ∈
{
ξ ∈ R2\{0} : max

{
|ξ2/ξ1|, |ξ1/ξ2|

}
≤ λ2j

λ2j + 2ε0

}
, (4.11)

and

Γj(ξ) = 1, ξ ∈
{
ξ ∈ R2 : max

{
|ξ2/ξ1|, |ξ1/ξ2|

}
≤ λj

�λj + 1/2 + ε

}
. (4.12)

Equations (4.9) and (4.10) will be used to construct two types of smooth affine shear tight frames. One 
is non-stationary construction with ϕj changing at different scale levels and the other is quasi-stationary 
construction with ϕ being the same for all scale levels. We next discuss the details of these two types of 
constructions.

4.2. Non-stationary construction

We first discuss the non-stationary construction. For such a type of construction, the shear operations 
could reach arbitrarily close to the seamlines when j goes to infinity. The idea of constructing such a smooth 
affine shear tight frame in the non-stationary setting is simple. We first construct an affine shear frame from 
only a few generators and then apply normalization to such a frame to obtain a tight frame.

More precisely, we fix λ > 1, 0 < t ≤ 1, 0 < ρ ≤ 1, and 0 < ε ≤ 1/2 as parameters. Below, we 
shall omit the dependency of ϕ, η, ζ, ΘJ , etc., on the parameters λ, t, ρ, ε for simplicity of presentation. Let 
Aλ, Bλ, Mλ, Nλ, αλ,t,ρ, βλ,t,ρ, and γε, γ±

λ,ε,ε0
, �λ be defined as in (1.1), (3.1), (4.2), (4.4), (4.6). Define

η(ξ1, ξ2) := αλ,t,ρ(ξ1)γε(ξ2/ξ1), (ξ1, ξ2) ∈ R2,

ζ(ξ1, ξ2) := βλ,t,ρ(ξ1)γε(ξ2/ξ1), (ξ1, ξ2) ∈ R2\{0}, (4.13)
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as well as the corner pieces

ηj,±�λj (ξ1, ξ2) := αλ,t,ρ(ξ1)γ∓
λj ,ε,ε0

(ξ2/ξ1), (ξ1, ξ2) ∈ R2,

ζj,±�λj (ξ1, ξ2) := βλ,t,ρ(ξ1)γ∓
λj ,ε,ε0

(ξ2/ξ1), (ξ1, ξ2) ∈ R2\{0}. (4.14)

For ξ = 0, ζ(0) := 0 and ζj,±�λj (0) := 0. Since the support of βλ,t,ρ is away from the origin, we have 
ζ, ζj,±�λj ∈ C∞

c (R2). Let

ϕ̂(ξ) := αλ,t,ρ(ξ1)αλ,t,ρ(ξ2), ξ ∈ R2.

Then, ϕ̂ is also a function in C∞
c (R2) hence ϕ ∈ C∞(R2).

For a nonnegative integer J0, define

ΘJ0(ξ) :=
∣∣ϕ̂(NJ0

λ ξ
)∣∣2 +

∞∑
j=J0

�λj∑
�=−�λj

[∣∣ζj,�
(
S�Bj

λξ
)∣∣2 +

∣∣ζj,�
(
S�Bj

λEξ
)∣∣2] (4.15)

for ξ ∈ R2, where for |�| < �λj , ηj,� = η and ζj,� = ζ, respectively. We have the following result concerning 
the function ΘJ0 (see Section 8 for its proof).

Proposition 3. Let λ > 1, 0 < ε ≤ 1/2, 0 < t ≤ 1, and 0 < ρ ≤ 1. Let J0 be a nonnegative integer and ΘJ0

be defined as in (4.15). Choose ε0 such that 0 < ε0 < 1
2λ

J0−1. Then ΘJ0 has the following properties:

(i) ΘJ0 ∈ C∞(R2), ΘJ0 = ΘJ0(E·), and 0 < ΘJ0 ≤ 2.
(ii) ΘJ0(ξ) = ΘJ0(Eξ) = 1 ∀ξ ∈ ∪∞

j=J0+1 ∪
�λj−2
�=−�λj +2 [(S�Bj

λ)−1 supp ζj,�].

The function ΘJ0 will be used for the normalization of the frame generated by ζj,�.
Since 0 < ΘJ0 ≤ 2, we can take the square root of ΘJ0 , which is still a smooth function. Moreover, 

1/
√

ΘJ0 is also a smooth function. Define ϕ̂J0 := ϕ̂√
Θ(MJ0

λ ·)
and

ωj
λ,t,ρ

(
Nj

λξ
)

:=
(
∑�λj

�=−�λj
(|ζj,�(S�Bj

λξ)|2 + |ζj,�(S�Bj
λEξ)|2))1/2√

ΘJ0(ξ)
, j ≥ J0. (4.16)

Define ϕj+1 to be

ϕ̂j+1
(
Nj+1

λ ξ
)

:=
(∣∣ϕ̂j
(
Nj

λξ
)∣∣2 +

∣∣ωj
λ,t,ρ

(
Nj

λξ
)∣∣2)1/2. (4.17)

Now, we split the function ωj
λ,t,ρ as follows. Recall that Dλ := diag(1, λ) as in (3.1). For ξ �= 0, define

ψ̂j,�(ξ) := ωj
λ,t,ρ

(
D−j

λ S−�ξ
) γε(ξ2/ξ1)
Γj((S�Bj

λ)−1ξ)
, � = −�λj + 1, . . . , �λj − 1, (4.18)

and

ψ̂j,±�λj (ξ) := ωj
λ,t,ρ

(
D−j

λ S∓�λj ξ
) γ∓

λj ,ε,ε0
(ξ2/ξ1)

Γj((S Bj )−1ξ)
. (4.19)
±�λj λ
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For ξ = 0, we define ψ̂j,�(0) := 0. Since the support of ωj
λ,t,ρ is away from the origin and in view of the 

properties of Γj , we deduce that ψ̂j,� ∈ C∞
c (R2) and hence ψj,� is function in C∞(R2). Let

Ψj :=
{
ψj,�
(
S−�·
)

: � = −�λj
, . . . , �λj

}
(4.20)

with ψj,� being given as in (4.18) and (4.19). The (non-stationary) affine shear system ASJ(ϕJ ; {Ψj}∞j=J ) is 
then defined as follows:

ASJ

(
ϕJ ; {Ψj}∞j=J

)
:=
{
ϕJ

MJ
λ;k : k ∈ Z2} ∪ {hAj

λ;k, hAj
λE;k : k ∈ Z2, h ∈ Ψj

}∞
j=J

. (4.21)

Explicitly, we have,

ASJ

(
ϕJ ; {Ψj}∞j=J

)
=
{
ϕJ

MJ
λ;k : k ∈ Z2} ∪ {ψj,�

S−�Aj
λ;k, ψ

j,�

S−�Aj
λE;k : k ∈ Z2, � = −�λj , . . . , �λj

}∞
j=J

. (4.22)

With the property of ΘJ0 in item (ii) of Proposition 3, we can show that the system defined in (4.21) can 
have shear structure for elements inside each cone. Moreover, with the scale j going to infinity, the shear 
operation could reach the seamline arbitrarily close. Indeed, we have the following result.

Theorem 3. Let λ > 1, 0 < ε ≤ 1/2, 0 < t ≤ 1, and 0 < ρ ≤ 1 such that 1/ρ − 1/2 − ε > 0. Let J0
be a nonnegative integer. Choose ε0 > 0 such that ε0 < min{λJ0−1

2 , λ2J0(λ
2

2ρ − 1/2), (1/ρ − 1/2 − ε)λJ0}. 
Then the system ASJ (ϕJ ; {Ψj}∞j=J) defined as in (4.21) with ϕj and Ψj being given as in (4.17) and (4.20), 
respectively, is an affine shear tight frame for L2(R2) for all J ≥ J0. All elements in ASJ(ϕJ ; {Ψj}∞j=J ) have 
compactly supported Fourier transforms in C∞

c (R2). Moreover, let ψ := F−1ζ. We have{
ψ
(
S−�·
)

: |�| < �λj − 1
}
⊆ Ψj , j ≥ J0 + 1,

and {
ψS−�Aj

λ;k, ψS−�Aj
λE;k : j ≥ J, k ∈ Z2, |�| < �λj − 1

}
⊆ AS

J

(
ϕJ ; {Ψj}∞j=J

)
, J ≥ J0 + 1.

Proof. By the property of ΘJ0 in Proposition 3, we see that ωj
λ,t,ρ(N

j
λξ) = βλ,t,ρ(λ−2jξ1) for ξ ∈

supp ζj,�(S�Bj
λ·) with |�| < �λj − 1, j ≥ J0 + 1, and ωj

λ,t,ρ(N
j
λξ) = βλ,t,ρ(λ−2jξ2) for ξ ∈ supp ζj,�(S�Bj

λE·)
with |�| < �λj − 1 and j ≥ J0 + 1. Hence, it is easily seen that for j ≥ J0 + 1,

ψ̂j,�(ξ) = βλ,t,ρ(ξ1)γε(ξ2/ξ1) = ζ(ξ) = ψ̂(ξ), |�| < �λj − 1.

For j ≥ J0 + 1, we observe that Ψj = {ψ(S−�·) : � = −�λj + 2, . . . , �λj − 2} ∪{ψj,�(S−�·) : |�| = �λj − 1, �λj}.
By our construction, (3.14) and (3.6) hold. Moreover, all generators are nonnegative. Noting that 

suppαλ,t,ρ = [−λ−2ρπ, λ−2ρπ], suppβλ,t,ρ = [−ρπ, −λ−2ρπ] ∪[λ−2ρπ, ρπ], and supp γε = [−1/2 −ε, 1/2 +ε], 
together with ρ ≤ 1 and 0 < ε ≤ 1/2, we see that supp ψ̂j,� ⊆ [−ρπ, ρπ]2 ⊆ [−π, π]2 for |�| ≤ �λj − 1. Hence, 
we have ψ̂j,�(ξ)ψ̂j,�(ξ + 2πk) = 0, a.e., ξ ∈ R2 and k ∈ Z2\{0} for |�| ≤ �λj − 1. For ψ̂j,−�λj we have

supp ψ̂j,−�λj ⊆
{
ξ ∈ R2 : ξ1 ∈ [−ρπ, ρπ],−1/2 − ε ≤ ξ2/ξ1 ≤ λj

(
1 + 2ε0/λ

2j)− �λj

}
.

Since 2ε0 ≤ λJ0(2/ρ − 1 − 2ε), we have,(
λj
(
1 + 2ε0/λ

2j)− �λj + 1/2 + ε
)
≤
(
λj
(
1 + 2ε0/λ

2j)− (λj + 1/2 − ε
)

+ 1 + 1/2 + ε
)

≤ 2ε0 + 1 + 2ε ≤ 2/ρ.

λj
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This implies the support of ψ̂j,−�λj (ξ1, ·) is of length less than 2π for any ξ1 ∈ [−ρπ, ρπ]. Similar property 

holds for supp ψ̂j,+�λj . Hence, we conclude that ψ̂j,±�λj (ξ)ψ̂j,±�λj (ξ+2πk) = 0, a.e., ξ ∈ R2 and k ∈ Z2\{0}.
By the definition of ϕj and ε0 ≤ λ2J0(λ

2

2ρ − 1/2), we have

supp ϕ̂j ⊆
[
−λ−2ρ

(
1 + 2ε0/λ

2j)π, λ−2ρ
(
1 + 2ε0/λ

2j)π]2 ⊆ [−π, π]2.

Hence, we conclude that ϕ̂j(ξ)ϕ̂j(ξ + 2πk) = 0 for all k ∈ Z2\{0} and for almost every ξ ∈ R2. Therefore, 
(3.13) holds. By the result of Corollary 3, ASJ(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2) for 
all J ≥ J0. Since all involved auxiliary functions are from C∞

c (R2), all elements in ASJ(ϕJ ; {Ψj}∞j=J) have 
compactly supported Fourier transforms in C∞

c (R2). �
From Theorem 3 we see that

ζ
(
S−�λj+2Bj

λξ
)

= βλ,t,ρ

(
λ−2jξ1

)
γε
(
λjξ2/ξ1 − �λj + 2

)
, ξ ∈ R2

has support satisfying ξ2/ξ1 ≤ �λj−2+1/2+ε

λj → 1 as j → ∞. In other words, the shear operation reaches 
arbitrarily close to the seamlines {ξ ∈ R2 : ξ2/ξ1 = ±1}.

4.3. Quasi-stationary construction

Let us next discuss the quasi-stationary construction. The idea is to use the tensor product of functions 
in 1D to obtain rectangular bands for different scale levels, and then a frequency splitting using γε is applied 
to produce generators with respect to different shears. More precisely, let λ > 1, 0 < t ≤ 1, and 0 < ρ ≤ 1. 
Consider ϕ̂(ξ) := αλ,t,ρ(ξ1)αλ,t,ρ(ξ2), ξ = (ξ1, ξ2) ∈ R2 and define

ωλ,t,ρ(ξ) :=
√∣∣ϕ̂(λ−2ξ

)∣∣2 − ∣∣ϕ̂(ξ)
∣∣2, ξ ∈ R2. (4.23)

Then ωλ,t,ρ ∈ C∞
c (R2). In fact, it is easy to show that if ϕ̂(ξ0) = 0 or 1, then all the derivatives of ϕ̂

vanish at ξ0. Now if ω̃λ,t,ρ(ξ) := |ϕ̂(λ−2ξ)|2 − |ϕ̂(ξ)|2 does not vanish for ξ = ξ0, then it is trivial to see 
that ωλ,t,ρ =

√
ω̃λ,t,ρ is infinitely differentiable at ξ = ξ0. If ω̃λ,t,ρ(ξ) = 0 at ξ = ξ0, then we must have 

ϕ̂(ξ0) = ϕ̂(λ−2ξ0) = 0 or ϕ̂(ξ0) = ϕ̂(λ−2ξ0) = 1. Then, all the derivatives of ω̃λ,t,ρ vanish at ξ0. By the 
Taylor expansion, we see that ωλ,t,ρ =

√
ω̃λ,t,ρ must be infinitely differentiable at ξ0 with all its derivatives 

at ξ0 being zero. Therefore, ωλ,t,ρ ∈ C∞
c (R2).

In view of the construction of ϕ̂, the refinable structure is clear. We have ϕ̂(λ2ξ) = â(ξ)ϕ̂(ξ), ξ ∈ R2

with â = μλ,t,ρ ⊗ μλ,t,ρ being the tensor product of the 1D mask μλ,t,ρ given in (4.3). Moreover, we have 

ω(λ2ξ) = b̂(ξ)ϕ̂(ξ) with b̂ ∈ C∞(T) being given by b̂(ξ) = (g(ξ) − |â(ξ)|2)1/2 for any smooth function 
g ∈ C∞(T2) such that g = 1 on the support of ϕ̂.

Note that for simplicity of presentation, we omit the dependency of ϕ, ψj,�, a, b, Γj , etc., on the parameters 
λ, t, ρ, ε.

Since 0 < Γj ≤ 2 and Γj is in C∞(R2\{0}), we have that 
√

Γj is infinitely differentiable for all ξ ∈ R2\{0}. 
Let Aλ, Bλ, Mλ, Nλ, Dλ with λ > 1 be defined as in (1.1) and (3.1). Let Ψj := {ψj,�(S−�·) : � = −�λj , . . . , �λj}
with

ψ̂j,�(ξ) := ωλ,t,ρ

(
D−j

λ S−�ξ
) γε(ξ2/ξ1)√

Γj((S�Bj )−1ξ)
= ωλ,t,ρ

(
ξ1, λ

−j(−ξ1� + ξ2)
) γε(ξ2/ξ1)√

Γj((S�Bj )−1ξ)
(4.24)
λ λ
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for ξ ∈ R2\{0} and ψ̂j,�(0) := 0, which gives ψ̂j,�(S�Bj
λξ) = ωλ,t,ρ(Nj

λξ)
γε(λ

jξ2/ξ1+�)√
Γj(ξ)

. By the properties of Γj

and that the support of ωλ,t,ρ is away from the origin, we see that ψ̂j,� are compactly supported functions 
in C∞

c (R2) and hence ψj,� ∈ C∞(R2). We now define a (quasi-stationary) affine shear system:

ASJ

(
ϕ; {Ψj}∞j=J

)
:=
{
ϕMJ

λ;k : k ∈ Z2} ∪ {hAj
λ;k, hAj

λE;k : k ∈ Z2, h ∈ Ψj

}∞
j=J

=
{
ϕMJ

λ;k : k ∈ Z2} ∪ {ψj,�

S−�Aj
λ;k, ψ

j,�

S−�Aj
λE;k : k ∈ Z2, � = −�λj , . . . , �λj

}∞
j=J

. (4.25)

At first glance, such a system does not have shear structure at all due to that the function ωλ,t,ρ is not 
shear-invariant. However, we shall show that such a system do have certain affine and shear structure in 
the sense that a sub-system of this system is from shear and dilation of one single generator.

Theorem 4. Let λ > 1, 0 < t ≤ 1, and 0 < ρ ≤ 1. Let ASJ(ϕ; {Ψj}∞j=J ) be defined as in (4.25) with 
ϕ̂ = αλ,t,ρ ⊗ αλ,t,ρ and ψj,� being given by (4.24). Then ASJ(ϕ; {Ψj}∞j=J ) is an affine shear tight frame 
for L2(R2) for all J ≥ 0. All elements in ASJ (ϕ; {Ψj}∞j=J) have compactly supported Fourier transforms in 
C∞

c (R2). Moreover, we have {
ψ
(
S−�·
)

: � = −rj , . . . , rj
}
⊆ Ψj , j ≥ J,

where rj := �λj−2(1 − t)ρ − (1/2 + ε)� and ψ̂(ξ) := βλ,t,ρ(ξ1)γε(ξ2/ξ1), ξ ∈ R2. In other words,{
ψS−�Aj

λ;k, ψS−�Aj
λE;k : k ∈ Z2, � = −rj , . . . , rj

}∞
j=J

⊆ AS
J

(
ϕ; {Ψj}∞j=J

)
.

Proof. By our construction, we have

∣∣ϕ̂(Nj
λξ
)∣∣2 +

�λj∑
�=−�λj

[∣∣ψ̂j,�
(
S�Bj

λξ
)∣∣2 +

∣∣ψ̂j,�
(
S�Bj

λEξ
)∣∣2]

=
∣∣ϕ̂(Nj

λξ
)∣∣2 + |ωλ,t,ρ(Njξ)|2

Γj(ξ)

�λj∑
�=−�λj

[∣∣γε

(
λjξ2/ξ1 + �

)∣∣2 +
∣∣γε

(
λjξ1/ξ2 + �

)∣∣2]
=
∣∣ϕ̂(Nj

λξ
)∣∣2 +

∣∣ωλ,t,ρ

(
Njξ
)∣∣2 =

∣∣ϕ̂(Nj+1ξ
)∣∣2, ξ ∈ R2.

Hence, (3.14) holds. By the definition of ϕ, (3.6) also holds. Note that all generators satisfy ψ̂j,� ≥ 0
and supp ψ̂j,� ⊆ [−ρπ, ρπ]2 with ρ ≤ 1. Hence, (3.13) is true. Now, by Corollary 3, we conclude that 
ASJ(ϕ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2) for all J ≥ 0. Since all ϕ̂, ψ̂j,� are compactly 
supported functions in C∞

c (R2), all elements in ASJ(ϕ; {Ψj}∞j=J) are functions in C∞(R2).
By the definition of ωλ,t,ρ, it is easy to see that∣∣ωλ,t,ρ(ξ1, ξ2)

∣∣2 =
∣∣αλ,t,ρ(ξ1)βλ,t,ρ(ξ2)

∣∣2 +
∣∣βλ,t,ρ(ξ1)αλ,t,ρ(ξ2)

∣∣2 +
∣∣βλ,t,ρ(ξ1)βλ,t,ρ(ξ2)

∣∣2.
And for |ξ2| ≤ λ−2(1 − t)ρπ, we have ωλ,t,ρ(ξ1, ξ2) = βλ,t,ρ(ξ1)αλ,t,ρ(ξ2) = βλ,t,ρ(ξ1). Consequently, if for 
all ξ ∈ supp ψ̂j,�

S�Bj
λ;0,k, we have |ξ2| ≤ λ2j−2(1 − t)ρπ, then we have

ψ̂j,�
S�Bj

λ;0,k(ξ) = λ−3j/2ωλ,t,ρ

(
λ−2jξ

)
γε

(
λjξ2/ξ1 + �

)
e−ik·S�Bj

λξ

= λ−3j/2βλ,t,ρ

(
λ−2jξ1

)
γε

(
λjξ2/ξ1 + �

)
e−ik·S�Bj

λξ

= ψ̂ j (ξ).
S�Bλ;0,k



B. Han, X. Zhuang / Appl. Comput. Harmon. Anal. 39 (2015) 300–338 319
Now let us find the range of � such that the above support constrain for ψ̂j,�
S�Bj

λ;0,k holds. At the scale level 
j, we have

suppωλ,t,ρ

(
λ−2j ·

)
⊆
[
−λ2jρπ, λ2jρπ

]2\[−λ2j−2(1 − t)ρπ, λ2j−2(1 − t)ρπ
]2
.

Then, the support constrain means that at the scale level j, one needs |ξ2/ξ1| ≤ λ−2(1 − t)ρ. Hence, the 
support of γε(λjξ2/ξ1 + �) must satisfy

−λ−2(1 − t)ρ ≤ −λ−j(1/2 + ε + �) ≤ ξ2/ξ1 ≤ λ−j(1/2 + ε− �) ≤ λ−2(1 − t)ρ.

Consequently, we obtain

−λj−2(1 − t)ρ + (1/2 + ε) ≤ � ≤ λj−2(1 − t)ρ− (1/2 + ε).

That is, |�| ≤ λj−2(1 − t)ρ − (1/2 + ε). In summary, letting rj := �λj−2(1 − t)ρ − (1/2 + ε)�, we have{
ψ
(
S−�·
)

: � = −rj , . . . , rj
}
⊆ Ψj , j ≥ J,

and {
ψS−�Aj

λ;k, ψS−�Aj
λE;k : j ≥ J, k ∈ Z2, � = −rj , . . . , rj

}
⊆ AS

J

(
ϕ; {Ψj}∞j=J

)
.

This completes the proof. �
Note that when � = −rj , the support of ψ̂(S�Bj

λξ) = βλ,t,ρ(λ−2jξ1)γε(λjξ2/ξ1 − rj) satisfies

ξ2/ξ1 ≤ λ−j(rj + 1/2 + ε) ≤ λ−j
(⌊
λj−2(1 − t)ρ− 1/2 − ε

⌋
+ 1/2 + ε

)
≤ λ−2(1 − t)ρ.

Hence, by the symmetry property of Γj , we see that the shear operation generates a subsystem of 
ASJ(ϕ; {Ψj}∞j=0) inside the cone area {ξ ∈ R2 : max{|ξ2/ξ1|, |ξ1/ξ2|} ≤ λ−2(1 − t)ρ} in the frequency 
domain.

4.4. Connections to other directional mutliscale representation systems

In this subsection, we shall discuss the connections of our affine shear tight frames to those shearlet 
systems in [8,10] or shearlet-like systems in [13].

Define corner pieces

γ+
λ (x) :=

⎧⎨⎩
γε(x) if − 1/2 − ε ≤ x ≤ −1/2 + ε,

1 if − 1/2 + ε ≤ x ≤ λ− �λ,

0 otherwise,

γ−
λ (x) :=

⎧⎨⎩
γε(x) if 1/2 − ε ≤ x ≤ 1/2 + ε,

1 if − λ + �λ ≤ x ≤ 1/2 − ε,

0 otherwise.
(4.26)

These are the corner pieces that shall be used to achieve tightness of the system or for gluing two seamline 
elements together smoothly. Let {αλ,t,ρ, βλ,t,ρ, γε, γ

±
λ } be defined as in (4.2), (4.4), and (4.26). Similarly, 

for the half pieces of the system generated by the characteristic functions as in (2.9), we define ψ, ψj,±�λj

by
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ψ̂(ξ) := βλ,t,ρ(ξ1)γε(ξ2/ξ1), ψ̂j,±�λj (ξ) := βλ,t,ρ(ξ1)γ∓
λj (ξ2/ξ1), ξ �= 0

and ψ̂(0) := 0, ̂ψj,±�λj (0) := 0. The scaling function ϕ is defined to be

ϕ := ϕ1 + ϕ2 (4.27)

with ϕ̂1(ξ) = αλ,t,ρ(ξ1)χ{ξ∈R2:|ξ2/ξ1|≤1}(ξ) and ϕ̂2 = ϕ̂1(E·) = αλ,t,ρ(ξ2)χ{ξ∈R2:|ξ1/ξ2|≤1}(ξ), ξ =
(ξ1, ξ2) ∈ R2. Now define

Ψj :=
{
ψ
(
S−�·
)

: � = −�λj + 1, . . . , �λj − 1
}
∪
{
ψj,�
(
S−�·
)

: � = ±�λj

}
. (4.28)

Note that ψ̂ is smooth while the corner pieces ψ̂j,±�λj are not smooth. We have the following result.

Corollary 4. Let Aλ, Bλ, Mλ, Nλ, S�, E be defined as in (1.1) and (3.1) with λ > 1. Let 0 < t ≤ 1, 0 < ρ ≤ 1
and 0 < ε ≤ 1/2. Then the system ASJ (ϕ; {Ψj}∞j=J) defined as in (3.2) with ϕ, Ψj being given by (4.27), 
(4.28), respectively, is an affine shear tight frame for L2(R2) for all J ≥ 0.

Proof. By the definition of γε and γ±
λ , for a fixed j ≥ 0, it is easy to show that

�λj−1∑
�=−�λj +1

∣∣γε

(
λjξ2/ξ1 + �

)∣∣2 +
∣∣γ+

λj

(
λjξ2/ξ1 − �λj

)∣∣2 +
∣∣γ−

λj

(
λjξ2/ξ1 + �λj

)∣∣2 = χ{|ξ2/ξ1|≤1}(ξ), ξ �= 0.

Hence, for ξ = (ξ1, ξ2) ∈ R2, we have

∣∣ϕ̂1
(
Nj

λξ
)∣∣2 +

∑
h∈Ψj

∣∣ĥ(Bj
λξ
)∣∣2 =

(∣∣αλ,t,ρ

(
λ−2jξ1

)∣∣2 +
∣∣βλ,t,ρ

(
λ−2jξ1

)∣∣2)χ{|ξ2/ξ1|≤1}(ξ)

=
∣∣αλ,t,ρ

(
λ−2j−2ξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ)

=
∣∣ϕ̂1
(
Nj+1

λ ξ
)∣∣2.

Similarly, we have |ϕ̂2(Nj
λξ)|2 +

∑
h∈Ψj

|ĥ(Bj
λEξ)|2 = |ϕ̂2(Nj+1

λ ξ)|2. Consequently, we have

∣∣ϕ̂(Nj
λξ
)∣∣2 +

∑
h∈Ψj

(∣∣ĥ(Bj
λξ
)∣∣2 +

∣∣ĥ(Bj
λEξ
)∣∣2) =

∣∣ϕ̂(Nj+1
λ ξ
)∣∣2, a.e. ξ ∈ R2.

Hence (3.14) holds.
Moreover, we have ̂h(ξ)ĥ(ξ+2πk) = 0 for all h ∈ {ϕ} ∪{Ψj}∞j=0 and k ∈ Z2\{0}. In fact, if k = (k1, k2) ∈ Z2

with k1 �= 0, then ĥ(ξ)ĥ(ξ + 2πk) = 0 due to that αλ,t,ρ, βλ,t,ρ are supported on [−ρπ, ρπ] with ρ ≤ 1. 
If k1 = 0 but k2 �= 0, then by γε((ξ2 + 2πk2)/ξ1)γε(ξ2/ξ1) = γε(ξ2/ξ1 + 2πk2/ξ1)γε(ξ2/ξ1) = 0 for 
ξ1 ∈ [−ρπ, ρπ], we have ĥ(ξ)ĥ(ξ+2πk) = 0 as well. Hence, (3.13) is satisfied. Obviously, (3.6) is true by our 
construction of ϕ.

Therefore, by Corollary 3, ASJ(ϕ; {Ψj}∞j=J) defined in (1.3) with ϕ, Ψj being given by (4.27), (4.28), 
respectively, is an affine shear tight frame for L2(R2) for all J ≥ 0. �

Now, it is easy to show that the cone-adapted shearlet system constructed in [10] is indeed the initial 
system of a sequence of affine shear tight frames. In fact, let λ = 2, and A1 := Aλ, A2 := EA1E. Let ψ1 = ψ

and ψ2 := ψ1(E·). It is easy to show that
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ψ1(S�Aj
1 · −k

)
= ψ
(
S�Aj

λ · −k
)

and ψ2(S�Aj
2 · −k

)
= ψ
(
S�Aj

λE · −Ek
)
.

Noting that EZ2 = Z2 and the symmetry of the range of � for each scale level j, we see that the cone-adapted 
shearlet system in (1.4) with modified seamline elements is the affine shear tight frame AS(ϕ; {Ψj}∞j=0)
defined as in (1.3) with ϕ, Ψj being given by (4.27), (4.28), and λ = 2. Moreover, it is the initial system of 
the sequence of affine shear tight frames ASJ(ϕ; {Ψj}∞j=J), J ∈ N0 defined as in (3.2) with ϕ, Ψj being given 
by (4.27), (4.28), respectively.

For the smooth shearlet-like systems constructed in [13], it is also a special case of the following system. 
Note that γ+

λ , γ
−
λ satisfy [

dn

dxn
γ±
λ (λx∓ �λ)

]∣∣∣∣
x=±1

= δ(n) ∀n ∈ N0, (4.29)

which guarantees the smoothness by gluing the two corner pieces.
Let Ψj := {ψj,�(S−�·) : � = −�λj , . . . , �λj}, where for |�| < �λj

,

ψ̂j,�(ξ) := ωλ,t,ρ

(
D−j

λ S−�ξ
)
γε(ξ2/ξ1) = ωλ,t,ρ

(
ξ1, λ

−j(−ξ1� + ξ2)
)
γε(ξ2/ξ1), ξ ∈ R2, (4.30)

which gives

ψ̂j,�
(
S�Bj

λξ
)

= ωλ,t,ρ

(
λ−2jξ

)
γε

(
λjξ2/ξ1 + �

)
;

and for those elements on the seamlines, i.e., for � = ±�λj and j ≥ 1,

ψ̂j,±�λj
(
S±�λj B

j
λ/2ξ

)
:=
{
ωλ,t,ρ(λ−2jξ)γ∓

λj (λjξ2/ξ1 ± �λj ) if |ξ2/ξ1| ≤ 1,
ωλ,t,ρ(λ−2jξ)γ∓

λj (λjξ1/ξ2 ± �λj ) if |ξ2/ξ1| ≥ 1.

For j = 0,

ψ̂0,±1(S±1ξ) :=
{
ωλ,t,ρ(ξ)γε(ξ2/ξ1 ± 1) if |ξ2/ξ1| ≤ 1,
ωλ,t,ρ(ξ)γε(ξ1/ξ2 ± 1) if |ξ2/ξ1| ≥ 1.

Let Aj,�
λ := Aj

λ for j ≥ 1 and � < �λj , Aj,±�λj

λ := 2Aj
λ for j ≥ 1, and for j = 0, Aj,�

λ := I2. Then, we can define 
the following system:

AS
(
ϕ; {Ψj}∞j=0

)
=
{
ϕ(· − k) : k ∈ Z2} ∪ {hAj,�

λ ;k, hAj,�
λ E;k : k ∈ Z2, h ∈ Ψj

}∞
j=0 (4.31)

Corollary 5. AS(ϕ; {Ψj}∞j=0) in (4.31) is an affine shear tight frame for L2(R2) and all elements in 
AS(ϕ; {Ψj}∞j=0) have compactly supported Fourier transforms in C∞

c (R2).

Proof. By our construction, we have

∣∣ϕ̂(·)
∣∣2 +

∞∑
j=0

�λj−1∑
�=−�λj +1

[∣∣ψ̂j,�
(
S�Bj

λ·
)∣∣2 +

∣∣ψ̂j,�
(
S�Bj

λE·
)∣∣2]

+
∞∑
j=0

∑
�=±�λj

∣∣ψ̂j,�
(
S�Bj

λ/2·
)∣∣2 +

∣∣ψ̂j,�
(
S�Bj

λE/2·
)∣∣2 = 1, a.e. ξ ∈ R2.

Moreover, all generators satisfy ψ̂j,� ≥ 0 and supp ψ̂j,� ⊆ [−π, π]2. Note that dilation matrices of the 
seamline generators ψj,±�λj are 2Aj instead of Aj . A simple adaptation of the proof of Theorem 1 gives 
λ λ
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that AS(ϕ; {Ψj}∞j=0) is a tight frame for L2(R2). By the definition of γ, γ±
λ in (4.4), (4.26), ψ̂j,� are compactly 

supported smooth functions. Consequently, all elements in AS(ϕ; {Ψj}∞j=0) have compactly supported Fourier 
transforms in C∞

c (R2). �
We finish this section by making some comments on the connections and differences of our affine shear 

systems with other shearlet or shearlet-like systems. First, when λ = 2, t = 1 − λ−2, and ρ = 1, except 
those seamline elements, AS(ϕ; {Ψj}∞j=0) defined in (4.31) is essentially the system defined in [13]. Second, 
the shear subsystem (generated by one single generator through shear, parabolic scaling, and translation) 
in [13] can have its shear operations reach only up to slope (in absolute value) λ−4 = 1/16. Here, in our 
construction, the shear subsystem {ψS−�Aj

λ;k, ψS−�Aj
λE;k : k ∈ Z2, � = −rj , . . . , rj}∞j=J as in Theorem 4 can 

reach up to slope λ−2(1 − t)ρ in the frequency domain with any 0 < t ≤ 1, 0 < ρ ≤ 1. In other words, we 
have a shear subsystem covers larger cones (horizontal and vertical) in the frequency domain than those 
in [13]. Third, the ideas of achieving tightness for our quasi-stationary construction and the construction 
in [13] are essentially different. Our tightness is achieved by normalizing an affine frame obtained through 
application of shear, dilation, translation, together with flip operations to a single generator while the 
tightness in [13] is achieved by a gluing process. Comparing with our quasi-stationary construction, the 
gluing procedure is somewhat unnatural since one can see that a different dilation matrix 2Aj

λ needs to 
be applied to the gluing elements at the scale level j while all other generators use the dilation matrix Aj

λ

(see boundary shearlets in Section 2.1 in [13]). Our affine shear systems, either under our quasi-stationary 
construction or non-stationary construction, obey the parabolic rule. More importantly, at all scale levels 
j for each cone, the dilation matrix is fixed as Aj

λ for all generators. Finally, we would like to point out 
that our quasi-stationary construction is more general and flexible with several control parameters λ, t, ρ, ε. 
Moreover, to our best knowledge, the non-stationary construction in this paper is new and we make a clear 
and important connection between affine shear tight frames and directional tight framelets, which shall be 
investigated in the next section.

5. MRA structures and filter banks

By connecting affine shear tight frames to tight framelets in [16], in this section we shall study the MRA 
structure of sequences of affine shear tight frames constructed in Section 4 and investigate their underlying 
filter banks.

As discussed in [16], a sequence of tight framelets is closely linked to filter banks and MRA structure. 
Let us first discuss the connections of affine shear tight frames to a special class of tight framelets.

5.1. Connections to affine tight Mλ-framelets through subsampling

Let {ϕJ} ∪ {Ψ̊j}∞j=J be a set of generators with

Ψ̊j :=
{
ψ̊j,� : � = −�λj , . . . , �λj

}
. (5.1)

Using the dilation matrix Mλ for all generators in {ϕJ} ∪ {ψ̊j,�}∞j=J with J ∈ N0, we define a sequence of 
(non-stationary cone-adapted) affine Mλ-framelet systems by

ASMλ

J

(
ϕJ ; {Ψ̊j}∞j=J

)
:=
{
ϕJ

MJ
λ;k : k ∈ Z2} ∪ {hMj

λ;k, hMj
λE;k : k ∈ Z2, h ∈ Ψ̊j

}∞
j=J

=
{
ϕJ

MJ
λ;k : k ∈ Z2} ∪ {ψ̊j,�

Mj
λ;k, ψ̊

j,�

Mj
λE;k : k ∈ Z2, � = −�λj , . . . , �λj

}∞
j=J

. (5.2)

Similarly, when ϕj = ϕ is fixed across all scale levels j ∈ N0, we define a sequence of (quasi-stationary 
cone-adapted) affine Mλ-framelet systems by
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ASMλ

J

(
ϕ; {Ψ̊j}∞j=J

)
=
{
ϕMJ

λ;k : k ∈ Z2} ∪ {hMj
λ;k, hMj

λE;k : k ∈ Z2, h ∈ Ψ̊j

}∞
j=J

=
{
ϕMJ

λ;k : k ∈ Z2} ∪ {ψ̊j,�

Mj
λ;k, ψ̊

j,�

Mj
λE;k : k ∈ Z2, � = −�λj , . . . , �λj

}∞
j=J

. (5.3)

We have the following result connecting affine shear systems with affine Mλ-framelet systems.

Theorem 5. Let Mλ, Nλ, Dλ be defined as in (3.1). Let {ASJ(ϕJ ; {Ψj}∞j=J)}∞J=0 be a sequence of affine shear 
systems in (4.21) with Ψj = {ψj,�(S−�·) : � = −�λj , . . . , �λj}. Define Ψ̊j := {ψ̊j,� : � = −�λj , . . . , �λj} with 
j ∈ N0 and

ψ̊j,� := λ−jψj,�
(
S−�D−j

λ ·
)
, � = −�λj , . . . , �λj . (5.4)

If

ϕ̂j(ξ)ϕ̂j(ξ + 2πk) = 0, a.e. ξ ∈ R2, ∀k ∈ Z2\{0}, j ∈ N0, (5.5)

ψ̂j,�(ξ)ψ̂j,�(ξ + 2πk) = 0, a.e. ξ ∈ R2, ∀k ∈ Z2\{0}, j ∈ N0, |�| ≤ �λj , (5.6)

and

̂̊
ψj,�(ξ)̂̊ψj,�(ξ + 2πk) = 0, a.e. ξ ∈ R2, ∀k ∈ Z2\{0}, j ∈ N0, |�| ≤ �λj , (5.7)

then ASJ (ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(R2) for every J ∈ N0 if and only if 
ASMλ

J (ϕJ ; {Ψ̊j}∞j=J ) in (5.2) is an affine tight Mλ-framelet for L2(R2) for every J ∈ N0, that is, {ϕj :
j ∈ N0} ∪ {Ψ̊j}∞j=0 ⊆ L2(R2) and for every integer J ∈ N0,

‖f‖2
2 =
∑
k∈Z2

∣∣〈f, ϕJ
MJ

λ;k
〉∣∣2 +

∞∑
j=J

∑
h∈Ψ̊j

∑
k∈Z2

(∣∣〈f, hMj
λ;k〉
∣∣2 +

∣∣〈f, hMj
λE;k〉
∣∣2) ∀f ∈ L2

(
R2). (5.8)

Proof. Since (5.5) and (5.6) are satisfied, by Theorem 2 (also cf. Corollary 3), ASJ(ϕJ ; {Ψj}∞j=J ) is an affine 
shear tight frame for L2(R2) for every J ∈ N0 if and only if (3.6) and (3.14) are satisfied with J0 = 0. 
Observe that (5.4) implies ̂̊ψj,� = ψ̂j,�(S�Dj

λ·). Therefore, by Bj
λMj

λ = Dj
λ and EMj

λ = Mj
λE, we see that 

(3.14) is equivalent to

∣∣ϕ̂j+1(Nλξ)
∣∣2 =

∣∣ϕ̂j+1(ξ)
∣∣2 +

sj∑
�=−sj

(∣∣ψ̂j,�
(
S�Bj

λMj
λξ
)∣∣2 +

∣∣ψ̂j,�
(
S�Bj

λEMj
λξ
)∣∣2)

=
∣∣ϕ̂j+1(ξ)

∣∣2 +
sj∑

�=−sj

(∣∣ ̂̊ψj,�(ξ)
∣∣2 +

∣∣ ̂̊ψj,�(Eξ)
∣∣2)

a.e. ξ ∈ R2 and j ∈ N0. Hence, by (5.5) and (5.7), the claim follows directly from Theorem 2 and [16, 
Corollary 18]. �

Immediately, we have the following corollary.

Corollary 6. Retain all the conditions on λ, t, ρ, ε, ε0 for ASJ(ϕJ ; {Ψj}∞j=J ) in (4.21) of Theorem 3 with J0 = 0
(respectively, for ASJ(ϕ; {Ψj}∞j=J) in (4.25) of Theorem 4). Let ASMλ

J (ϕJ ; {Ψ̊j}∞j=J) be defined as in (5.2)
(respectively, ASMλ

J (ϕ; {Ψ̊j}∞j=J) be defined in (5.3)) with Ψ̊j being given as in (5.4). Then ASMλ

J (ϕJ ; {Ψ̊j}∞j=J)
(respectively, ASMλ

J (ϕ; {Ψ̊j}∞j=J ) is an affine tight Mλ-framelet for L2(R2) for every integer J ∈ N0 and
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ψj,�

S−�Aj
λ;k = λj/2ψ̊j,�

Mj
λ;Dj

λS
�k, ψj,�

S−�Aj
λE;k = λj/2ψ̊j,�

Mj
λE;Dj

λS
�k. (5.9)

Proof. By (5.4), it is straightforward to check that (5.9) holds. By (5.4), we also have

̂̊
ψj,�(ξ) := ωj

λ,t,ρ(ξ)
γε(λjξ2/ξ1 + �)

Γj(ξ) , ξ �= 0, |�| ≤ �λj − 1, (5.10)

˚̂ψj,±�λj (ξ) := ωj
λ,t,ρ(ξ)

γ∓
λj ,ε,ε0

(λjξ2/ξ1 ± �λj )
Γj(ξ) , ξ �= 0, (5.11)

and ̂̊ψj,�(0) := 0. Comparing with ψj,� in (4.18) and (4.19), we can easily check that (5.7) holds by a similar 
argument as in the proof of Theorem 3. By Corollary 3, we see that (5.5) and (5.6) hold. Now the conclusion 
that ASMλ

J (ϕ; {Ψ̊j}∞j=J) is an affine tight Mλ-framelet for L2(R2) follows from Theorem 5.
The proof for ASMλ

J (ϕ; {Ψ̊j}∞j=J) is essentially the same. �
5.2. The filter bank structure of smooth affine shear tight frames

Since tight framelets are closely related to filter banks ([16]), we next study the filter bank structure of 
affine tight Mλ-framelets and affine shear tight frames in Corollary 6. For a filter u = {u(k)}k∈Z2 : Z2 → C, 
we define its Fourier series û : R2 → C to be û(ξ) =

∑
k∈Z2 u(k)e−ik·ξ, ξ ∈ R2. Obviously, û is 2πZ2-periodic. 

For the non-stationary ASMλ

J (ϕJ ; {Ψ̊j}∞j=J), by our construction and setting 0 < ρ < 1, we can choose ρ0 and 

ε to satisfy 0 < ρ < ρ0 < 1 and 0 < ε0 < λ2(ρ0/ρ − 1)/2 so that supp ϕ̂j(Mλ·) ⊆ supp ϕ̂j+1 ⊆ [−ρ0π, ρ0π]2

and supp ̂̊ψj,�(Mλ·) ⊆ supp ϕ̂j+1 ⊆ [−ρ0π, ρ0π]2. Let aj , bj,�, j ∈ N0 be filters defined by their Fourier series 
as follows:

âj(ξ) :=

⎧⎨⎩ ϕ̂j(Mλξ)
ϕ̂j+1(ξ)

if ξ ∈ supp ϕ̂j(Mλ·),

0 if ξ ∈ [−π, π)2\ supp ϕ̂j(Mλ·),

b̂j,�(ξ) := b̂j(ξ)γε(λjξ2/ξ1 + �)√
Γj(ξ)

, |�| < �λj − 1,

b̂j,±�λj (ξ) := b̂j(ξ)
γ∓
λj ,ε,ε0

(λjξ2/ξ1 ± �λj )√
Γj(ξ)

, (5.12)

where b̂j(ξ) =
√

gj(ξ) − |âj(ξ)|2 for some function gj defined on T2 satisfying gj = 1 on the support of 
ϕ̂j+1.

Similarly for the quasi-stationary ASMλ

J (ϕ; {Ψ̊j}∞j=J), we can define a sequence of filter banks. In this case, 
the low-pass filter â of 2πZ2-periodic function for ϕ is fixed as follows:

â(ξ) = μλ,t,ρ(ξ1)μλ,t,ρ(ξ2), ξ ∈ [−π, π)2 (5.13)

with μλ,t,ρ as in (4.3). Note that supp ̂̊ψj,�(Mλ·) ⊆ supp ϕ̂. Define 2πZ2-periodic functions b̂j,� for ̂̊ψj,�, 
j ∈ N0 as follows:

b̂j,�(ξ) := b̂(ξ)γε(λjξ2/ξ1 + �)√
Γj(ξ)

, |�| ≤ �λj , ξ ∈ [−π, π)2 (5.14)

with b̂(ξ) :=
√

g(ξ) − |â(ξ)|2 for some function g defined on T2 satisfying g = 1 on the support of ϕ̂.
By [16, Corollary 18 and Theorem 17], we have the following result.
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Corollary 7. Retain all the conditions for λ, t, ρ, ε, ε0 as in Theorem 3 with J0 = 0 and choose ρ, ρ0, ε to 
satisfy 0 < ρ < ρ0 < 1 and 0 < ε0 < λ2(ρ0/ρ − 1) so that supp ϕ̂j and supp ψ̂j,� are inside [−ρ0π, ρ0π]2. Let 
ASMλ

J (ϕJ ; {Ψ̊j}∞j=J ), J ∈ N0 be defined as in (5.2) with Ψ̊j as in (5.4). Let aj , bj,� be defined as in (5.12). 
Then there exist gj ∈ C∞(T2), j ≥ J0 such that âj , b̂j,� ∈ C∞(T2) for all j ∈ N0, � = −�λj , . . . , �λj , and

ϕ̂j(Mλξ) = âj(ξ)ϕ̂j+1(ξ) and ̂̊
ψj,�(Mλξ) = b̂j,�(ξ)ϕ̂j+1(ξ), j ∈ N0, a.e. ξ ∈ R2. (5.15)

If in addition Mλ is an integer matrix (that is, |λ|1/2 ∈ N), then {aj ; bj,�, bj,�(E·) : � = −�λj , . . . , �λj} is a 
generalized tight Mλ-framelet filter bank, i.e.,

∣∣âj(ξ)∣∣2 +
�λj∑

�=−�λj

(∣∣b̂j,�(ξ)∣∣2 +
∣∣b̂j,�(Eξ)∣∣2) = 1, a.e. ξ ∈ σϕj+1 , (5.16)

and

âj(ξ)âj(ξ + 2πω) +
�λj∑

�=−�λj

[
b̂j,�(ξ)b̂j,�(ξ + 2πω) + b̂j,�(Eξ)b̂j,�

(
E(ξ + 2πω)

)]
= 0 (5.17)

for a.e. ξ ∈ σϕj+1 ∩ (σϕj+1 − 2πω) and for ω ∈ ΩMλ
\{0} with ΩMλ

:= [M−1
λ Z2] ∩ [0, 1)2 and σϕj+1 := {ξ ∈

R2 :
∑

k∈Z2 |ϕ̂j+1(ξ + 2πk)|2 �= 0}.

Proof. It follows from Corollary 6 that ASMλ

J (ϕJ ; {Ψ̊j}∞j=J) in (5.2) is an affine tight Mλ-framelet for L2(R2)
for every J ∈ N0. By the construction of âj , it is easily seen that the first identity in (5.15) holds.

Since supp ϕ̂j(Mλ·) is strictly inside supp ϕ̂j+1, by the smoothness of ϕ̂j and ϕ̂j+1, it is trivial that 
âj ∈ C∞(T2). We next show that there exist gj ∈ C∞(T2) such that b̂j,� ∈ C∞(T2). Since supp ϕ̂j+1

and supp ψ̂j,� are inside [−ρ0π, ρ0π]2, one can construct a function gj ∈ C∞(T2) such that gj(ξ) = 1 for 
ξ ∈ [−ρ0π, ρ0π]2 and gj(ξ) = 0 for ξ ∈ T2\[−ρ1π, ρ1π]2 for some ρ1 such that 0 < ρ0 < ρ1 < 1. Since 

suppωj
λ,t,ρ(Mλ·) ⊆ supp ϕ̂j+1, we have

ωj
λ,t,ρ

(
Mj+1

λ ξ
)

=
(∣∣ϕ̂j+1(ξ)

∣∣2 − ∣∣ϕ̂j(Mλξ)
∣∣2)1/2 =

(∣∣ϕ̂j+1(ξ)
∣∣2 − ∣∣âj(ξ)ϕ̂j+1(ξ)

∣∣2)1/2
=
(
1 −
∣∣âj(ξ)∣∣2)1/2ϕ̂j+1(ξ) =

(
gj(ξ) −

∣∣âj(ξ)∣∣2)1/2ϕ̂j+1(ξ).

Obviously, (gj(ξ) − |âj(ξ)|2)1/2 ∈ C∞(T2). Then,

̂̊
ψj,�(Mλξ) = ωj

λ,t,ρ(Mλξ)
γε(λjξ2/ξ1 + �)√

Γj(ξ)
= b̂j,�(ξ)ϕ̂j+1(ξ)

with b̂j,�(ξ) = b̂j(ξ)γε(λ
jξ2/ξ1+�)√
Γj(ξ) being a function in C∞(T2). Similarly,

˚̂ψj,±�λj (Mλξ) = ωj
λ,t,ρ(Mλξ)

γ∓
λj ,ε,ε0

(λjξ2/ξ1 ± �)√
Γj(ξ)

= b̂j,±�λj (ξ)ϕ̂j+1(ξ).

This proves the second identity in (5.15) and âj , b̂j,� ∈ C∞(T2).
Since Mλ is an integer matrix, by [16, Theorem 17], (5.16) and (5.17) hold. �
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The conclusions in Corollary 7 also hold for ASMλ

J (ϕ; {Ψ̊j}∞j=J) in Corollary 6 by replacing ϕj , aj , gj with 
ϕ, a, g, respectively.

The sequence of systems {ASJ(ϕJ ; {Ψj}∞j=J )}∞J=0 in (4.21) of Theorem 3 with J0 = 0 has two different 
dilation matrices Aλ and EAλE for two cones. On the one hand, the functions ϕJ , J ∈ N0 with the dilation 
matrix Mλ induce an MRA {Vj}∞j=0 with

Vj := span
{
ϕj
(
Mj

λ · −k
)

: k ∈ Z2}.
The function space Vj is shift-invariant on the lattice Nj

λZ
2. On the other hand, at the scale level j ∈ N0, 

the wavelet subspace Wj is given by

Wj := span
{
ψj,�
(
S�Aj

λ · −k
)
, ψj,�

(
S�Aj

λE · −k
)

: � = −�λj , . . . , �λj , k ∈ Z2}.
While Vj is shift-invariant on the lattice Nj

λZ
2, Wj is not shift-invariant on the lattice Nj

λZ
2. Define 

Ψ̊j := {ψ̊j,� : � = −�λj , . . . , �λj} with j ∈ N0 and ψ̊j,� in (5.4). Define the wavelet subspace W̊j of 
{ASMλ

J (ϕJ ; {Ψ̊j}∞j=J)}∞J=0 at the scale level j as follows:

W̊j := span
{
ψ̊j,�
(
Mj

λ · −k
)
, ψ̊j,�

(
Mj

λE · −k
)

: � = −�λj , . . . , �λj , k ∈ Z2}.
It is trivial to see that W̊j is shift-invariant on the lattice Nj

λZ
2.

By Corollary 6, ASMλ

J (ϕJ ; {Ψ̊j}∞j=J) is a tight Mλ-framelet for L2(R2) for all J ∈ N0. By (5.16) in 

Corollary 7 and a similar relation as in [16, (1.6)], we have Vj ⊆ Vj+1 and W̊j ⊆ Vj+1 for all j ∈ N0. By the 
relations in (5.4), we have

W̊j := span
{
ψj,�
(
S�Aj

λ · −S�D−j
λ k
)
, ψj,�

(
S�Aj

λE · −S�D−j
λ k
)

: � = −�λj , . . . , �λj , k ∈ Z2}.
When λ is an integer, we have Z2 ⊆ S�D−j

λ Z2 and we see that (5.6) implies (5.7) by ̂̊ψj,� = ψ̂j,�(S�Dj
λ·). 

Therefore, for this case, we have Wj ⊆ W̊j for all j ∈ N0, that is, when λ is an integer, the affine shear 
tight frame ASJ(ϕJ ; {Ψj}∞j=J ) is indeed a (properly re-scaled) subsystem of the affine tight Mλ-framelet 
ASMλ

J (ϕJ ; {Ψ̊j}∞j=J ) through subsampling. Since both of these two systems share the same refinable functions 
ϕj , Vj of the MRA for these two systems are the same.

6. Numerical implementation and comparison results on image denoising

In this section we first discuss how to construct a particular family of smooth quasi-stationary affine 
shear tight frames through the construction of directional affine tight framelets and their underlying di-
rectional tight framelet filter banks. Then we briefly discuss the numerical implementation of our smooth 
affine shear tight frames by employing their underlying filter banks, and compare their performance on the 
image denoising problem to other existing directional multiscale representation systems such as curvelets 
and shearlets. Our construction and implementation are based on the underlying filter banks of our quasi-
stationary smooth affine shear tight frames.

In a nutshell, we shall construct a sequence of directional tight framelet filter banks {a; bj,�, bj,�(E·) :
� = −�λj , . . . , �λj} with j ∈ N0 for decomposition and reconstruction of images. Here, j corresponds to the 
scale level and Mλ = λ2I2 is an integer matrix with λ > 1. As argued in [16] for directional tight framelets, 
when j increases, the number �λj of directions should also increase. With such a sequence of filter banks, 
we can define ϕ through ϕ̂ := limJ→∞

∏J
j=0 â(N

j+1
λ ·) and ψ̊j,� by ̂̊ψj,�(MT

λξ) = b̂j,�(ξ)ϕ̂(ξ), ξ ∈ R2. Then 

we automatically have ϕ̂(Mλ·) = âϕ̂. Let Ψ̊j := {ψ̊j,� : � = −�λj , . . . , �λj}. Define ASMλ

J (ϕ; {Ψ̊j}∞j=J ) as in 
(5.3). Now by [16, Theorem 17] (also cf. [16, Corollary 18]), we have a sequence of affine tight Mλ-framelets 
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{ASMλ

J (ϕ; {Ψ̊j}∞j=J)}∞J=0. By (5.4), we can define ψj,� to be ψj,� = λjψ̊j,�(Dj
λS

�·). Let Ψj := {ψj,�(S−�·) :
� = −�λj , . . . , �λj}. Assume that â ≥ 0 and b̂j,� ≥ 0 for all j ∈ N0 and � = −�λj , . . . , �λj . It follows from 
[16, Corollary 18] that (5.7) holds and ϕ̂(ξ)ϕ̂(ξ + 2πk) = 0 for all k ∈ Z2\{0}. Moreover, all the generators 
in {ϕ} ∪ {Ψ̊j}∞j=0 have nonnegative Fourier transforms. If supp â is small enough, then the support of ϕ̂
will be contained inside [−ρπ, ρπ]2 for sufficiently small 0 < ρ < 1. Consequently, due to the identity ̂̊
ψj,�(MT

λ ·) = b̂j,�ϕ̂, the support of ψ̂j,� will be small enough so that (5.6) holds. Consequently, by Theorem 5, 
we also have a sequence of affine shear tight frames {ASJ(ϕ; {Ψj}∞j=J)}∞J=0 as defined in (4.25).

Following the lines developed in [16] for the construction of directional tight framelets, we next give 
a concrete example for the construction of a sequence of tight framelet filter banks for our affine shear 
tight frames. For simplicity, we assume λ =

√
2 so that Mλ = 2I2 is an integer matrix, though the same 

construction can be modified for general λ satisfying |λ|1/2 ∈ N. For parameters c0 > 0 and ε0 > 0 satisfying 
c0 + ε0 ≤ π/2 (for downsampling by 2), we can define a low-pass filter a : Z2 → R by

â(ξ) = χ[−c0,c0];ε0,ε0(ξ1)χ[−c0,c0];ε0,ε0(ξ2), ξ ∈ [−π, π)2 (6.1)

with the bump function χ[cL,cR];εL,εR being defined to be

χ[cL,cR];εL,εR(t) =

⎧⎨⎩
ν( t−cL

εL
) if t < cL + εL,

1 if cL + εL ≤ t ≤ cR − εR,

ν( cR−t
εR

) if t > cR − εR.

Now at each scale level j ∈ N0 and kj ∈ N0, using a similar idea as in [16] for directional tight framelets, we 
are going to construct directional high-pass filters bj,� : Z2 → C such that {a; bj,�, bj,�(E·) : � = −2kj , . . . , 2kj}
forms a tight Mλ-framelet filter bank:

∣∣â(ξ)∣∣2 +
2kj∑

�=−2kj

(∣∣b̂j,�(ξ)∣∣2 +
∣∣b̂j,�(Eξ)∣∣2) = 1, ξ ∈ R2, (6.2)

â(ξ)â(ξ + 2πω) +
2kj∑

�=−2kj

[
b̂j,�(ξ)b̂j,�(ξ + 2πω) + b̂j,�(Eξ)b̂j,�

(
E(ξ + 2πω)

)]
= 0, ξ ∈ R2 (6.3)

for all ω ∈ [NλZ
2] ∩ [0, 1)2 with Nλ = 1

2 I2 (note that we assumed 
√
λ = 2). The total number of 

shear directions at this scale level j is 2kj+2 + 2 with 2kj+1 + 1 shear directions for both the hori-
zontal cone and the vertical cone. To this end, we use an auxiliary function a1 ∈ L2(R2) defined by 
â1(ξ) := χ[−c1,c1];ε1,ε1(ξ1)χ[−c1,c1];ε1,ε1(ξ2) (with c1 = π and c1 + ε1− (c0− ε0) ≤ π for downsampling at least 
by 2 for high-pass filter coefficients). Thanks to the property of ν, one can show that

∑
k∈Z2

∣∣â1(ξ + 2πk)
∣∣2 = 1 ∀ξ ∈ R2. (6.4)

We define a function b ∈ L2(R2) by

b̂(ξ) :=
{√

|â1(ξ)|2 − |â(ξ)|2 if ξ ∈ supp â1,

0 otherwise.
(6.5)

Now, we apply the splitting technique to b̂ for the construction of high-pass filters bj,�. Recall the definition 
of Γj in (4.10), we have
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Γkj
(ξ) =

2kj∑
�=−2kj

(∣∣γε

(
2kjξ2/ξ1 + �

)∣∣2 +
∣∣γε

(
2kjξ1/ξ2 + �

)∣∣2), ξ �= 0 (6.6)

for some 0 ≤ ε ≤ 1/2. Note that b̂(ξ)γε(2kjξ2/ξ1 + �)/
√

Γkj
(ξ) is not a 2πZ2-periodic function. We define 

b̂j,�, � = −2kj , . . . , 2kj to be the 2πZ2-periodization of b̂(ξ)γε(2kjξ2/ξ1 + �)/
√

Γkj
(ξ) as follows:

b̂j,�(ξ) :=
∑

k=(k1,k2)∈Z2

b̂(ξ + 2πk)γε(2kj (ξ2 + 2πk2)/(ξ1 + 2πk1) + �)√
Γkj

(ξ + 2πk)
, ξ ∈ T2\{0} (6.7)

and b̂j,�(0) := 0. Now, in view of (6.4) and (6.6), it is easy to show that {a; bj,�, bj,�(E·) : � = −2kj , . . . , 2kj}
is a tight Mλ-framelet filter bank such that â ≥ 0 and b̂j,� ≥ 0 for all j ∈ N0 and � = −2kj , . . . , 2kj . For 
simplicity, we denote by Bj := {bj,�, bj,�(E·) : � = −2kj , . . . , 2kj}. Then we have a tight Mλ-framelet filter 
bank {a; Bj} at every scale level j ∈ N0. For practical applications, we only apply {a; Bj}, j = 0, . . . , J − 1
for some positive integer J , where J is the level of decomposition.

We next discuss the implementation of the forward transform (decomposition). Without loss of generality 
and for simplicity of presentation, we assume that the image size N = 2K for some integer K ≥ 0. Choose 
a positive integer J ≤ K − 1 as the decomposition level and a sequence of nonnegative integers kj, j =
0, . . . , J−1 corresponding to the number of shear directions at the scale level j. Let Λ(K,K) := [0, 2K−1]2∩Z2

be a Cartesian grid for images of size 2K × 2K . Then the (normalized) discrete Fourier transform (DFT) 
FK maps an image uJ : Λ(K,K) → R to a 2πZ2-periodic image ûJ : Λ̂(K,K) → C in the frequency domain, 
where ûJ(k) = (FKuJ)(k) := 1

2K

∑
n∈ΛK

uJ(n)e−in·k/2K and k ∈ Λ̂(K,K) := 2π
2K Λ(K,K). In what follows, we 

regard uJ as a 2KZ2-periodic image; that is, uJ (· + 2Kk) = uJ for all k ∈ Z2.
At the scale level J , with uJ as our input image, we apply the tight framelet filter bank {a; BJ−1}. For 

the low-pass coefficients, we first compute the convolution uJ ∗ a given by [uJ ∗ a](k) :=
∑

n u
J(n)a(n − k), 

k ∈ Z2, which can be implemented by F−1
K (ûJ · â|Λ̂(K,K)

), where â|Λ̂(K,K)
is the restriction of â on the 

lattice Λ̂K . Applying the downsampling by 2 operation on uJ ∗ a, we obtain the 2K−1Z2-periodic low-pass 
coefficients uJ−1 : Λ(K−1,K−1) → R by uJ−1(k) = 2uJ(2k), k ∈ Z2.

For the high-pass coefficients cJ−1,�
h : Λ(K−1,K−kJ−1) → C and cJ−1,�

v : Λ(K−kJ−1,K−1) → C, similar to 
the case of the low-pass coefficients, we have

cJ−1,�
h (k1, k2) =

√
2kJ−1+1

[
F−1

K

(
ûJ · b̂J−1,�

∣∣
Λ(K,K)

)](
2k1, 2kJ−1k2

)
, (k1, k2) ∈ Λ(K−1,K−kJ−1),

cJ−1,�
v (k1, k2) =

√
2kJ−1+1

[
F−1

K

(
ûJ · b̂J−1,�(E·)

∣∣
Λ(K,K)

)](
2kJ−1k1, 2k2

)
, (k1, k2) ∈ Λ(K−kJ−1,K−1),

for � = −2kJ−1 , . . . , 2kJ−1 .
Now uJ−1 is a 2K−1 × 2K−1 image. Repeating the above procedure by replacing uJ , FK , and {a; BJ−1}

with uJ−1, FK−1, and {a, BJ−2}, respectively. We can obtain the next scale low-pass coefficients uJ−2

and high-pass coefficients cJ−2,�
h , cJ−2,�

v , � = −2kJ−2 , . . . , 2kJ−2 . Repeating the procedure for J − 2, . . . , 0. 
Eventually, we have a sequence of coefficients: {u0} ∪ {cj,�h , cj,�v : � = −2kj , . . . , 2kj}J−1

j=0 .
For the implementation of the backward transform (reconstruction), it is merely the reverse of the above 

steps with each operator replaced by its adjoint operator. For example, suppose that we are at the scale 
level j with {uJ−j} ∪ {cJ−j,�

h , cJ−j,�
v : � = −2kJ−j , . . . , 2kJ−j} given as above and would like to reconstruct 

the finer scale image uJ−j+1 : Λ(K−j+1,K−j+1) → R. We first upsample the low-pass filter image uJ−j to 
be cJ−j+1

0 : Λ(K−j+1,K−j+1) → R:

cJ−j+1
0 (k) =

{
2uJ−j(k/2) if k/2 ∈ Λ(K−j,K−j),
0 otherwise.
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Similarly, we upsample the high-pass coefficients to obtain cJ−j+1,�
h,0 : Λ(K−j+1,K−j+1) → R and cJ−j+1,�

v,0 :
Λ(K−j+1,K−j+1) → R by

cJ−j+1,�
h,0 (k1, k2) =

{√
2kJ−j+1cj,�h (k1/2, k2/2kJ−j ) if (k1/2, k2/2kJ−j ) ∈ Λ(K−j,K−kJ−j),

0 otherwise

and

cJ−j+1,�
v,0 (k1, k2) =

{√
2kJ−j+1cj,�v (k1/2kJ−j , k2/2) if (k1/2kJ−j , k2/2) ∈ Λ(K−kJ−j ,K−j),

0 otherwise.

The reconstructed image uJ−j+1 is then given by

uJ−j+1 = F−1
K−j+1

[
FK−j+1

(
cJ−j+1
0

)
· â
∣∣
Λ(K−j+1,K−j+1)

+
2kJ−j∑

�=−2kJ−j

FK−j+1
(
cJ−j+1,�
h,0

)
· b̂J−j,�

∣∣
Λ(K−j+1,K−j+1)

+
2kJ−j∑

�=−2kJ−j

FK−j+1
(
cJ−j+1,�
v,0

)
· b̂J−j,�(E·)

∣∣
Λ(K−j+1,K−j+1)

]
.

In the rest of this section we apply our systems to the image denoising problem. We choose the decompo-
sition level J = 4; that is, we decompose an image into 5 scales. The parameters c0, ε0, ε1 of a1, a are given 
by c0 = 33/32, ε0 = 69/128, ε1 = 69/128, and ε = 1/2 for γε. For the finest scale level, we use k4 = 4 (total 
16 shear directions, 8 on the horizontal cone and 8 on the vertical cone). For the next three scales, we use 
k3 = k2 = k1 = 2 (8 shear directions), and for the coarsest scale level, we use k0 = 1 (4 shear directions). 
The redundancy rate of our system is about 5.4.

For image denoising, we employ the local-soft (LS) thresholding method: For each sub-band coefficients 
cj,�h , cj,�v , we first normalize them with respect to the sub-band energy, which can be computed by applying 
the backward transform to a delta image on the support of cj,�h or cj,�v and then compute the l2 norm of the 
reconstructed image. Using a local window of size 9 × 9 with uniform weight 1

81 and convolving with the 
normalized coefficients cj,�h , cj,�v centering at position k, we can estimate the local coefficient variance σk at 
position k and then use the threshold value T = σ2

(σ2
k −σ2)1/2 for soft threshold at position k. As usual, the 

standard deviation σ of Gaussian noise is assumed to be known. Note that the thresholding procedure does 
not apply to the low-pass coefficients u0.

We test two standard images: Lena and Barbara of size 512 × 512. We first employ symmetric boundary 
extension (with 32 pixels) on the noisy image to avoid boundary effect. We then apply our forward transform 
to obtain the coefficients. After performing the local-soft thresholding procedure, we then apply the backward 
transform to the thresholded coefficients and throw away the extended boundary pixels to obtain the final 
denoised image.

We compare the performance of our method with two other known directional multiscale representation 
systems: Curvelets in [2] and compactly supported shearlets in [29,30]. All implementations of these two 
directional multiscale representation systems using curvelets and shearlets can be downloaded from the 
corresponding authors’ websites. We download each of their packages and run their denoising codes for test 
images of Lena and Barbara. The peak signal-to-noise ratio (PSNR) is used to measure the performance 
and is defined to be PSNR(u, ̊u) = 10 log10

2552
, where u is the original clean image and ů is the 
MSE(u,̊u)
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Table 1
PSNR values for test images of Lena and Barbara. ASTF is our proposed affine shear tight frames with redundancy rate 5.4. 
CurveLab uses frequency wrapping with redundancy rate 2.8. ShearLab DST and DNST employ compactly supported shearlets 
which have redundancy rate 40 for DST and 49 for DNST and are implemented by an undecimated transform.

σ 512 × 512 Lena 512 × 512 Barbara
ASTF 
(LS)

CurveLab 
(Wrap)

ShearLab 
(DST)

ShearLab 
(DNST)

ASTF 
(LS)

CurveLab 
(Wrap)

ShearLab 
(DST)

ShearLab 
(DNST)

5 38.19 35.75(2.44) 38.22(−0.03) 38.01(0.18) 37.40 33.81(3.59) 37.76(−0.36) 37.17(0.23)
10 35.18 33.34(1.84) 35.19(−0.01) 35.35(−0.17) 33.74 29.16(4.58) 33.94(−0.20) 33.62(0.12)
15 33.50 31.96(1.54) 33.41(0.09) 33.72(−0.22) 31.75 26.68(5.07) 31.71(0.04) 31.54(0.21)
20 32.33 30.89(1.44) 32.12(0.21) 32.51(−0.18) 30.36 25.46(4.90) 30.12(0.24) 30.08(0.28)
25 31.40 30.06(1.34) 31.09(0.31) 31.51(−0.11) 29.29 24.84(4.45) 28.90(0.39) 28.93(0.36)
30 30.64 29.32(1.32) 30.25(0.39) 30.68(−0.04) 28.42 24.45(3.97) 27.90(0.52) 27.97(0.45)
35 29.98 28.67(1.31) 29.53(0.45) 29.96(0.02) 27.70 24.14(3.56) 27.07(0.63) 27.18(0.52)
40 29.40 28.13(1.27) 28.92(0.48) 29.32(0.08) 27.08 23.87(3.21) 26.36(0.72) 26.48(0.60)
45 28.90 27.62(1.28) 28.37(0.53) 28.74(0.16) 26.54 23.63(2.91) 25.75(0.79) 25.86(0.68)
50 28.46 27.13(1.33) 27.89(0.57) 28.21(0.25) 26.05 23.40(2.65) 25.22(0.83) 25.31(0.74)

denoised image and MSE(u, ̊u) is the mean squared error 1
N2

∑
k∈[0,N−1]2 |u(k) − ů(k)|2. The unit of PSNR 

is dB.
The CurveLab package at http :/ /www .curvelab .org has two subpackages: one uses un-equispace FFT 

and the other uses frequency wrapping. Here we use the frequency wrapping package; detailed information 
on CurveLab package can be found at [3]. The performance of these two subpackages are very close to each 
other (less than 0.2 dB differences) and here we choose the one with the frequency wrapping for comparison. 
The total number of scales is 5. At the finest scale level, the CurveLab uses an isotropic wavelet transform 
to avoid checkerboard effect. At the scale level 4, 32 (angular) directions are used. At the scale levels 3 
and 2, 16 (angular) directions are used. At the coarsest scale level, 8 (angular) directions are used. The 
redundancy rate of the CurveLab wrapping package is about 2.8.

The ShearLab package at http :/ /www .shearlab .org also has many subpackages for different implemen-
tations. Here we choose two subpackages using compactly supported shearlets. One is DST as described in 
[29] and the other is DNST as described in [30]. The DNST in [30] has the best performance so far in the 
ShearLab package. For DST, the total number of scales is 5. 10 shear directions are used across all scale 
levels. The redundancy rate of the DST is 40. For DNST, the total number of scales is 4. 16 shear directions 
are used for the finest scale levels 4 and 3; while 8 shear directions are used for the other two scale levels. 
All filters are implemented in an undecimated fashion. The redundancy rate of DNST is 49.

We compare the denoising performance over different noise level σ ranging from 5 to 50 with step size 5. 
The comparison results are presented in Table 1. The values in the brackets are gain or loss of our method 
comparing to other methods. From Table 1, we see that our method has significant improvement over 
CurveLab. We have about 1.51 dB improvement in average for Lena and 3.89 dB improvement in average 
for Barbara. Comparing our method with DST, we have about 0.30 dB improvement in average for Lena and 
0.36 dB improvement in average for Barbara. Moreover, our method has better performance than that of 
DST for all noise level except when noise level σ is small (σ = 5, 10). When the noise level is high (σ = 50), 
we have 0.57 dB improvement over DST for Lena and 0.83 dB improvement for Barbara. Comparing our 
method with DNST, the average performance is the same for both our method and DNST for Lena while 
our method has 0.42 dB improvement in average for Barbara. For Lena, our method performs slightly 
worst than that of DNST when σ ≤ 30 but outperforms DNST when σ > 30. For Barbara, our method 
outperforms DNST for all σ. We must point out that, in terms of redundancy, CurveLab has the lowest 
redundancy rate 2.8 but in general has far worse performance. DNST and DST have better performance 
over CurveLab, yet their redundancy is significantly higher (40 for DST and 49 for DNST since they are 
undecimated transforms.) than that of CurveLab. Not only our method has small redundancy rate 5.4, but 
also the performance of our method is in general better than DNST and DST, especially for Barbara.

http://www.curvelab.org
http://www.shearlab.org
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7. Discussion and extension

In this paper, we mainly investigate affine shear systems in L2(R2) for the purpose of simplicity of 
presentation. Our characterization and construction can be easily extended to higher dimensions. In Rd

with d ≥ 2, the shear operator Sτ with τ = (τ2, . . . , τd) ∈ Rd−1 and Aλ are of the form:

Sτ =

⎡⎢⎢⎣
1 τ2 . . . τd
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎦ and Aλ =

⎡⎢⎢⎣
λ2 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

⎤⎥⎥⎦ .
Define Sτ := (Sτ )T and denote En to be the elementary matrix corresponding to the coordinate exchange 
between the first axis and the nth one. For example, E1 = Id and E2 = diag(E, Id−2). For d = 2, we have 
E2 = E. Let Ψj be given by

Ψj :=
{
ψ
(
S−�·
)

: �n = −rnj , . . . , r
n
j , n = 2, . . . , d

}
∪
{
ψj,�
(
S−�·
)

: |�n| = rnj + 1, . . . , snj , n = 2, . . . , d
}

with � = (�2, . . . , �d) ∈ Zd−1 and ψ, ψj,� being functions in L2(Rd). For the low frequency part, it corresponds 
to a function ϕj ∈ L2(Rd). Then an affine shear system in Rd is defined to be

AS
J

(
ϕJ ; {Ψj}∞j=J

)
=
{
ϕJ

Mj
λ;k : k ∈ Zd

}
∪
{
hAj

λEn;k : k ∈ Zd, n = 1, . . . , d, h ∈ Ψj

}∞
j=J

. (7.1)

All the characterizations for affine shear tight frames and sequences of affine shear tight frames can be 
carried over to the d-dimensional case for the system defined as in (7.1). Since the essential idea of our smooth 
non-stationary construction and smooth quasi-stationary construction is frequency splitting (see [14]), our 
2D construction thus can be easily extended to any high dimensions once an ωj is constructed in a way 
satisfying ωj = (|ϕ̂j+1(Nλ·)|2 − |ϕ̂j |2)1/2 for both the non-stationary and quasi-stationary construction. 
Filter banks associated with high-dimensional affine systems can be obtained as well as their connection to 
cone-adapted high-dimensional directional tight framelets.

Several problems remain open in our study of affine shear tight frames. For example, the existence and 
construction of affine shear tight frames with compactly supported generators in the spatial domain. If 
we drop the tightness requirement, there are indeed compactly supported shearlet frames, e.g., see [22]. In 
view of the connection between affine shear tight frames and cone-adapted directional tight framelets, one 
might want to consider the existence and construction of cone-adapted directional framelets with compactly 
supported generators first. Another problem is the existence of affine shear tight frames with only one 
smooth generator; that is, Ψj := {ψ(S−�·) : � = −sj , . . . , sj} is from one generator ψ. Considering that 
the shear operator along the seamlines is not consistent for both cones, our conjecture is that there is even 
no affine shear tight frame with one single generator that is continuous in the frequency domain. In other 
words, additional seamline generators seem to be unavoidable when considering cone-adapted construction. 
When λ > 1 is an integer, we know that an affine shear tight frame can be regarded as a subsystem of a 
directional tight framelet through sub-sampling, from which an underlying filter bank exists for the affine 
shear tight frame. However, when λ > 1 is not an integer, though an affine shear tight frame is still related 
to a cone-adapted directional tight framelet via (5.9), the lattice Dj

λS
�Z2 is no longer an integer lattice, the 

sub-sampling procedure thus fails and we do not know whether there is still an underlying filter bank for 
such an affine shear tight frame.

Since our affine shear tight frames includes the smooth tight frame of shearlets in [13] as a special 
case (when λ = 2), the property of optimal sparse approximation for cartoon-like functions holds true 
automatically. Curvelets and shearlets possessing optimal sparse approximation property necessarily should 
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have low redundancy rate and their performance for practical applications such as the image denoising 
problem could be theoretically optimal after performing the simple soft/hard thresholding on the coefficients. 
However, by Table 1 for image denoising, curvelet (Wrap) with the smallest redundancy rate has significantly 
lower performance than shearlet (DNST), which has the highest redundancy rate and is implemented by 
a fully un-decimated transform similar to an undecimated wavelet transform. Therefore, shearlet (DNST) 
has even much higher redundancy rate than the directional tight framelets in [16] and affine shear tight 
frames in this paper. Consequently, due to the high/maximum redundancy rate, shearlet (DNST) cannot 
have the optimal sparse approximation property. For image denoising, this dilemma between optimal sparse 
approximation property and redundancy rate remains as a mystery to us. Nevertheless, Table 1 suggests 
that directional multiscale representations indeed are very important for high-dimensional problems such 
as image denoising.

Our results reveal that the affine shear tight frames are connected to the affine tight framelets in [16] via 
subsampling, which shows that there are an underlying filter bank structures for the affine shear tight frames. 
Moreover, in term of numerical implementation, one only needs to implement the affine tight framelets while 
the implementation of affine shear tight frames are then automatically follows by subsampling. The compar-
ison results show the advantages of our construction and implementation over several existing directional 
multiscale representation systems, including the compactly supported shearlets implementation. Although 
there exist compactly supported shearlet systems, yet they are frames but not tight frames. In terms of im-
plementations, one needs to use iterative methods to perform the inverse transform for compactly supported 
shearlets. It is still open for the construction of compactly supported affine shear tight frames.

8. Proofs

In this section, we provide proofs of some results in the paper.

8.1. Proofs of results in Section 2

Proof of Corollary 2. Note that for a fixed j, ψ̂(S�Bj
λ·) = χQj,�

with

Qj,� =
{
ξ ∈ R2 : λ−j(−�− 1/2) ≤ ξ2/ξ1 ≤ λ−j(−� + 1/2), |ξ1| ∈ (λ2j−2ρπ, λ2jρπ]

}
and ψ̂j,−�λj (S−�λj B

j
λ·) = χQj,−�

λj
, ψ̂j,�λj (S�λj B

j
λ·) = χQj,�

λj
with

Qj,−�λj =
{
ξ ∈ R2 : λ−j(�λj − 1/2) ≤ ξ2/ξ1 ≤ 1, |ξ1| ∈ (λ2j−2ρπ, λ2jρπ]

}
,

Qj,�λj =
{
ξ ∈ R2 : −1 ≤ ξ2/ξ1 ≤ −λ−j(�λj − 1/2), |ξ1| ∈ (λ2j−2ρπ, λ2jρπ]

}
.

Thus, we have,

I0
Ψj

(
Bj
λ·
)

=
�λj−1∑

�=−�λj−1

∣∣ψ̂(S�Bj
λ·
)∣∣2 +

∣∣ψ̂j,−�λj
(
S−�λj B

j
λ·
)∣∣2 +

∣∣ψ̂j,�λj
(
S�λj B

j
λ·
)∣∣2

= χ⋃�
λj

�=−�
λj

Qj,�

= χ{ξ∈R2:−1≤ξ2/ξ1≤1,|ξ1|∈(λ2j−2ρπ,λ2jρπ]}.

Similarly, we have

I0
Ψj

(
Bj
λE·
)

= χ{ξ∈R2:−1≤ξ1/ξ2≤1,|ξ2|∈(λ2j−2ρπ,λ2jρπ]}.

Consequently, we obtain
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I0
ϕ(ξ) +

∞∑
j=0

[
I0
Ψj

(
Bj
λξ
)

+ I0
Ψj

(
Bj
λEξ
)]

= 1, a.e. ξ ∈ R2.

Hence, (2.7) holds.
Since 0 < ρ ≤ 1, we have supp(ϕ̂) ⊆ [−π, π]2 and supp(ψ̂) ⊆ [−π, π]2. Hence, ϕ̂(ξ)ϕ̂(ξ + 2kπ) = 0 and 

ψ̂(ξ)ψ̂(ξ + 2kπ) = 0, a.e. ξ ∈ R2 and k ∈ Z2\{0}. The case that ψ̂j,±�λj (ξ)ψ̂j,±�λj (ξ + 2kπ) = 0 a.e. ξ ∈ R2

and k ∈ Z2\{0} can be argued in the same way. Hence, (2.8) holds.
Note that all generators are nonnegative. Therefore, by Corollary 1, AS(ϕ; {Ψj}∞j=0) with ϕ and Ψj being 

given as in (2.9) and (2.10) is an affine shear tight frame for L2(R2). �
8.2. Proofs of results in Section 4.1

Proof of Proposition 1. Explicitly, we have

αλ,t,ρ(ξ) =

⎧⎨⎩
1 if |ξ| ≤ λ−2(1 − t)ρπ,
ν(−2λ2|ξ|+(2−t)ρπ

tρπ ) if λ−2(1 − t)ρπ < |ξ| ≤ λ−2ρπ,

0 otherwise.
(8.1)

Hence, by the smoothness of ν and noting [ dn

dξn ν(ξ)]|ξ=1 = δ(n) we have αλ,t,ρ ∈ C∞
c (R).

If 1 − t ≥ λ−2, by the definition, βλ,t,ρ can be written as

βλ,t,ρ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
ν(2λ2|ξ|−(2−t)ρπ

tρπ ) if λ−2(1 − t)ρπ ≤ |ξ| < λ−2ρπ,

1 if λ−2ρπ ≤ |ξ| < (1 − t)ρπ,
ν(−2|ξ|+(2−t)ρπ

tρπ ) if (1 − t)ρπ ≤ |ξ| ≤ ρπ,

0 otherwise.

(8.2)

Again, by the smoothness of ν and [ dn

dξn ν(ξ)]|ξ=1 = δ(n), we have βλ,t,ρ ∈ C∞
c (R).

If 0 ≤ 1 − t < λ−2, then βλ,t,ρ is given by

βλ,t,ρ(ξ) =
{

[(ν(−2|ξ|+(2−t)ρπ
tρπ ))2 − (ν(−2λ2|ξ|+(2−t)ρπ

tρπ ))2]1/2 if λ−2(1 − t)ρπ ≤ |ξ| ≤ ρπ,

0 otherwise.
(8.3)

Note that ν̃(ξ) := (ν(−2|ξ|+(2−t)ρπ
tρπ ))2− (ν(−2λ2|ξ|+(2−t)ρπ

tρπ ))2 > 0 for all ξ such that |ξ| ∈ (λ−2(1 − t)ρπ, ρπ). 
Hence, βλ,t,ρ(ξ) =

√
ν̃(ξ) is infinitely differentiable for all |ξ| ∈ (λ−2(1 − t)ρπ, ρπ). For all other ξ such that 

|ξ| /∈ (λ−2(1 − t)ρπ, ρπ), all the derivatives of ν̃(ξ) vanish. Then, using the Taylor expansion for βλ,t,ρ =
√
ν̃, 

we see that all the derivatives of βλ,t,ρ vanish for all |ξ| /∈ (λ−2(1 − t)ρπ, ρπ). Hence, βλ,t,ρ ∈ C∞
c (R).

Therefore, αλ,t,ρ, βλ,t,ρ ∈ C∞
c (R). By the definition of βλ,t,ρ, we have |αλ,t,ρ(ξ)|2 + |βλ,t,ρ(ξ)|2 =

|αλ,t,ρ(λ−2ξ)|2 for all ξ ∈ R.
Similar to the cases of βλ,t,ρ, if 1 − t ≥ λ−2, then we have

μλ,t,ρ(ξ) =
{
αλ,t,ρ(λ2ξ) if |ξ| ≤ λ−4ρπ,

0 if λ−4ρπ < |ξ| ≤ π,

υλ,t,ρ(ξ) =
{
ν(2λ4|ξ|−(2−t)ρπ

tρπ ) if λ−4(1 − t)ρπ ≤ |ξ| ≤ λ−2ρπ,

gλ,t,ρ(ξ) if ξ ∈ [−π, π)\ suppβλ,t,ρ(λ2·).
(8.4)

In this case, obviously, μλ,t,ρ ∈ C∞(T). Note that [ dn

dξn ν(−2λ4|ξ|+(2−t)ρπ
tρπ )]|ξ=±λ−2ρπ = δ(n). By our choice 

of gλ,t,ρ, we see that υλ,t,ρ ∈ C∞(T).
If 0 ≤ 1 − t < λ−2, then we have



334 B. Han, X. Zhuang / Appl. Comput. Harmon. Anal. 39 (2015) 300–338
μλ,t,ρ(ξ) =

⎧⎨⎩ ν(−2λ4|ξ|+(2−t)ρπ
tρπ )

ν(−2λ2|ξ|+(2−t)ρπ
tρπ )

if |ξ| ≤ λ−4ρπ,

0 if λ−4ρπ < |ξ| ≤ π,

(8.5)

and

υλ,t,ρ(ξ) =

⎧⎨⎩
[(ν(−2λ2|ξ|+(2−t)ρπ

tρπ ))2−(ν(−2λ4|ξ|+(2−t)ρπ
tρπ ))2]1/2

ν(−2λ2|ξ|+(2−t)ρπ
tρπ )

if λ−4(1 − t)ρπ ≤ |ξ| ≤ λ−2ρπ,

gλ,t,ρ(ξ) if ξ ∈ [−π, π)\ suppβλ,t,ρ(λ2·).
(8.6)

Note that the function ν(−2λ2|ξ|+(2−t)ρπ
tρπ ) is strictly positive for all ξ such that |ξ| ≤ λ−4ρπ. Hence, 

1
ν(−2λ2|ξ|+(2−t)ρπ

tρπ )
is infinitely differentiable for all ξ such that |ξ| ≤ λ−4ρπ. Since ν is C∞, the product 

of ν(−2λ4|ξ|+(2−t)ρπ
tρπ ) and 1

ν(−2λ2|ξ|+(2−t)ρπ
tρπ )

is infinitely differentiable for all ξ such that |ξ| ≤ λ−4ρπ. For ξ

such that λ−4ρπ ≤ |ξ| ≤ π, all the derivatives of μλ,t,ρ(ξ) vanish. Consequently, μλ,t,ρ ∈ C∞(T). Observe 

that [(ν(−2λ2|ξ|+(2−t)ρπ
tρπ ))2 − (ν(−2λ4|ξ|+(2−t)ρπ

tρπ ))2]1/2 = ν(−2λ2|ξ|+(2−t)ρπ
tρπ )) for λ−2(1 − t)ρπ ≤ |ξ| ≤ λ−2ρπ. 

By similar arguments, we conclude that υλ,t,ρ ∈ C∞(T).
Therefore, μλ,t,ρ, υλ,t,ρ ∈ C∞(T). By their constructions, it is easy to check that αλ,t,ρ(λ2ξ) =

μλ,t,ρ(ξ)αλ,t,ρ(ξ) and βλ,t,ρ(λ2ξ) = υλ,t,ρ(ξ)αλ,t,ρ(ξ) for ξ ∈ R. �
Proof of Proposition 2. Since γε is a function in C∞

c (R) and the function f(ξ) := ξ2/ξ1 or ξ1/ξ2 is infinitely 
differentiable for all ξ = (ξ1, ξ2) ∈ R2 such that both ξ1 �= 0 and ξ2 �= 0, we see that by Taylor expansion 
Γj is infinitely differentiable for ξ ∈ R2 such that both ξ1 �= 0 and ξ2 �= 0. For a fixed ξ1 �= 0, we have

Γj(ξ) =
�λj−1∑

�=−�λj +1

∣∣γε

(
λjξ2/ξ1 + �

)∣∣2 +
∣∣γ∓

λj ,ε,ε0

(
λjξ2/ξ1 ± �λj

)∣∣2
for |ξ2| small enough in view of the supports of γε and γλj ,ε,ε0 , which implies that Γj(ξ) is infinitely 
differentiable at (ξ1, 0) with ξ1 �= 0. Similarly, we have Γj(ξ) is infinitely differentiable at (0, ξ2) with ξ2 �= 0. 
Hence, we have Γj ∈ C∞(R2\{0}). By its definition as in (4.9), Γj(E·) = Γj and Γj(tξ) = Γj(ξ) for t �= 0
and ξ �= 0.

By the property of γε, γλ,ε,ε0 as in (4.7), it is easily seen that 1 ≤ Γj(ξ) ≤ 2 for ξ �= 0. Now to see that 
(4.11) holds, we notice that the seamline element on the horizontal cone with respect to � = −�λj has part 
of the piece overlapping with the other cone. By the support of γ+

λ,ε,ε0
, for this seamline element, we have 

ξ2/ξ1 ≤ 1 + 2ε0
λ2j . Hence, those elements on the vertical cone with support satisfying |ξ1/ξ2| ≤ λ2j

λ2j+2ε0 is not 
affected by that seamline elements. By symmetry, same result holds for seamline elements on vertical cone 
affecting the horizontal cone. Therefore, (4.11) holds.

The proof for Γj ∈ C∞(R2\{0}) is similar to that for Γj . By its definition in (4.10), Γj(E·) = Γj and 
Γj(t·) = Γj for t �= 0.

By the property of γε as in (4.8), it is easily seen that 0 < Γj ≤ 2. Now to see that (4.12) holds, we notice 
that the seamline element on the horizontal cone with respect to � = −�λj has part of the piece overlapping 
with the other cone. By the support of γε, for this seamline element, we have

λjξ2/ξ1 − �λj ≤ 1
2 + ε,

which implies ξ2/ξ1 ≤ 1/2+ε+�λj

λj . Hence, it only affects elements in other cone with support satisfying 

ξ1/ξ2 > λj

1/2+ε+�λj
. By symmetry, the same result holds for seamline elements on vertical cone affecting the 

horizontal cone. Therefore, (4.12) holds. �
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8.3. Proofs of results in Section 4.2

Proof of Proposition 3. Since the generators satisfy ϕ̂, ζj,� ∈ C∞
c (R2) and for any bounded open set E ⊆ R2, 

ΘJ0(ξ) is the summation of finitely many terms from ϕ̂, ζj,� for all ξ ∈ E, the function ΘJ0 is thus also a 
function in C∞(R2). By its definition, it is obvious that ΘJ0(E·) = ΘJ0 .

For simplicity of presentation, we denote χ{|ξ2/ξ1|≤1} := χ{ξ∈R2:|ξ2/ξ1|≤1} and similar notation applies for 
others. For ξ ∈ {ξ ∈ R2 : max{|ξ1|, |ξ2|} < λ2J0ρπ}, by (4.7), we have

ΘJ0(ξ) ≥
∣∣ϕ̂(NJ0

λ ξ
)∣∣2 +

�
λJ0∑

�=−�
λJ0

(∣∣ζJ0,�
(
S�BJ0

λ ξ
)∣∣2 +

∣∣ζJ0,�
(
S�BJ0

λ Eξ
)∣∣2)

≥
∣∣αλ,t,ρ

(
λ−2J0ξ1

)
αλ,t,ρ

(
λ−2J0ξ2

)∣∣2 +
∣∣βλ,t,ρ

(
λ−2J0ξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ)

+
∣∣βλ,t,ρ

(
λ−2J0ξ2

)∣∣2χ{|ξ2/ξ1|>1}(ξ) > 0,

and for ξ ∈ {ξ ∈ R2 : max{|ξ1|, |ξ2|} > λ2J0−2ρπ}, we have

ΘJ0(ξ) =
∞∑

j=J0

�λj∑
�=−�λj

(∣∣ζj,�
(
S�Bj

λξ
)∣∣2 +

∣∣ζj,�
(
S�Bj

λEξ
)∣∣2)

≥
∞∑

j=J0

[∣∣βλ,t,ρ

(
λ−2jξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ) +
∣∣βλ,t,ρ

(
λ−2jξ2

)∣∣2χ{|ξ2/ξ1|>1}(ξ)
]
> 0.

Consequently, ΘJ0 > 0.
We next show that ΘJ0 ≤ 2. Again, by γε as in (4.7), we have

�λj∑
�=−�λj

∣∣η(S�Bj
λξ
)∣∣2χ{|ξ2/ξ1|≤1}(ξ) =

∣∣αλ,t,ρ

(
λ−2jξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ), ξ �= 0

and similarly,

�λj∑
�=−�λj

∣∣ζ(S�Bj
λξ
)∣∣2χ{|ξ2/ξ1|≤1}(ξ) =

∣∣βλ,t,ρ

(
λ−2jξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ), ξ �= 0.

Hence, for ξ �= 0,

�λj∑
�=−�λj

(∣∣η(S�Bj
λξ
)∣∣2 +

∣∣ζ(S�Bj
λξ
)∣∣2)χ{|ξ2/ξ1|≤1}(ξ) =

(∣∣αλ,t,ρ

(
λ−2jξ1

)∣∣2 +
∣∣βλ,t,ρ

(
λ−2jξ1

)∣∣2)χ{|ξ2/ξ1|≤1}(ξ)

=
∣∣αλ,t,ρ

(
λ−2(j+1)ξ1

)∣∣2χ{|ξ2/ξ1|≤1}(ξ) =
�λj+1∑

�=−�λj+1

∣∣ηj+1,�(S�Bj+1
λ ξ
)∣∣2χ{|ξ2/ξ1|≤1}(ξ).

Therefore, we have

lim
J→∞

( �
λJ0∑

�=−�
λJ0

∣∣ηJ0,�
(
S�BJ0

λ ξ
)∣∣2 +

J−1∑
j=J0

�λj∑
�=−�λj

∣∣ζj,�
(
S�Bj

λξ
)∣∣2)χ{|ξ2/ξ1|≤1}(ξ)

= lim
∣∣αλ,t,ρ

(
λ−2Jξ

)∣∣2χ{|ξ2/ξ1|≤1}(ξ) = χ{|ξ2/ξ1|≤1}(ξ), ξ �= 0.

J→∞
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Now, we define

Θ̃J0(ξ) :=
�
λJ0∑

�=−�
λJ0

(∣∣ηJ0,�
(
S�BJ0

λ ξ
)∣∣2 +

∣∣ηJ0,�
(
S�BJ0

λ Eξ
)∣∣2)

+
∞∑

j=J0

�λj∑
�=−�λj

(∣∣ζj,�
(
S�Bj

λξ
)∣∣2 +

∣∣ζj,�
(
S�Bj

λEξ
)∣∣2), ξ �= 0.

Then, for ξ �= 0,

Θ̃J0(ξ) =
�
λJ0∑

�=−�
λJ0

(∣∣ηJ0,�
(
S�BJ0

λ ξ
)∣∣2 +

∣∣ηJ0,�
(
S�BJ0

λ Eξ
)∣∣2)(χ{|ξ2/ξ1|≤1}(ξ) + χ{|ξ2/ξ1|>1}(ξ)

)

+
∞∑

j=J0

�λj∑
�=−�λj

(∣∣ζj,�
(
S�Bj

λξ
)∣∣2 +

∣∣ζj,�
(
S�Bj

λEξ
)∣∣2)(χ{|ξ2/ξ1|≤1}(ξ) + χ{|ξ2/ξ1|>1}(ξ)

)

= 1 +
(∣∣ηJ0,±�

λJ0
(
S±�

λJ0
BJ0
λ ξ
)∣∣2 +

∞∑
j=J0

∣∣ζj,±�λj
(
S±�λj B

j
λξ
)∣∣2)χ{|ξ2/ξ1|>1}(ξ)

+
(∣∣ηJ0,±�

λJ0
(
S±�

λJ0
BJ0
λ Eξ
)∣∣2 +

∞∑
j=J0

∣∣ζj,±�λj
(
S±�λj B

j
λEξ
)∣∣2)χ{|ξ2/ξ1|≤1}(ξ)

= 1 + I(ξ) + I(Eξ) −
√

I(ξ)I(Eξ),

where

I(ξ) :=
(∣∣ηJ0,±�

λJ0
(
S±�

λJ0
BJ0
λ ξ
)∣∣2 +

∞∑
j=J0

∣∣ζj,±�λj
(
S±�λj B

j
λξ
)∣∣2)χ{|ξ2/ξ1|≥1}(ξ), ξ �= 0.

By the construction of αλ,t,ρ and βλ,t,ρ, we have I ≤ 1. Therefore, 1 ≤ Θ̃J0 ≤ 2. Observe that ΘJ0(ξ) ≤
Θ̃J0(ξ) ≤ 2 for ξ �= 0 and ΘJ0(0) = 1, we conclude that item (i) holds.

We next show that item (ii) holds. We have

ΘJ0(ξ) = Θ̃J0(ξ) +
∣∣ϕ̂(NJ0

λ ξ
)∣∣2 − �

λJ0∑
�=−�

λJ0

∣∣ηJ0,�
(
S�BJ0

λ ξ
)∣∣2.

Note that supp ϕ̂(NJ0
λ ·) is inside the support of 

∑�
λJ0
�=−�

λJ0
|ηJ0,�(S�BJ0

λ ·)|2. Hence, for ξ outside the support 

of 
∑�

λJ0
�=−�

λJ0
|ηJ0,�(S�BJ0

λ ·)|2, we have ΘJ0 = Θ̃J0 . By that Θ̃J0 = 1 + I + I(E·) −
√
I · I(E·), we hence 

only need to check the overlapping coming from I and I(E·). In fact, at scale j, the seamline element on 
the horizontal cone with respect to � = −�λj has part of the piece overlapping with the other cone. By the 
support of γ+

λj ,ε,ε0
, for this seamline element, we have its support satisfying ξ2/ξ1 ≤ 1 + 2ε0

λ2j . Moreover, by 
the support of βλ,t,ρ, this seamline element can only affect other elements in the vertical cone with respect 
to scales j0 = j − 1, j, j + 1. Now, the support of the vertical cone element corresponding to scale j0 and 
� = −�λj0 + s with s being a nonnegative integer satisfying

λj0ξ1/ξ2 − �λj0 + s ≤ 1 + ε,
2
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which implies ξ1/ξ2 ≤ 1/2+ε+�
λj0 −s

λj0 . Consequently, the seamline element on the horizontal cone affecting 

the elements in the vertical cone at scale j0 means 1 + 2ε0
λ2j ≥ λj0

1/2+ε+�
λj0 −s , which implies

s ≤ 1
2 + ε + �λj0 − λ2j+j0

λ2j + 2ε0
≤ 1

2 + ε +
(
λj0 + 1

2 − ε

)
− λ2j+j0

λ2j + 2ε0

≤ 1 + 2ε0λ
j0

λ2j + 2ε0
≤ 1 + 2ε0λ

j+1

λ2j + 2ε0
≤ 1 + 2ε0

λj−1 ≤ 1 + 2ε0

λJ0−1 < 2

since ε0 < λJ0−1

2 . Hence, by that s is a nonnegative integer, we deduce that s is either 0 or 1. By symmetry, 
same result holds for seamline elements on vertical cone affecting the horizontal cone. Therefore, we have 
ΘJ0(ξ) = ΘJ0(Eξ) = 1 for ξ in the support of those ζj,�(S�Bj

λ·) with |�| < �λj − 1 and j ≥ J0 + 1. That is, 
item (ii) holds. �
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