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Digital Affine Shear Transforms: Fast Realization and Applications
in Image/Video Processing∗

Xiaosheng Zhuang†

Abstract. In this paper, we discuss the digitization and applications of smooth affine shear tight frames, a
recently developed new class of directional multiscale representation systems. An affine wavelet
tight frame is generated by isotropic dilations and translations of directional wavelet generators,
while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of
shearlet generators. These two tight frames are actually connected in the sense that an affine shear
tight frame can be obtained from an affine wavelet tight frame through subsampling. Consequently,
an affine shear tight frame has an underlying filter bank from the MRA structure of its associated
affine wavelet tight frame. We discuss the digitization of digital affine shear filter banks associated
with the affine shear tight frames. Moreover, we provide the detailed algorithmic steps for both
the forward and backward digital affine shear transforms. Analysis of the redundancy rate and
computational complexity shows that the redundancy rate of the digital affine shear transforms
does not increase with respect to the number of directions and the computational complexity is
proportional to the redundancy rate and the FFT time for a fixed size of input data. Numerical
experiments and comparisons in image/video processing show the advantages of our digital affine
shear transforms over many other state-of-the-art frame-based directional transforms.
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1. Introduction and motivation. Modern information technologies have become inevitable
parts of people’s everyday lives. For example, smartphones are now standard platforms for
social activities, e-shopping, entertainment, news, etc.; wearable digital devices provide indi-
vidual data acquisition and analysis for personal health and sport activities; virtual reality
(VR) and augmented reality devices enable and enhance our experience of the world to an-
other level of perspective; and the Internet of Things makes it possible to build a smart city
for both public and individual services. Behind all these types of smart technologies are
the generating, storage, processing, transmitting, analyzing, and applications of tremendous
amounts of data. In short, we are in the era of Big Data. On the one hand, the complexity
of data obtained from modern technologies grows exponentially, e.g., high-resolution images
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from smart phones and cameras, video scenes in video games and VR devices, nD-signals from
massive-surveillance systems, seismic data, climate data, financial data, and so on. On the
other hand, the growth of the computational power predicted by Moore’s law might not be
able to catch up with the growth of data in the near future due to the limit of physical laws.
Smart learning from high-dimensional data for information extraction and applications hence
no doubt becomes one of the hotspots of today’s scientific research.

The key to massive data analysis lies in the fact that the data collected are typically
high-dimensional while the feature information is structurally low-dimensional (anisotropic
features). Directional multiscale representation systems play a key role in the area of high-
dimensional data analysis due to their ability to capture anisotropic (directional) features
such as edges in cartoon-like images, surface singularities in three-dimensional (3D) objects,
etc. In a nutshell, the exponential growth of data can be tackled via exploiting the low-
dimensional structures (sparsity) of the data using representation systems with the ability
to capture anisotropic features (directional information) while the computational efficiency
must be guaranteed by the intrinsic low-redundancy representation of the directional systems.
Hence, efficient representation systems with (extremely) low redundancy are crucial to the
successful applications of directional multiscale representation systems in high-dimensional
data analysis.

Multiscale representation systems starting from wavelets [4, 6, 24] have had a tremen-
dous impact on many fields such as electrical engineering, image/signal processing, computer
graphics, and numerical solutions of PDE. In theory, wavelet systems are investigated and de-
veloped with fewer and fewer constraints from orthogonal wavelet systems to wavelet frames
(framelets). In practice, many application problems require the development of wavelet sys-
tems with more and more desirable properties, e.g., high order of vanishing moments, sym-
metry, and regularity. Wavelet systems are typically generated by applications of isotropic
dilations and translations to wavelet generators and high-dimensional wavelets are usually ob-
tained through the tensor product of 1D wavelet systems, e.g., tensor product Daubechies
orthonormal wavelets, which only favor a few directions and hence are not able to cap-
ture adequate information of high-dimensional data. Due to the aforementioned needs of
anisotropic analysis in high-dimensional data, many directional multiscale representation sys-
tems have been developed, such as dual-tree complex wavelets [26], tensor product complex
tight framelets [15, 17, 18], curvelets [2, 3], contourlets and surfacelets [5, 23], and shearlets
[1, 9, 10, 11, 12, 20]. By using two trees of orthonormal wavelets and a careful design of
wavelet generators, one can construct a 1D complex wavelet system with generators that form
a Hilbert pair whose frequency response concentrates on either the positive or the negative
axis. The tensor product of such 1D complex wavelet systems is the dual-tree complex wavelets
(DT-CWT [26]) that can achieve more directionality (six directions in dimension two: ±15◦,
±45◦, ±75◦) than the usual real-valued tensor product wavelets. Exploiting further the idea
of frequency separation, the tensor product complex tight framelets TP-CTFm can achieve
even more direction selectivity (14 directions in dimension two for TP-CTF6) through the
tensor product of 1D complex tight framelets CTFm generated by framelet generators that
have more frequency separability [15, 17, 18]. Though by relaxing real-valued wavelet systems
to complex-valued wavelet systems, one can achieve directionality through the tensor product
of 1D wavelet/framelet systems, due to isotropic dilation and the fixed number of directions
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across all scales, a fundamental deficiency of tensor product wavelet systems is their inefficient
representation of cartoon-like functions in high dimensions [7]. In order to achieve an opti-
mal approximation rate of cartoon-like functions, one needs to consider non-tensor-product
type representation systems. Curvelets [2], in addition to (parabolic) dilation and translation
operations, employ an extra rotation operation to generate a directional representation sys-
tem that provides (almost) optimal approximation rate for cartoon-like functions. However,
rotation operation does not preserve integer lattice, which is undesirable in practice. By re-
placing rotation operation with shear operation, shearlets [8, 9, 10, 11, 16] generated from
applications of parabolic dilation, translation, and shear not only provide an (almost) optimal
approximation rate for cartoon-like functions but also have group structures similar to group
structures of wavelets.

Using the framework of frequency-based affine systems [14], smooth affine shear tight
frames, one of the directional multiscale representation systems generated through dilation,
translation, and shear, have been developed and studied systematically in dimension two in
[19] by the author and his collaborator. It has been shown that smooth affine shear tight
frames include all known shearlet tight frames as special cases. One of the key results in [19]
reveals that an affine shear tight frame can be regarded as a subsampled system of an affine
wavelet tight frame that has an MRA structure, thereby associating an affine shear tight frame
with an underlying directional filter bank. This key result indicates that affine shear tight
frames are less “redundant” than affine wavelet tight frames. Moreover, the initial attempt of
digitization in [19] shows that affine shear tight frames can be efficiently implemented using
their underlying filter banks and are very similar to the standard fast wavelet transforms.

In this paper, we further investigate d-dimensional smooth affine shear tight frames for
any d > 2. The contributions of this paper lie in the following aspects. First, we provide
detailed steps for the construction, digitization, and application of d-dimensional smooth
affine shear/wavelet tight frames. Second, it is well-known that one of the key features of
wavelets is their unified treatment of both the digital and continuum worlds through their
associated wavelet filter banks [24]. However, implementations of existing curvelet/shearlet
transforms are simply through direct sampling of the curvelet/shearlet function generators on
the digital lattices [3, 21, 22, 25], which lacks the unified treatment of both the continuum
and digital worlds. The connection between affine shear tight frames and affine wavelet tight
frames in this paper provides a faithful “bridge” between the continuum and digital realms for
directional representation systems generated through the operations of dilation, translation,
and shear in any dimension d > 2. Last but not least, unlike many other implementations of
directional filter banks, e.g., [5, 22], whose redundancy rate could skyrocket as the number of
directions increases due to the employment of undecimated transforms, our analysis shows a
striking feature of our implementation: the redundancy rate does not increase with respect to
the number of directions (see Table 1). Moreover, thanks to the use of FFT, both our forward
and backward digital affine shear transforms have computational complexity proportional to
rN logN with r the redundancy rate and N the size of the input data. Such features are
very much desirable properties in practice, especially in image/video processing where the
resolution of data becomes higher and higher and more and more directions are needed.

The structure of the paper is as follows. In section 2, we introduce d-dimensional affine
shear systems for any d > 2 and provide the characterization of a sequence of affine shear
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systems with generators having nonnegative frequency responses to be a sequence of affine
shear tight frames, which greatly facilitates our construction of smooth affine shear tight
frames in any dimension d > 2. Moreover, we introduce affine wavelet systems and show that
the affine shear tight frames we constructed are closely related to affine wavelet systems in the
sense that one can obtain an affine shear tight frame through subsampling of an affine wavelet
tight frame with an associated directional filter bank. In section 3, we turn to the digitization
of smooth affine shear tight frames: digital affine shear filter banks. We provide detailed algo-
rithmic steps for both the forward and backward digital affine shear transforms. Furthermore,
we investigate the redundancy rate and computational complexity of our d-dimensional digital
affine shear transforms. In section 4, numerical experiments and comparisons on some im-
age/video processing problems (denoising and inpainting) are given to show the efficiency and
advantages of our digital affine shear transforms over many other state-of-the-art frame-based
directional transforms. Technical proofs of some results are postponed to section 5.

2. Smooth affine shear tight frames in Rd. In this section, we extend the definition of
smooth affine shear tight frames from dimension two (cf. [19]) to any dimension d > 2. We
first introduce the notion of a sequence of d-dimensional affine shear systems and then provide
the characterization for a sequence of affine shear systems to be a sequence of affine shear tight
frames in L2(Rd) as well as the construction of both d-dimensional affine shear tight frames
and affine wavelet tight frames. The connection between these two types of systems is given
in the last subsection. It should be mentioned that though the extension in this section is
conceptually straightforward from dimension two to any dimension d > 2, it is still technical
to clearly state and prove many main results in arbitrary dimension. We have made an effort
to simplify our notation for dealing with high-dimensional construction in this section as well
as digital realization in the next section, e.g., the summation in arbitrary dimension and the
splitting function γε in section 2.2.

2.1. Characterization of affine shear tight frames for L2(Rd). Let U be a d×d invertible
matrix. Throughout the paper, we shall assume d > 2 and use the compact notation

fU;k,n(x) := | detU|1/2f(Ux− k)e−in·Ux, k, n, x ∈ Rd,

to encode dilation U, translation k, and modulation n for a function f defined on Rd. The
shear operator S~τ with ~τ = (τ2, . . . , τd) ∈ Rd−1, anisotropic dilation matrix Aλ, and isotropic
dilation matrix Mλ with λ > 1 are of the form

S~τ =


1 τ2 · · · τd
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , Aλ =


λ2 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 , and Mλ =


λ2 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λ2

 .
We shall use Nλ := M−Tλ and Bλ := A−Tλ to denote the transpose of the inverse of Mλ and
Aλ, respectively. Note that Mλ = AλDλ with Dλ := diag(1, λId−1), where In denotes the
n × n identity matrix. Define S~τ := (S~τ )T and denote En to be the d × d elementary matrix
corresponding to the coordinate exchange between the first axis and the nth one. For example,

E1 = Id, E2 = diag(
[
0 1
1 0

]
, Id−2), E3 = diag(

[
0 0 1
0 1 0
1 0 0

]
, Id−3), and so on.
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Let Ψj be a set of generators for the high-frequency part at scale j given by

(2.1) Ψj := {ψj,~̀ : |~̀| 6 ~sj}, ~̀ := (`2, . . . , `d) ∈ Zd−1, ~sj := (sj,2, . . . , sj,d) ∈ Nd−1
0 ,

where N0 := N ∪ {0} and ψj,
~̀

are functions in L2(Rd). Here and after we shall use the

compact notation
∑~sj

~̀=−~sj
for

∑sj,2
`2=−sj,2 · · ·

∑sj,d
`d=−sj,d and |~̀| 6 ~sj (or ~̀ = −~sj , . . . , ~sj) for

{~̀ ∈ Zd−1 : |`2| 6 sj,2, . . . , |`d| 6 sj,d}. Let ϕj ∈ L2(Rd) be some scaling function for the
low-frequency part at scale j. Then a d-dimensional affine shear system (starting at scale
J ∈ Z) is defined to be
(2.2)

AS(ϕJ ; {Ψj}∞j=J) := {ϕJ
MJ
λ ;k

: k ∈ Zd} ∪ {ψj,~̀
S−~̀AjλEn;k

: k ∈ Zd, |~̀| 6 ~sj , n = 1, . . . , d}∞j=J .

We say that AS(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(Rd) if

(2.3) ‖f‖22 =
∑
k∈Zd
|〈f, ϕJ

MJ
λ ;k
〉|2 +

∞∑
j=J

d∑
n=1

~sj∑
~̀=−~sj

∑
k∈Zd
|〈f, ψj,~̀

S−~̀AjλEn;k
〉|2 ∀f ∈ L2(Rd),

where 〈f, g〉 :=
∫
Rd f(x)g(x)dx and ‖f‖2 :=

√
〈f, f〉 for f, g ∈ L2(Rd).

The Fourier transform f̂ of a function f ∈ L1(Rd) is defined to be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx

for ξ ∈ Rd and can be naturally extended to functions in L2(Rd). We denote by D(Rd) the
linear space of all compactly supported C∞ (test) functions with the usual topology. In this
paper, we are only interested in affine shear tight frames with generators that are nonnegative
in the frequency domain. That is, ĥ > 0 for all h ∈ {ϕJ} ∪ {Ψj}∞j=J . Following the same
lines of proof as [19, Corollary 3] (see also [14, Corollary 18]), we have the following simple
characterization (see section 5 for its proof) that will facilitate our construction of affine shear
tight frames in the next subsection.

Theorem 2.1. Let J0 ∈ Z be an integer and AS(ϕJ ; {Ψj}∞j=J) be defined as in (2.2) with J >

J0. Suppose ĥ > 0 for all h ∈ {{ϕj}∪Ψj}∞j=J0. Then, for all integer J > J0, AS(ϕJ ; {Ψj}∞j=J)

is an affine shear tight frame for L2(Rd) if and only if the following holds:

ĥ(ξ)ĥ(ξ + 2πk) = 0 a.e. ξ ∈ Rd, k ∈ Zd\{0}, ∀h ∈ {{ϕj} ∪Ψj}∞j=J ,(2.4)

|ϕ̂j+1(Nj+1
λ ξ)|2 = |ϕ̂j(Njλξ)|

2 +
d∑

n=1

~sj∑
~̀=−~sj

|ψ̂j,~̀(S~̀BjλEnξ)|
2 a.e. ξ ∈ Rd, j > J0, and(2.5)

lim
j→∞
〈|ϕ̂j(Njλ·)|

2, ĥ〉 = 〈1, ĥ〉 ∀ĥ ∈ D(Rd).(2.6)

We next discuss how the above characterization greatly simplifies our construction of affine
shear tight frames for L2(Rd). First, conditions (2.5) and (2.6) together imply that for all
J > J0, {ϕJ} ∪ {Ψj}∞j=J forms a “partition of unity” in the frequency domain:

1 = |ϕ̂J(Njλξ)|
2 +

∞∑
j=J

d∑
n=1

~sj∑
~̀=−~sj

|ψ̂j,~̀(S~̀BjλEnξ)|
2 a.e. ξ ∈ Rd.
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Second, condition (2.4) means that in the frequency domain each of the generators does not
overlap with its 2πk shift for any nonzero integer k. Last but not least, (2.5) reveals that

generators ψj,
~̀

are from the “splitting” of |ϕ̂j+1(Nj+1
λ ξ)|2 − |ϕ̂j(Njλξ)|

2. Consequently, the
construction of a sequence of affine shear tight frames is reduced to the construction of scaling
functions ϕj and a proper “splitting” procedure. In [19], we proposed two types of construction
for R2: one is nonstationary where ϕj is different at different scale j, and the other is quasi-
stationary where ϕj = ϕ is fixed across all scale j. In this paper, for simplicity of presentation,
we consider only the quasi-stationary construction and remark that all results can be extended
to the nonstationary construction similar to that in [19] without much difficulty. In such a
case, (2.5) is further simplified to

(2.7) |ϕ̂(Nλξ)|2 − |ϕ̂(ξ)|2 =

d∑
n=1

~sj∑
~̀=−~sj

|ψ̂j,~̀(S~̀DjλEnξ)|
2 a.e. ξ ∈ Rd, j > J0,

and (2.6) can be easily satisfied for bounded ϕ̂ satisfying limj→∞ |ϕ̂(Njλ·)| = 1 a.e. (see [19,
Lemma 1]), which significantly reduced the complexity of the construction of affine shear tight
frames.

2.2. Construction of smooth affine shear tight frames for L2(Rd). Let us next detail
the quasi-stationary construction of smooth affine shear tight frames, in which case ϕj ≡ ϕ
for all j. Roughly speaking, in the frequency domain, using auxiliary 1D Meyer-type scaling
and wavelet functions αλ,t,ρ, βλ,t,ρ, and “bump” function γε (see Figure 1), we build ϕ̂ to be

the tensor product of αλ,t,ρ while the core generator shall look like βλ,t,ρ(ξ1)
∏d
n=2 γε(ξn/ξ1),

which is a wedge shape generator in dimension d = 2 and a pyramid shape generator in
dimension d = 3. Application of parabolic scaling, shear, and translation operations to such
a generator induces our smooth affine shear systems. Further technical treatments are then
applied on such systems to achieve tightness.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

α
α(4−1⋅)
β

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
γ ε

γ ε( · + 1)

γ ε( · − 1)

Figure 1. Left: Graphs of αλ,t,ρ (dotted line, blue), αλ,t,ρ(λ
−2·) (solid line, green), and βλ,t,ρ (dash-dot

line, red) for ρ = 1, λ = 2, t = 1. Note that βλ,t,ρ overlaps with α(λ−2·) for ξ > λ−2ρπ. Right: Graphs of
γε (solid line, blue), γε(· + 1) (dashed line, green), and γε(· − 1) (dotted line, red) with ε = 1/2. Note that∑
`∈Z |γε(·+ `)|2 = 1.

We next briefly introduce the auxiliary functions αλ,t,ρ, βλ,t,ρ, and γε. Let ν ∈ C∞c (R)
be a compactly supported C∞ function such that ν(x) = 0 for x 6 −1, ν(x) = 1 for x > 1,
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and |ν(x)|2 + |ν(−x)|2 = 1 for all x ∈ R. There are many choices of such functions. For
example, as in [13], we define f(x) := e−1/x2 for x > 0 and f(x) := 0 for x 6 0 and let

g(x) :=
∫ x
−1 f(1 + t)f(1− t)dt. Define ν(x) := g(x)√

|g(x)|2+|g(−x)|2
for x ∈ R. Then ν ∈ C∞c (R) is

a desired function. From ν, we define our building block function ν[c,ε] for c > 0 and 0 < ε 6 c
as follows:

(2.8) ν[c,ε](x) =


ν(x+c

ε ) if x < −c+ ε,

1 if − c+ ε 6 x 6 c− ε,
ν(−x+c

ε ) if x > c− ε.

It is easy to see that ν[c,ε] is a smooth “bump” function supported on [−c − ε, c + ε]. Let
λ > 1, 0 < t 6 1, 0 < ρ 6 λ2, and 0 < ε 6 1/2. Define αλ,t,ρ,βλ,t,ρ of Meyer-type scaling and
wavelet functions and γε as follows (see Figure 1):

(2.9)


αλ,t,ρ(ξ) := ν[λ−2(1−t/2)ρπ,λ−2tρπ/2](ξ),

βλ,t,ρ(ξ) := (|αλ,t,ρ(λ−2ξ)|2 − |αλ,t,ρ(ξ)|2)1/2,

γε(ξ) := ν[1/2,ε](ξ).

Then αλ,t,ρ, βλ,t,ρ, γε ∈ C∞c (R). Moreover, suppαλ,t,ρ = [−λ−2ρπ, λ−2ρπ], suppβλ,t,ρ =
[−ρπ,−λ−2(1 − t)ρπ] ∪ [λ−2(1 − t)ρπ, ρπ], and suppγε = [−1/2 − ε, 1/2 + ε]. Furthermore,
αλ,t,ρ, βλ,t,ρ have their associated 2π-periodic scaling mask µλ,t,ρ and wavelet mask υλ,t,ρ,
respectively, defined as follows:

(2.10)

µλ,t,ρ(ξ) :=

{
αλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if |ξ| 6 λ−2ρπ,

0 if λ−2ρπ < |ξ| 6 π,

υλ,t,ρ(ξ) :=

{
βλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if λ−4(1− t)ρπ 6 |ξ| 6 λ−2ρπ,

gλ,t,ρ(ξ) if ξ ∈ [−π, π]\ suppβλ,t,ρ(λ
2·),

where gλ,t,ρ is a function in C∞(T) such that
[
dn

dξngλ,t,ρ(ξ)
]∣∣
ξ=±λ−2ρπ

= δ(n) for all n ∈ N0.

The purpose of gλ,t,ρ is to make the function υλ,t,ρ smooth (see [19, section 4.1]). We have

αλ,t,ρ(λ
2ξ) = µλ,t,ρ(ξ)αλ,t,ρ(ξ), and βλ,t,ρ(λ

2ξ) = υλ,t,ρ(ξ)αλ,t,ρ(ξ), ξ ∈ R.

Define ϕ̂(ξ) := [⊗αλ,t,ρ](ξ) =
∏d
n=1αλ,t,ρ(ξn), ξ = (ξ1, . . . , ξd) ∈ Rd, and

(2.11) ωλ,t,ρ(ξ) :=
√
|ϕ̂(λ−2ξ)|2 − |ϕ̂(ξ)|2, ξ ∈ Rd.

Then ωλ,t,ρ ∈ C∞(Rd). In view of the construction of αλ,t,ρ, the refinable structure is clear.
We have ϕ̂(λ2ξ) = â(ξ)ϕ̂(ξ), ξ ∈ Rd, with â = ⊗dµλ,t,ρ ∈ C∞(Td) being the tensor product of

the 1D mask µλ,t,ρ given in (2.10). Moreover, we have ωλ,t,ρ(λ
2ξ) = b̂(ξ)ϕ̂(ξ) with b̂ ∈ C∞(Td)

being given by b̂(ξ) = (g(ξ)−|â(ξ)|2)1/2 for any smooth function g ∈ C∞(Td) such that g = 1

on the support of ϕ̂. In order to obtain ψj,
~̀
, we next split ωλ,t,ρ using γε. Note that for
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simplicity of presentation, here and after, we omit the dependency of ϕ,ψj,
~̀
, a, b,Γj , etc., on

the parameters λ, t, ρ, ε.
For x > 1, define `x := bx − (1/2 + ε)c + 1 = bx + (1/2 − ε)c. It is easy to check that∑

`∈Z |γε(·+ `)|2 = 1. Moreover,

(2.12)

`λ∑
`=−`λ

|γε(λx+ `)|2 = 1 ∀|x| 6 `λ + 1/2− ε
λ

.

Let ~γ(ξ) :=
∏d
n=2 γε(ξn/ξ1), ξ = (ξ1, . . . , ξd) ∈ Rd. We define a d-dimensional splitting piece

~γj,
~̀

and a normalization function Γj at scale j as follows:

(2.13) ~γj,
~̀
(ξ) := ~γ(S~̀B

j
λξ) =

d∏
n=2

γε(λ
jξn/ξ1 + `n) and Γj(ξ) :=

d∑
n=1

~̀
λj∑

~̀=−~̀
λj

~γj,
~̀
(Enξ)

for ξ = (ξ1, . . . , ξn) ∈ Rd\{0}, ~̀ = (`2, . . . , `d) ∈ Zd−1, and ~̀
λj := (`λj , . . . , `λj ) ∈ Nd−1

0 .

~γj,
~̀
(0) = Γj(0) := 1. It is easy to show that Γj is smooth (Γj ∈ C∞(Rd\{0})), positive (0 <

Γj(ξ) 6 2), symmetric (Γj(En·) = Γj for all n = 1, . . . , d), and scale-invariant (Γj(tξ) = Γj(ξ)
for all t 6= 0 and ξ 6= 0). Moreover, in view of (2.12), one can show that Γj(ξ) ≡ 1 for all

ξ = (ξ1, . . . , ξd) ∈ Rd satisfying max{|ξm/ξn| : m 6= n,m, n = 1, . . . , d} 6 λj

`
λj

+1/2+ε .

We are now ready to define ψj,
~̀
. Recall that Aλ = diag(λ2, λId−1), Bλ = A−Tλ , Dλ =

diag(1, λId−1), Mλ = λ2Id = AλDλ, and Nλ = M−Tλ . Define the set Ψj of generators at scale j
to be

(2.14) Ψj := {ψj,~̀ : |~̀| 6 ~̀
λj} with ψ̂j,~̀(ξ) := ωλ,t,ρ(D

−j
λ S−~̀ ξ)

~γj,
~̀
((S~̀B

j
λ)−1ξ)√

Γj((S~̀B
j
λ)−1ξ)

.

Note that ψ̂j,~̀(ξ) = ωλ,t,ρ(ξ1, λ
−j(−ξ1`2 +ξ2), . . . , λ−j(−ξ1`d+ξd))

∏d
n=2 γε(ξn/ξ1)√
Γj((S~̀B

j
λ)−1ξ)

, which gives

ψ̂j,~̀(S~̀B
j
λξ) = ωλ,t,ρ(N

j
λξ)

γj,
~̀
(ξ)√

Γj(ξ)
. Since 0 < Γj 6 2 and Γj is in C∞(Rd\{0}), we have that√

Γj is infinitely differentiable for all ξ ∈ Rd\{0}. Because the support of ωλ,t,ρ is away from

the origin, we see that ψj,
~̀

are functions in C∞(Rd). We have the following (quasi-stationary)
d-dimensional affine shear system:

(2.15) AS(ϕ; {Ψj}∞j=J) := {ϕMJ
λ ;k : k ∈ Zd}∪{ψj,~̀

S−~̀AjλEn;k
: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~̀

λj}∞j=J .

Similar to [19, Theorem 4], we have the following result showing that AS(ϕ; {Ψj}∞j=J) is
an affine shear tight frame containing an affine shear subsystem generated from one single
generator. The proof follows directly from Theorem 2.1 (see section 5).

Theorem 2.2. Let λ > 1, 0 < t 6 1, 0 < ε 6 1/2, and 0 < ρ 6 1
1+2ε . Let AS(ϕ; {Ψj}∞j=J)

be defined as in (2.15) with ϕ̂ = ⊗dαλ,t,ρ and ψj,
~̀

be given by (2.14). Then AS(ϕ; {Ψj}∞j=J)
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is an affine shear tight frame for L2(Rd) for all J > 0. All elements in AS(ϕ; {Ψj}∞j=J) are

functions in C∞(Rd). Moreover, we have

(2.16) {ψ
S−~̀AjλEn;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~rj}∞j=J ⊆ AS(ϕ; {Ψj}∞j=J),

where ψ̂(ξ) := βλ,t,ρ(ξ1)
∏d
n=2 γε(ξn/ξ1), ξ = (ξ1, . . . , ξd) ∈ Rd, and ~rj := (rj , . . . , rj) ∈ Zd−1

with rj := bλj−2(1− t)ρ− (1/2 + ε)c.

Note that when ~̀= −~rj , the support of ψ̂(S~̀B
j
λξ) = βλ,t,ρ(λ

−2jξ1)
∏d
n=2 γε(λ

jξn/ξ1− rj),
ξ = (ξ1, . . . , ξd) ∈ Rd satisfies ξn/ξ1 6 λ−j(rj +1/2+ε) 6 λ−j(bλj−2(1− t)ρ−1/2−εc+1/2+
ε) 6 λ−2(1 − t)ρ. Hence, by the symmetry property of Γj , we see that the shear subsystem
in (2.16) of AS(ϕ; {Ψj}∞j=0) is inside the cone area {ξ ∈ Rd : max{|ξn/ξ1| : n = 2, . . . , d} 6
λ−2(1− t)ρ} in the frequency domain.

2.3. Smooth affine wavelet tight frames and their subsampling systems. As in the
definition (2.2), an affine shear system is generated by three operations: anisotropic dila-
tion, shear, and translation. On the other hand, wavelet/framelet systems are generated by
two operations: dilation and translation. We next introduce a special type of directional
wavelet/framelet system: affine wavelet systems. We shall see that affine shear tight frames
and affine wavelet tight frames are actually connected to each other in the sense that an affine
shear tight frame can be obtained from an affine wavelet tight frame from subsampling, which
implies that an affine shear tight frame has an underlying directional filter bank.

Let ϕj and

(2.17) Ψ̊j := {ψ̊j,~̀ : |~̀| 6 ~sj}, ~̀= (`2, . . . , `d) ∈ Zd−1, ~sj = (sj,2, . . . , sj,d) ∈ Nd−1
0

be generators in L2(Rd). We use a fixed dilation matrix Mλ for all generators ϕj and ψ̊j,`.
The (quasi-stationary) d-dimensional affine wavelet system (starting at scale J ∈ Z) is then
defined to be

(2.18) WS(ϕJ ; {Ψ̊j}∞j=J) = {ϕJ
MJ
λ ;k

: k ∈ Zd} ∪ {ψ̊j,~̀
Mj
λEn;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~sj}∞j=J .

We say that WS(ϕJ ; {Ψ̊j}∞j=J) is an affine wavelet tight frame for L2(Rd) if

(2.19) ‖f‖22 =
∑
k∈Z2

|〈f, ϕJ
MJ
λ ;k
〉|2 +

∞∑
j=J

d∑
n=1

~sj∑
~̀=−~sj

∑
k∈Zd
|〈f, ψ̊j,~̀

Mj
λ;k
〉|2 ∀f ∈ L2(Rd).

Comparing ψj,
~̀

S−~̀Ajλ;k
and ψ̊j,

~̀

Mj
λ;k

, and in view of the relation Mλ = AλDλ, we have the following

result connecting affine shear tight frames with affine wavelet tight frames.

Theorem 2.3. Let J0 ∈ Z and ϕj, Ψj, and Ψ̊j be generators at scale j defined as in (2.1)
and (2.17) for j > J0. Suppose

ψ̊j,
~̀

= λ−(d−1)jψj,
~̀
(S−

~̀
D−jλ ·), |`| 6 ~sj ,(2.20)

ĥ(ξ)ĥ(ξ + 2πk) = 0 a.e. ξ ∈ Rd ∀k ∈ Zd\{0},∀h ∈ {{ϕj} ∪Ψj ∪ Ψ̊j}∞j=J0 .(2.21)
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Then AS(ϕJ ; {Ψj}∞j=J) defined as in (2.2) is an affine shear tight frame for L2(R2) for every

J > J0 if and only if WS(ϕJ ; {Ψ̊j}∞j=J) defined as in (2.18) is an affine wavelet tight frame

for L2(R2) for every J > J0.

Proof. Since (2.21) is satisfied, by Theorem 2.1, ASJ(ϕJ ; {Ψj}∞j=J) is an affine shear tight

frame for L2(Rd) for every J > J0 if and only if (2.5) and (2.6) are satisfied for J > J0.

Observe that (2.20) implies
̂̊
ψj,~̀ = ψ̂j,~̀(S~̀D

j
λ·). Therefore, by BjλM

j
λ = Djλ and EnM

j
λ = Mj

λEn,
we see that (2.5) is equivalent to

|ϕ̂j+1(Nλξ)|2 − |ϕ̂j+1(ξ)|2 =

d∑
n=1

~sj∑
~̀=−~sj

|ψ̂j,~̀(S~̀BjλEnM
j
λξ)|

2 =

d∑
n=1

~sj∑
~̀=−~sj

|̂̊ψj,`(Enξ)|2 a.e. ξ ∈ Rd.

The claim now follows directly from [14, Corollary 18] and Theorem 2.1.

We immediately have the following corollary.

Corollary 2.4. Let AS(ϕ; {Ψj}∞j=J), J > 0, be the sequence of affine shear tight frames

given in Theorem 2.2. Let Ψ̊j = {ψ̊j,~̀ : |~̀| 6 ~̀
λj} be defined from Ψj as in (2.20) and

WS(ϕ; {Ψ̊j}∞j=J) be defined in (2.18) with ϕj ≡ ϕ. Then WS(ϕ; {Ψ̊j}∞j=J) is an affine wavelet

tight frame for L2(Rd) for all J > 0 and

(2.22) ψj,
~̀

S−~̀AjλEn;k
= λ(d−1)j/2ψ̊j,

~̀

Mj
λEn;DjλS

~̀k
, |~̀| 6 ~sj , n = 1, . . . , d, j > 0.

Proof. By (2.20), it is straightforward to check that (2.22) holds. By (2.20) and the

definition of ψj,
~̀

in (2.14), we also have

̂̊
ψj,~̀(ξ) = ωλ,t,ρ(ξ)

∏d
n=2 γε(λ

jξn/ξ1 + `n)

Γj(ξ)
, |~̀| 6 ~̀

λj .(2.23)

Now, it is easy to check that supp
̂̊
ψj,~̀ ⊆ [−ρπ, ρπ]d for 0 < ρ 6 1. We immediately havê̊

ψj,~̀(·)̂̊ψj,~̀(·+ 2πk) = 0 for k ∈ Zd\{0}. Consequently, (2.21) holds. Now the conclusion that
WS(ϕ; {Ψ̊j}∞j=J) is an affine wavelet tight frame for L2(Rd) follows from Theorem 2.3.

When λ is an integer, we have DjλS
~̀Zd ⊆ Zd. Consequently, if (2.20) holds, then ĥ(·)ĥ(·+

2πk) = 0 for all k ∈ Zd\{0} and for all h ∈ {ϕ} ∪ Ψj implies ĥ(·)ĥ(· + 2πk) = 0 for all
k ∈ Zd\{0} and for all h ∈ {ϕ} ∪ Ψ̊j . Moreover, (2.22) shows that when λ is an integer, the
affine shear tight frame AS(ϕ; {Ψj}∞j=J) is indeed a subsystem of the affine wavelet tight frame

WS(ϕ; {Ψ̊j}∞j=J) through subsampling. It is well-known that for an affine wavelet tight frame,
it has an associated filter bank structure. We next present the filter bank structure for our
affine wavelet tight frames.

By the definition of ϕ and ωλ,t,ρ, we have smooth scaling and wavelet masks â, b̂ ∈ C∞(Td)
for ϕ̂(λ2·) = âϕ̂ and ωλ,t,ρ(λ

2·) = b̂ϕ̂ as follows:

(2.24) â(ξ) = [⊗dµλ,t,ρ](ξ) and b̂(ξ) = (g(ξ)− |â(ξ)|2)1/2, ξ ∈ Td,
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where µλ,t,ρ is given in (2.10) and g ∈ C∞(Td) satisfying g ≡ 1 on the support of ϕ̂. Note

that supp
̂̊
ψj,`(Mλ·) ⊆ supp ϕ̂. We can define b̂j,~̀ for

̂̊
ψj,~̀, j > 0, as follows:

(2.25) b̂j,~̀(ξ) := b̂(ξ)
~γj,

~̀
(ξ)√

Γj(ξ)
= b̂(ξ)

∏d
n=2 γε(λ

jξn/ξ1 + `n)√
Γj(ξ)

, |~̀| 6 ~̀
λj .

Then, we have the following result.

Theorem 2.5. Let λ > 1 be an integer. Choose 0 < ε 6 1/2, 0 < t 6 1, and 0 < ρ 6 1
1+2ε .

Let WSJ(ϕ; {Ψ̊j}∞j=J), J > 0, be defined as in Corollary 2.4 and let a, bj,
~̀

be defined as in

(2.24) and (2.25), respectively. Then â, b̂j,~̀ ∈ C∞(Td) are such that

(2.26) ϕ̂(Mλξ) = â(ξ)ϕ̂(ξ) and
̂̊
ψj,~̀(Mλξ) = b̂j,~̀(ξ)ϕ̂(ξ), ξ ∈ Rd.

Moreover, for each j > 0, {a; bj,
~̀
(En·) : |~̀| 6 ~̀

λj , n = 1, . . . , d} is an affine wavelet filter bank
having the perfect reconstruction (PR) property:

|â(ξ)|2 +

d∑
n=1

~̀
λj∑

~̀=−~̀
λj

|b̂j,~̀(Enξ)|2 = 1 a.e. ξ ∈ supp ϕ̂,(2.27)

â(ξ)â(ξ + 2πω) = 0, b̂j,~̀(Enξ)b̂j,`(Enξ + 2πω) = 0 a.e. ξ ∈ supp ϕ̂ ∩ (supp ϕ̂− 2πω)(2.28)

for all |~̀| 6 ~̀
λj , ω ∈ ΩMλ

\{0}, and n = 1, . . . , d, where ΩMλ
= [M−Tλ Zd] ∩ [0, 1)d.

Proof. By the definition of â and b̂, we have

b̂(ξ) =
(

1−
∣∣∣ ϕ̂(λ2ξ)

ϕ̂(ξ)

∣∣∣2)1/2
=
( |ϕ̂(ξ)|2 − |ϕ̂(λ2ξ)|2

|ϕ̂(ξ)|2
)1/2

=
ωλ,t,ρ(λ

2ξ)

ϕ(ξ)
, ξ ∈ supp ϕ̂.

In view of bj,
~̀

in (2.25) and ψ̊j,
~̀

in (2.23), we conclude that (2.26) holds. Moreover, by the

definition of Γj in (2.13), we have
∑d

n=1

∑~̀
λj

~̀=−~̀
λj
|b̂j,~̀(Enξ)|2 = |̂b(ξ)|2 for ξ ∈ supp ϕ̂. Hence,

(2.27) holds. Equation (2.28) directly follows from (2.26) and (2.21) for h ∈ {ϕ} ∪ Ψ̊j .

3. Digitization of smooth affine shear tight frames. In this section, we discuss the
digitization of our smooth affine shear tight frames: digital affine shear filter banks and
digital affine shear transforms. Our digitization is based on the affine wavelet filter banks in
Theorem 2.5 associated with our (quasi-stationary) smooth affine shear tight frames. We first
construct digital affine shear filter banks induced from affine wavelet filter banks and then
detail the implementation of the forward and backward digital affine shear transforms based
on the digital affine shear filter banks. In a nutshell, we are going to construct a sequence

{a; bj,
~̀
(En·) : n = 1, . . . , d, |~̀| 6 ~sj}Jj=0 of digital affine shear filter banks for the decomposition

and reconstruction of data. With such a sequence of filter banks, we can define ϕ to be

ϕ̂ = limJ→∞
∏J
j=0 â(Nj+1

λ ·), which implies ϕ̂(Mλ·) = âϕ̂, and ψ̊j,
~̀

to be
̂̊
ψj,~̀(MT

λ ·) = b̂j,~̀ ϕ̂.
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Let Ψ̊j := {ψ̊j,~̀ : |~̀| 6 ~sj}. Define WSJ(ϕ; {Ψ̊j}∞j=J) as in (2.18). Then, we have a sequence of

affine wavelet tight frames WSJ(ϕ; {Ψ̊j}∞j=J), J = 0, 1, 2, . . ., and by (2.20), we can define ψj,
~̀

to be ψj,
~̀

= λ(d−1)j/2ψ̊j,
~̀
(DjλS

~̀·). Let Ψj := {ψj,~̀ : |~̀| 6 ~sj}. Then we also have a sequence of
affine shear tight frames ASJ(ϕ, {Ψj}∞j=J) as defined in (2.2).

3.1. Digital affine shear filter banks. Recall the definition of ν[c,ε] in (2.8). In practice,
we only need ν[c,ε] to have certain regularity, for example, ν[c,ε] ∈ Cmc (R) for some m ∈ N0.
Then the corresponding ν can be constructed from a polynomial. For example, let Pm(x) :=(

1+x
2

)m∑m−1
j=0

(
m−1+j

j

) (
1−x

2

)j
. It is easy to show that Pm(x) + Pm(−x) ≡ 1 for all x ∈ R.

Define ν(x) = sin(π2Pm+1(x)) or ν(x) =
√
Pm+1(x) for x ∈ (−1, 1). Then ν[c,ε] defined in (2.8)

is the desired function in Cmc (R). In view of â in (2.24), we directly define an inner function
â ∈ C(Td) as a low-pass filter by

(3.1) â(ξ) := [⊗dν[c0,ε0]](ξ) =

d∏
n=1

ν[c0,ε0](ξn), ξ = (ξ1, . . . , ξd) ∈ Td,

for some parameters c0 > 0 and ε0 > 0 satisfying c0 + ε0 6 π/2 (for downsampling by 2).
Similarly, we define an outer function g ∈ C(Rd) by g := ⊗dν[c1,ε1], where c1 = π and ε1

satisfies c1 + ε1 − (c0 − ε0) 6 π for the purpose of downsampling at least by 2 for high-pass
filter coefficients. Thanks to the property of ν[c,ε], one can show that

(3.2)
∑
k∈Zd
|g(ξ + 2πk)|2 = 1 ∀ξ ∈ Td.

Now we can define an “isotropic” compactly supported function b ∈ Cc(Rd) by

(3.3) b̂(ξ) :=

{√
|g(ξ)|2 − |â(ξ)|2 if ξ ∈ supp ĝ,

0 otherwise.

Note that both g and b are not filters and both g and b̂ are supported on [−π − ε1, π + ε1]d.

Now, we apply the splitting technique to b̂ for the construction of high-pass filters bj,
~̀
. In

practice, at scale j > 0, instead of using 2j to determine the total number of directions, we
use 2kj for some nonnegative integer because the resolution of data could be limited. Define
~sj := (2kj , . . . , 2kj ) ∈ Zd−1. Similar to the definition of normalization function Γj in (2.13)
with λ = 2, we define

(3.4) ~γkj ,
~̀
(ξ) :=

d∏
n=2

γε(2
kjξn/ξ1 + `n) and Γkj (ξ) :=

d∑
n=1

sj∑
~̀=−~sj

|~γkj ,~̀(Enξ)|2, ξ 6= 0,

with γε being defined in (2.9) for some 0 6 ε 6 π
c1+ε1

− 1/2, and ~γkj ,
~̀
(0) = Γkj (0) := 0.

To guarantee smoothness of boundary, we further split ~γkj ,
~̀
(ξ) into positive part ~γkj ,

~̀,+

and negative part ~γkj ,
~̀,− of the ξ1-axis. Define ~γkj ,

~̀,±(ξ) := ~γkj ,
~̀
(ξ)χ{±ξ1>0}. Note that



DIGITAL AFFINE SHEAR TRANSFORMS 1449

b̂(ξ)
~γkj,

~̀,±(ξ)√
Γkj (ξ)

are not 2πZd-periodic functions. We define bj,
~̀,± to be the 2πZd-periodization

of b̂(ξ)
~γkj,

~̀,±(ξ)√
Γkj (ξ)

as follows:

(3.5) b̂j,~̀,±(ξ) :=
∑
k∈Zd

b̂(ξ + 2πk)
~γkj ,

~̀,±(ξ + 2πk)√
Γkj (ξ + 2πk)

, ξ ∈ Td.

The total number of high-pass filters bj,
~̀,+ and bj,

~̀,− at this scale j is 2(2kj+1 + 1)d−1. Each

filter of b̂j,~̀,± is a 2πZd-periodic function on Td.
Given a sequence of nonnegative integers kj , j = 0, . . . , J −1, for some fixed integer J > 0

with respect to the finest scale, let M := 2Id, Aj := diag(2, 2kj Id−1), and Aj,n := EnAj for
n = 1, . . . , d. From above, we can obtain a sequence of filter banks:

(3.6) DAS({Bj}J−1
j=0 ) with Bj := {a ↓ M, bj,~̀,±(En·) ↓ Aj,n : |~̀| 6 ~sj , n = 1, . . . , d}

for j = 0, . . . , J−1. Here M in a ↓ M indicates the downsampling matrix for filtered coefficients

with respect to the low-pass filter a and Aj,n in bj,
~̀,±(En·) ↓ Aj,n indicates the downsampling

matrix for filtered coefficients with respect to the high-pass filter bj,
~̀
(En·). Now, in view of

(3.2) and (3.4), we have the following result.

Theorem 3.1. Let kj ∈ N0, ~sj = (2kj , . . . , 2kj ) ∈ Nd−1, and a, bj,
~̀,±, be defined as in (3.1),

(3.5), respectively, with parameters c0, ε0, c1 = π, ε1, ε such that 0 < ε0 6 c0, c0 + ε0 6 π/2,

0 < ε1 6 c1, c1 + ε1 − (c0 − ε0) 6 π, and 0 < ε 6 π
c1+ε1

− 1/2. Then {a, bj,~̀,±(En·) : n =

1, . . . , d, |~̀| 6 ~sj} forms a digital affine shear filter bank with the PR property:

|â(ξ)|2 +

d∑
n=1

~sj∑
~̀=−~sj

(
|b̂j,~̀,+(Enξ)|2 + |b̂j,~̀,−(Enξ)|2

)
= 1,(3.7)

â(ξ)â(ξ + 2πω) = 0, b̂j,~̀,±(Enξ)b̂j,
~̀,±(Enξ + 2πω1) = 0,(3.8)

for all ξ ∈ Td, |~̀| 6 ~sj, n = 1, . . . , d, ω ∈ [M−TZd]∩[0, 1)d\{0}, and ω1 ∈ [A−Tj Zd]∩[0, 1)d\{0}.

Proof. For ~̀= 0, by that 0 < ε 6 π
c1+ε1

− 1/2 and the definition of γε, we have

supp ~γkj ,0,+ ⊆ {ξ ∈ Rd : ξ1 ∈ [c0 − ε0, c1 + ε1], |ξn| 6 2−kj (1/2 + ε)|ξ1|, n = 2, . . . , d}
⊆ [c0 − ε0, c1 + ε1]× [−2−kjπ, 2−kjπ]d−1.

Similarly, supp ~γkj ,0,− ⊆ [−c1 − ε1,−c0 + ε0] × [−2−kjπ, 2−kjπ]d−1. Note that ~γkj ,
~̀,± =

~γkj ,0,±(S~̀ ·). By the support of ~γkj ,0,±, it is easy to show that ~γkj ,
~̀,±(ξ)~γkj ,

~̀,±(ξ + 2πk) = 0

for ξ ∈ Rd and k ∈ Zd\{0}. Hence

|b̂j,~̀,±(ξ)|2 =
∑
k∈Zd
|̂b(ξ + 2πk)|2 |

~γkj ,
~̀,±(ξ + 2πk)|2

Γkj (ξ + 2πk)
.
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Consequently, for ξ ∈ Td, we have

d∑
n=1

~sj∑
~̀=−~sj

(
|b̂j,~̀,+(Enξ)|2 + |b̂j,~̀,−(Enξ)|2

)

=
d∑

n=1

~sj∑
~̀=−~sj

∑
k∈Zd
|̂b(Enξ + 2πk)|2 |

~γkj ,
~̀,+(Enξ + 2πk)|2 + |~γkj ,~̀,−(Enξ + 2πk)|2

Γkj (Enξ + 2πk)

=
∑
k∈Zd
|̂b(ξ + 2πk)|2

d∑
n=1

~sj∑
~̀=−~sj

|~γkj ,~̀(En(ξ + 2πk))|2

Γkj (ξ + 2πk)
=
∑
k∈Zd
|̂b(ξ + 2πk)|2

=
∑
k∈Zd
|g(ξ + 2πk)|2 − |â(ξ)|2 = 1− |â(ξ)|2.

Then, (3.7) holds.
Since supp â = supp⊗dν[c0,ε0] = [−c0−ε0, c0 +ε0]d ⊆ [−π/2, π/2]d and [M−TZd]∩ [0, 1)d =

{1
2(m1, . . . ,md) : mn ∈ {0, 1}, n = 1, . . . , d}, it is easy to show that for ω = 1

2(m1, . . . ,md) ∈
[M−TZd] ∩ [0, 1)d\{0}, we have â(ξ)â(ξ + 2πω) =

∏d
n=1 ν[c0,ε0](ξn)ν[c0,ε0](ξn + πmn) = 0.

Moreover, [A−Tj Zd] ∩ [0, 1)d = {(m1
2 ,

m2

2kj
, . . . , md

2kj
) : m1 ∈ {0, 1},mn ∈ {0, 1, . . . , 2kj − 1}, n =

2, . . . , d}. Again, by the support of ~γkj ,0,± and that ~γkj ,
~̀,± = ~γkj ,0,±(S~̀ ·), for ω1 =

(m1
2 ,

m2

2kj
, . . . , md

2kj
) ∈ [A−Tj Zd] ∩ [0, 1)d\{0}, we have

~γkj ,
~̀,±(ξ)~γkj ,

~̀,±(ξ + 2πω1) = ~γkj ,
~̀,±(ξ1, . . . , ξd)~γ

kj ,~̀,±
(
ξ1 +

2πm1

2
, . . . , ξd +

2πmd

2kd

)
= 0.

Consequently, (3.8) holds.

By Theorem 3.1, for a sequence of nonnegative integers k0, . . . , kJ−1, we can construct a
sequence DAS({Bj}J−1

j=0 ) of d-dimensional digital affine shear filter banks. Note that the total

number of high-pass filters in Bj is 2d(2kj+1 + 1)d−1.

3.2. Digital affine shear transforms. We next discuss the implementation of the forward
transform (decomposition) and backward transform (reconstruction) of our digital affine shear
filter banks. Our implementation is based on the discrete Fourier transform (DFT). We first
discuss three main operations for a filter bank decomposition and reconstruction: convolution,
downsampling, and upsampling.

For a sequence u = {u(k) ∈ C : k ∈ Zd} ∈ l0(Zd), we define its Fourier series û : Td → C
to be û(ξ) =

∑
k∈Zd u(k)e−ik·ξ, ξ ∈ Td. Without loss of generality and for simplicity of

presentation, we shall assume our data live on the dyadic grids Λ(K) for K = (K1, . . . ,Kd) ∈ Nd
defined by

Λ(K) = Λ(K1, . . . ,Kd) := ([0, . . . , 2K1 − 1]× · · · × [0, . . . , 2Kd − 1]) ∩ Nd0

and define its corresponding lattice in the frequency domain by
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Λ̂(K) :=
2π

2K1+···+Kd

(
([−2K1−1, . . . , 2K1−1 − 1]× · · · × [−2Kd−1, . . . , 2Kd−1 − 1]) ∩ Zd

)
⊆ Td.

The (centered) DFT F : v → v̂|
Λ̂(K)

maps time-domain data v : Λ(K) → C to 2πZd-periodic

frequency domain data v̂|
Λ̂(K)

, which is defined to be

v̂(n) = [Fv](n) :=
∑

k∈Λ(K)

v(k)e−in·k, n ∈ Λ̂(K).

The inverse (centered) DFT of v̂|
Λ̂(K)

is given by

[F−1v̂](k) =
1

2K1+···+Kd

∑
n∈Λ̂(K)

v̂(n)ein·k, k ∈ Λ(K).

The centered DFT and its inverse can be implemented by fftn, ifftn, and fftshift in
MATLAB.

Given a filter u defined by its Fourier series û : Td → C and data v : Λ(K) → C, the
circular convolution v~u : Λ(K)→ C is determined by DFT F (v~u) : Λ̂(K)→ C as follows:

̂[v ~ u](n) := v̂(n) · û(n), n ∈ Λ̂(K).

That is, v ~ v = F−1[F (v) · û|
Λ̂(K)

], where û|
Λ̂(K)

is the sampling of û on the lattice Λ̂(K).

We shall omit such dependence and simply write v ~ u = F−1[v̂ · û] since it can be easily
told from the expression. For a downsampling matrix A := diag(2m1 , . . . , 2md) for m :=
(m1, . . . ,md) ∈ Nd0, the downsampling operation v ↓ A : Λ(K − m) → C and upsampling
operation v ↑ A : Λ(K + m)→ C are defined by

[v ↓ A](k) = v(Ak) for k ∈ Λ(K−m) and [v ↑ A](k) =

{
v(A−1k) if A−1k ∈ Λ(K),

0 otherwise.

It is easy to show that

F (v ↓ A) =
( 1

|detA|
∑
ω∈ΩA

v̂(A−Tξ + 2πω)
)∣∣∣

Λ̂(K−m)
, ΩA := [A−TZd] ∩ [0, 1)d.

Note that if v̂(·)v̂(·+2πω) = 0 for all ω ∈ ΩA, then F (v ↓ A) can be implemented efficiently by
lattice modulation [F (v ↓ A)](n) := v̂(A−Tn+2πωn) for those n such that v̂(A−Tn+2πωn) 6= 0
for some ωn ∈ ΩA. For the upsampling operation, we have

F (v ↑ A) = v̂(ATξ)
∣∣
Λ̂(K+m)

,

which can be obtained by the periodic extension of F (v) in practice. The transition operator
Tu,Av and subdivision operator Su,Av combine the operations of circular convolution and
downsampling(upsampling) together, which are defined to be

Tu,Av := (v ~ u?) ↓ A and Su,Av := |detA|[(v ↑ A) ~ u],
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where u? is defined by û?(ξ) = û(ξ). It is easy to show that

F (Tu,Av) =
( 1

|detA|
∑
ω∈ΩA

[v̂ · û](A−Tξ + 2πω)
)∣∣∣

Λ̂(K−m)
,

F (Su,Av) =
(
|detA|v̂(ATξ)û(ξ)

) ∣∣∣
Λ̂(K+m)

.

Consequently, F (Su,ATu,Av) =
(∑

ω∈ΩA
v̂(ξ + 2πω) · û(ξ + 2πω)û(ξ)

)∣∣
Λ̂(K)

.

Given input data vJ : Λ(K)→ C and a sequence DAS({Bj}J−1
j=0 ) of digital affine shear filter

banks as in (3.6), the (multilevel) forward digital affine shear transform decomposes vJ to a
sequence of filtered coefficients

(3.9) {v0} ∪ {wj,~̀,n,± : n = 1, . . . , d, |~̀| 6 ~sj}J−1
j=0

as follows:

vj = Ta,Mvj+1 and wj,
~̀,n,± := T

bj,~̀,±(En·),Aj,n
vj+1 for |~̀| 6 ~sj , n = 1, . . . , d, j = J − 1, . . . , 0.

The (multilevel) backward digital affine shear transform reconstructs a sequence of filtered
coefficients in (3.9) back to a data sequence as follows:

v̊j+1 = Sa,Mv̊j +
d∑

n=1

~sj∑
~̀=−~sj

S
bj,~̀,n,±(En·),Aj,n

wj,
~̀,n,± for j = 0, . . . , J − 1

with v̊0 = v. It is easy to see the PR property of decomposition and reconstruction using
(3.6); that is, vJ = v̊J for any input data vJ : Λ(K) → C. In fact, due to (3.7) and (3.8), for
each j = 0, . . . , J − 1, we have

F
( ∑

(b↓A)∈Bj

Sb,ATb,Avj+1
)

=
∑

(b↓A)∈Bj

F
(
Sb,ATb,Avj+1

)
=

∑
(b↓A)∈Bj

( ∑
ω∈ΩA

v̂j+1(ξ + 2πω) · b̂(ξ + 2πω)̂b(ξ)
)∣∣∣

Λ̂(K)

=
∑

(b↓A)∈Bj

(
v̂j+1(ξ) · |̂b(ξ)|2

) ∣∣∣∣∣
Λ̂(K)

=
(
v̂j+1(ξ)

∑
(b↓A)∈Bj

|̂b(ξ)|2
)∣∣∣∣∣

Λ̂(K)

= F (vj+1).

The detailed steps of the forward and backward transforms of a digital affine shear filter
bank are presented in Algorithms 1 and 2. We remark that filters in Bj can be precomputed

and stored before doing decomposition and reconstruction. Since by our design the supp(̂b)
can be precomputed for each b ∈ Bj , we only need to store data of filters on its support.

Moreover, we only need to compute wj,
~̀,n,+ due to the fact that b̂j,~̀,−(ξ) = b̂j,~̀,+(−ξ) and

v̂(−ξ) = v̂(ξ) for real-valued data, ξ ∈ Rd. These make our transforms extremely fast. We
shall give the computational complexity estimate in the next subsection.
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Algorithm 1. Forward digital affine shear transform (decomposition).

(a) Input: d-dimensional real-valued data v on Λ(K) for some K = (K1, . . . ,Kd) ∈ Nd0 and
a sequence DAS({Bj}J−1

j=0 ) of digital affine shear filter banks defined as in (3.6) with J 6
min{K1− 1, . . . ,Kd− 1} and k0, . . . , kJ−1 of nonnegative integers determining the number

of shear directions in Bj := {a ↓ M, bj,
~̀,±(En·) ↓ Aj,n : |~̀| 6 ~sj , n = 1, . . . , d} with

~sj := (2kj , . . . , 2kj ) ∈ Nd−1, Aj,n := En diag(2, 2kj Id−1), and a, bj,
~̀,± being defined as in

(3.1) and (3.5), respectively.

(b) Output: Digital affine shear coefficients: {v0} ∪ {wj,~̀,n,+ : n = 1, . . . , d, |~̀| 6 ~sj}J−1
j=0 .

(c) Main steps:
1: Initialization: v̂ ← F (v) and j ← J − 1.
2: while j > 0 do
3: Low-pass filtering Ta,Mv: Initialize zero matrix û on Λ̂(K − 1). Compute û by û(k) ←

v̂(M−Tk) · â(M−Tk) for M−Tk ∈ supp(â).

4: for each bj,
~̀,+(En·) ↓ Aj,n ∈ Bj do

5: b ← bj,
~̀,+(En·) and A ← Aj,n. Initialize a zero matrix c on the lattice Λ(K − En~kj),

where ~kj = (1, kj , . . . , kj) ∈ Nd0.

6: Compute F (c) by ĉ(k)← v̂(ATk + 2πωk) · b̂(ATk + 2πωk) for ATk + 2πωk ∈ supp(̂b).

7: High-pass filtering T
bj,~̀,+(En·),Aj,nv: wj,

~̀,n,+ ← F−1(ĉ).

8: end for
9: j ← j − 1, K← K− 1, and v̂ ← û.

10: end while
11: v0 ← F−1(v̂).

Algorithm 2. Backward digital affine shear transform (reconstruction).

(a) Input: Digital affine shear coefficients: {v0} ∪ {wj,~̀,n,+ : n = 1, . . . , d, |~̀| 6 ~sj}J−1
j=0

and a sequence DAS({Bj}J−1
j=0 ) of digital affine shear filter banks defined as in (3.6)

and k0, . . . , kJ−1 of nonnegative integers determining the number of shear directions in

Bj := {a ↓ M, bj,
~̀,±(En·) ↓ Aj,n : |~̀| 6 ~sj} with ~sj := (2kj , . . . , 2kj ) ∈ Nd−1, Aj,n :=

En diag(2, 2kj Id−1), and a, bj,
~̀,± being defined as in (3.1) and (3.5), respectively. The

coefficient c0 is on the lattice Λ(K0) for some K0 ∈ Nd.
(b) Output: d-dimensional real-valued data v on Λ(K) with K = K0 + J .
(c) Main steps:

1: Initialization: v̂ ← F (c0), j ← 0, and K← K0 + 1.
2: while j < J do
3: Low-pass subdivision Sa,Mv: Initialize zero matrix v̂lo on Λ̂(K). Compute v̂lo by v̂lo(k)←

v̂(MTk) · â(k) for k ∈ supp(â).
4: Initialize a zero matrix v̂hi on Λ̂(K).

5: for each bj,
~̀,+(En·) ↓ Aj,n ∈ Bj do

6: b← bj,
~̀,+(En·), A← Aj,n, and ĉ← F (wj,

~̀,n,+).
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7: High-pass subdivision for all S
bj,~̀,+(En·),Aj,nv : v̂hi(A

Tk + 2πωk)← v̂hi(A
Tk + 2πωk) +

ĉ(k)̂b(ATk + 2πωk) for ATk + 2πωk ∈ supp(̂b).
8: end for
9: High-pass subdivision S

bj,~̀,−(En·),Aj,nv: v̂hi ← v̂hi + v̂hi(−·).
10: v̂ ← v̂lo + v̂hi, K← K + 1, j ← j + 1.
11: end while
12: v ← F−1(v̂).

3.3. Redundancy rate and computational complexity. We now analyze the redundancy
rate and computational complexity of our digital affine shear transforms.

The redundancy rate measures the storage complexity of a filter bank transform, which
is defined to be the ratio of the size of the output coefficients to the size of the input data.
Let N = 2K1+···+Kd be the size of the input data. We next estimate the size of the output

coefficients {v0}∪{wj,~̀,n,+ : |~̀| 6 ~sj , n = 1, . . . , d}J−1
j=0 . For our digital affine shear transforms,

at scale j for j = J − 1, . . . , 0, the output detailed coefficients are wj,
~̀,n,+ for n = 1, . . . , d,

|~̀| 6 ~sj with ~sj = (2kj , . . . , 2kj ) ∈ Zd−1. The coefficient matrix wj,
~̀,n,+ is on the lattice

Λ(K̃1, . . . , K̃d), where K̃t = Kt − (J − 1 − j) − kj for t 6= n and K̃n = Kn − (J − j), which

is of size N
2d(J−1−j) · 1

21+(d−1)kj
. The total number of high-pass outputs wj,

~̀,n,+ at scale j is

d(2kj+1 + 1)d−1. Consequently, the size of the total output coefficients at scale j is

N

2d(J−1−j) ·
1

21+(d−1)kj
× d(2kj+1 + 1)d−1 × 2.

The factor “×2” is due to the outputs wj,
~̀,n,+ being complex-valued. The low-pass coefficient

v0 is of size N/2dJ . Therefore, the total size of output coefficients is

N

J−1∑
j=0

2d(2kj+1 + 1)d−1

2d(J−1−j) · 21+(d−1)kj
+

1

2dJ

 =N

J−1∑
j=0

d(2−kj + 2)d−1

2d(J−1−j) +
1

2dJ


6Nd(2−kmin + 2)d−1

 ∞∑
j=0

2−dj


=Nd(2−kmin + 2)d−1 2d

2d − 1
,

where kmin := min{kj : j = 0, . . . , J − 1}. The redundancy rate r is given by

r =

J−1∑
j=0

d(2−kj + 2)d−1

2dj
+

1

2dJ

 6 d(2−kmin + 2)d−1 2d

2d − 1
.

Table 1 gives the bounds of the redundancy rate with respect to a fixed dimension d and a
fixed kmin.
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Table 1
Theoretical redundancy bound of r for our digital affine shear transforms. The dimension d = 2, 3, 4, 5 and

the minimal direction parameter kmin = 0, . . . , 6. The last column is the redundancy rate for TP-CTF6 in [18].

d\kmin 0 1 2 3 4 5 6 2d TP-CTF6 [18]

2 8.00 6.67 6.00 5.67 5.50 5.42 5.38 4 10.67
3 30.86 21.43 17.36 15.48 14.58 14.15 13.93 8 29.71
4 115.20 66.67 48.60 40.94 37.43 35.76 34.94 16 85.33
5 418.06 201.61 132.28 105.24 93.40 87.86 85.19 32 249.80

Table 2
Redundancy rates of several directional systems in practice for 2D and 3D problems. For their performances

in image/video processing, see section 4. DAS is our digital affine shear transform. DT-CWT is the dual-tree
complex wavelet transform in [26]. TP-CTF6 is the tensor product complex tight framelet transform in [18].
DNST is the compactly supported shearlet transform in [22]. FDCT is the fast discrete curvelet transform in
[3]. NSCT is the nonsubsampled contourlet transform in [5]. SURF is the surfacelet transform in [23].

d\systems DAS DT-CWT TP-CTF6 DNST FDCT NSCT SURF

2D 6.17 4 10.67 49 2.8 53 N.A.
3D 17.88 8 29.71 154 N.A. N.A. 6.4

Note that instead of increasing, the bound of the redundancy rate r decreases as kmin
increases, which determines the number of shear directions > d(2kmin+1 +1)d−1. In dimension
two, kj = 2 corresponds to 18 directions at scale j. In dimension three, kj = 2 corresponds
to 243 directions at scale j. In Table 1, we also compare with 2d and the redundancy rate
of TP-CTF6 in [18], which has redundancy rate 2d × 3d−1

2d−1
. One can see from the table that

the redundancy rate increases more slowly than TP-CTF6 with respect to dimension d for a

fixed kmin > 1. Actually, the ratio between these two is bounded by d(2−kmin+2)d−1

3d−1
→ 0 as

d → ∞ for kmin > 1. In Table 2, we compare the redundancy rates of different directional
systems in dimensions two and three. One can see that DT-CWT, FDCT, and SURF have
low redundancy rates. The redundancy rates of our DAS and TP-CTF6 are moderate and
close to each other, while DNST and NSCT have extremely high redundancy rates. For their
performances in terms of peak signal-to-noise ratio (PSNR) in image/video processing, see
section 4.

For fast implementation, with a fixed size of data and a fixed finest level J of decomposi-
tion, the digital affine shear filter banks DAS({Bj}J−1

j=0 ) can be precomputed. More precisely,

for each b ∈ Bj , by the compact property of b̂, we only need to store the support indices and

values {(k, b̂(k)) : b̂(k) 6= 0, k ∈ Λ̂(K − (J − 1 − j))}. Again, by the symmetry property, we
only need to store half of such information. Similar to the above analysis, we can conclude
that the total size is again bounded by rN for N the size of input data and r the redundancy
rate of the transform. In conclusion, the storage complexity, even with precomputed filters,
is proportional to rN .

We next discuss the computational complexity of the digital affine shear transforms. In
Algorithm 1 (decomposition), the computational complexity of line 1 (initialization, DFT) is
N logN . Let us next analyze lines 3–7 in the while loop with respect to scale j = J−1, . . . , 0.
At line 3, we need to perform N

2d(J−j)
(complex) multiplications for computing v̂|

Λ̂(K−(J−j)).
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Since the support indices are precomputed, the main computational cost in the for loop is line
6 for multiplication and line 7 for inverse DFT. The total number of (complex) multiplications
in the for loop is(

N

2d(J−1−j) ·
1 + log(N)− d(J − 1− j)− 1− (d− 1)kj

21+(d−1)kj

)
× d(2kj+1 + 1)d−1.

The last step, line 11 (inverse DFT), requires N
2dJ

(log(N)− dJ) numbers of (complex) multi-
plications. Consequently, the total computational cost is

N logN +

J−1∑
j=0

[ N

2d(J−1−j) ·
1 + logN − d(J − 1− j)− 1− (d− 1)kj

21+(d−1)kj
× d(2kj+1 + 1)d−1

+
N

2d(J−j)

]
+

N

2dJ
(logN − dJ)

6N logN +N(1 + logN)

J−1∑
j=0

[
d(2kj+1 + 1)d−1

2d(J−1−j) · 21+(d−1)kj
+

1

2d(J−j)

]
+

1

2dJ


6N logN +N(1 + logN)(r + (2d − 1)−1)

6N [(1 + logN)(r + (2d − 1)−1 + 1)− 1]

6(r + 2) · (N +N logN).

Roughly speaking, N mainly comes from the pointwise multiplications of filters and input data,
while N logN comes from the performance of DFT for output coefficients. Our computational
cost is proportional to the computational complexity of DFT for input data of size N . The
ratio is controlled by the redundancy rate r. Since the backward transform Algorithm 2
basically reverses the steps in Algorithm 1, the computational cost of Algorithm 2 is the same
as Algorithm 1.

Table 3 gives the computational time comparison between the forward digital affine shear
transform (DAS) and the standard DFT in dimension three. The level J is set to be 4 and
k0 = 0, k1 = 1, k2 = 1, k3 = 2. For each N = n3 with n ranging from 96 to 256 (step size
16), the computational time (in seconds) for a standard DFT (FFT time) and our forward
digital affine shear transform (DAS time) are obtained (average over 10 trials in MATLAB
using timeit). The ratio of the DAS time to the FFT time is given (see the row with respect
to tDAS : tFFT in Table 3). Moreover, we also run the similar experiments for some available
3D directional transform packages including TP-CTF6 [18], DT-CWT [26], DNST [22], and
SURF [23]. Note that we only run the forward transform from each package and evaluate the
computational time. The results are given in Table 3. The last column shows the redundancy
rate of each transform as well. We can see that the computational complexity of our digital
affine shear transform is very close to r × tFFT with r the redundancy rate. For others,
TP-CTF6 is about twice r × tFFT, SURF is 4 times slower, while DT-CWT and DNST are
about 10 times slower than r × tFFT. For a more detailed comparison in terms of PSNR in
video processing, see section 4.
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Table 3
Computational time of the forward transforms of FFT, DAS, TP-CTF6, DT-CWT, SURF, and DNST

for 3D data of size N = n × n × n with n ranging from 96 to 256 (step size 16). Each computational time is
averaged over 10 runs. The ratio of each transform to the FFT time is given as well. The last column, r, is
the redundancy rate of the corresponding transforms.

n 96 112 128 144 160 176 192 208 224 240 256 r

tFFT 0.008 0.015 0.024 0.035 0.046 0.064 0.093 0.105 0.130 0.156 0.219 1

tDAS 0.303 0.433 0.559 0.898 1.153 1.542 2.050 2.546 3.118 3.827 4.459
tDAS : tFFT 35.75 29.65 22.89 25.98 25.26 24.11 22.03 24.25 24.07 24.54 20.39 17.88

tTP-CTF6 0.594 0.890 1.276 1.980 2.674 3.609 4.844 6.331 8.249 10.136 13.180
tTP-CTF6 : tFFT 69.99 60.93 52.25 57.28 58.59 56.45 52.05 60.31 63.69 64.99 60.28 29.71

tDT-CWT 1.18 1.70 2.43 3.18 4.34 5.71 6.86 8.73 10.91 13.12 16.95
tDT-CWT : tFFT 138.5 116.8 99.4 92.1 95.0 89.3 73.7 83.2 84.2 84.1 77.5 8

tSURF N.A. N.A. 0.61 1.04 1.26 1.86 2.30 3.07 3.54 4.94 5.19
tSURF : tFFT N.A. N.A. 25.0 30.1 27.6 29.1 24.7 29.2 27.3 31.7 23.7 6.4

tDNST N.A. N.A. N.A. 52.7 74.7 99.3 132.9 161.6 202.1 251.5 362.7
tDNST : tFFT N.A. N.A. N.A. 1525 1636 1553 1428 1539 1561 1613 1659 154

4. Numerical experiments on image and video processing. In this section, we shall
apply our digital affine shear transforms1 for the tasks of image/video processing including
denoising and inpainting. We will mainly compare the performance of our systems to several
other state-of-the-art directional multiscale representation systems.

The PSNR index is used to measure the performance of different systems and is defined
to be

(4.1) PSNR(u, ũ) = 10 log10

2552

MSE(u, ũ)
,

where u : Λ→ C is the original data defined on a lattice Λ, ũ is the denoised/inpainted data
of u, and MSE(u, ũ) is the mean square error 1

|Λ|
∑

k∈Λ |u(k)− ũ(k)|2 with |Λ| the cardinality
of the lattice Λ. The unit of PSNR is dB.

For the thresholding technique in the denoising/inpainting task using our digital affine
shear transforms, we employ the local-soft thresholding method: For each high-pass coefficient

matrix w ∈ {wj,~̀,n,+ : n = 1, . . . , d, |~̀| 6 ~sj}J−1
j=0 , let b be the filter that induces w, that is,

w = Tb,BvJ for the input data vJ and some downsampling matrix B, we first normalize it with
respect to the norm ‖b‖2 of b to obtain wb := w

‖b‖2 . The filter b can be computed by applying

the backward transform to a delta data on the support of w and ‖b‖2 is the Frobenius norm of
the reconstructed data. Let σ be the variance of a noise obeying normal distribution N(0, σ2)
and Λ be the lattice for w. For each k ∈ Λ, compute local coefficient variance σw : Λ→ [0,∞)

by σw(k) :=
√(

1
#Λk

∑
n∈Λk
|wb(n)|2 − σ2

)
+

, where Λk is the lattice k+ [−L,L]d that centered

at position k for some integer L > 0. Note that σw can be computed by convolution of wb

with a normalized window [−L,L]d∩Zd
(2L+1)d

. The threshold tw : Λ → [0,∞] is then defined by

tw(k) = σ2

σw(k) , k ∈ Λ. The soft thresholding operator ηsoftt (x) and hard thresholding operator

1The full MATLAB package of our digital affine shear transforms (2D and 3D) and their applications in
image/vidoe processing can be downloaded from http://personal.cityu.edu.hk/∼xzhuang7/softs.

http://personal.cityu.edu.hk/~xzhuang7/softs
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ηhardt (x) are defined to be

ηsoftt (x) =

{
x− t x|x| , |x| > t,

0 otherwise,
and ηhardt (x) =

{
x, |x| > t,

0 otherwise.

The local-soft thresholding ηlstw(wb) : Λ→ C applying to wb with threshold tw is then defined

to be [ηlstw(wb)](k) := ηsofttw(k)(wb(k)). The threshold coefficient w̃ from w is then renormalized

by w̃ := ‖b‖2 · ηlstw(wb).

Figure 2. 2D images Lena and Barbara (left two), masks Text 1 and Text 2 for inpainting (middle two),
and first frame of 3D data Mobile and Coastguard (right two).

4.1. Comparisons on image denoising and inpainting. In this subsection, we apply our
digital affine shear transforms to the task of denoising and inpainting in image processing.
The parameters c0, ε0, ε1 of a,g in (3.1) and (3.2) are given by c0 = 33

32 , c1 = π, ε0 = 69
128 ,

ε1 = 51
512 , and ε = 0.469 for γε. We choose J = 5 for DAS({Bj}J−1

j=0 ) as in (3.6); that is, we
decompose to 5 scales. The shear parameter (k4, k3, k2, k1, k0) is set to be (2, 1, 1, 1, 0). That
is, for the finest scale j = 4, we use totally 2(2k4+1 + 1) = 18 shear directions (9 on horizontal
cone and 9 on vertical cone). For the next three scales j = 3, 2, 1, we use 10 shear directions,
and for the coarsest scale, we use 6 shear directions. The redundancy rate of our system
DAS({Bj}4j=0) is 6.165. The convolution window size L to compute local coefficient variance
σw is set to be 5, i.e., we are using 11× 11 window filter.

We first apply our system to the task of denoising in image processing. We test two
standard images: Lena and Barbara. See Figure 2. Both are of size 512×512. We first employ
symmetric boundary extension (with 32 pixels) on the noisy image to avoid the boundary
effect. We then apply our forward transform to obtain the coefficients. After performing
the local-soft threshold procedure, we then apply the backward transform to the thresholded
coefficients and throw away the extended boundary to obtain the final denoised image.

We compare our denoising performance to several other state-of-the-art directional mul-
tiscale representation systems: dual-tree complex wavelets [26], tensor product complex tight
framelets [17, 18], curvelets [2, 3], compact support shearlets [22], and contourlets [5]. We
download each of their available packages and run their denoising codes for both Lena and
Barbara.

The 2D DT-CWT in [26] has redundancy rate 4. The number of directional filters of
DT-CWT at each scale is 6 covering ±15◦,±45◦,±75◦. The number of scales is 6. Bivariate
shrinkage thresholding technique is employed for denoising. The TP-CTF6 is detailed in
[17, 18] and has redundancy rate 10.67 and 14 directional filters for each scale. The number
of scales is 5 and it also uses the bivariate shrinkage thresholding technique.
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The curvelet transform (FDCT at http://www.curvelab.org) has two implementations:
one uses un-equispace FFT, the other uses frequency wrapping. Here we use the wrapping
package; detailed information can be found in [3]. The performance of these two implemen-
tations is very close (less than 0.2 dB) and we choose the wrapping one for comparison. The
total number of scales is 5. At the finest scale, the FDCT uses isotropic wavelet transform
to avoid checkerboard effect. At scale 4, 32 (angular) directions are used. At scales 3 and 2,
16 (angular) directions are used. At the coarsest scale, 8 (angular) directions are used. The
redundancy of the FDCT is about 2.8. The shearlet transform at http://www.shearlab.org
also has many implementations and we choose the compactly supported shearlet implemen-
tation DNST as in [22], which has the best performance so far in the ShearLab package. For
DNST, the total number of scales is 4. Sixteen shear directions are used for finest scale 4 and
3, while 8 shear directions are used for the other two scales. The redundancy of DNST is 49.
The contourlet transform [5] (NSCT package at http://minhdo.ece.illinois.edu/software) has
redundancy rate 53. It uses 4, 8, 8, 16, and 16 directions in the scales from coarser to finer.
All three transforms use hard thresholding for denoising.

We compare the denoising performance over different noise levels σ ∈ {5, 10, 30, 50, 80, 100}.
The comparison results are presented in Table 4. The values in the brackets are gain (+) or
loss (−) of our method compared to other methods. From Table 4, we see significant improve-
ment over FDCT and NSCT for both Lena and Barbara. Comparing our method with DNST,
when the noise level is small (σ 6 30), DNST performs better than our method for the image
Lena, while our method performs better than DNST when the noise level is high (σ > 30) for
both Lena and Barbara. The performance of DT-CWT and our method is comparable when
the noise level is small and our method outperforms DT-CWT when the noise level is high.
TP-CTF6 outperforms our method for Lena when the noise level σ 6 50 and for Barbara
when σ 6 30. However, when the noise level is high, our method outperforms TP-CTF6.
In summary, we conclude that our method is in general better than DT-CWT, TP-CTF6,
FDCT, DNST, and NSCT, especially for texture-rich image Barbara and for a high noise
level (σ > 30).

We next apply our system to the task of inpainting in image processing and compare
the performance with benchmark system TP-CTF6 in [18]. The directional tensor product
complex framelet system TP-CTF6 has been shown in the image inpainting problem with im-
pressive performance over many other state-of-the-art frame-based systems (see [27]). Here we
employ the same inpainting framework developed in [27], which uses an iterative thresholding
algorithm with gradually decreasing threshold values. The threshold technique we employ
for our digital affine shear transforms is the local-soft thresholding, while the threshold tech-
nique for TP-CTF6 is bivariate shrinkage (see [27] or [18] for more details). The parameters
for our digital affine shear transforms are the same as those for image denoising. We test
on the two standard 512 × 512 images Barbara and Lena with four cases: scratch missing
information with masks Text 1 and Text 2 (see Figure 2) and random missing information
with 50% pixels missing and 80% pixels missing. For each case, we compare the performance
with respect to different Gaussian noise for σ = 0, 5, 10, 20, 30, 50. Here σ = 0 simply means
no noise for the image with missing information. The results are reported in Table 5. From
Table 5, we can conclude that for texture-rich image Barbara when the noise level is low or
percentage of missing pixels is small, TP-CTF6 in general performs better than digital affine

http://www.curvelab.org
http://www.shearlab.org
http://minhdo.ece.illinois.edu/software
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Table 4
PSNR of denoised Lena and Barbara using different transforms.

512× 512 Lena

σ DAS DT-CWT TP-CTF6 DNST FDCT NSCT

5 38.14 38.25(-0.11) 38.37(-0.23) 38.01(0.13) 35.77(2.37) 37.71(0.43)
10 35.12 35.19(-0.07) 35.48(-0.36) 35.35(-0.23) 33.37(1.75) 34.92(0.20)
30 30.61 30.50(0.11) 30.80(-0.19) 30.68(-0.07) 29.34(1.27) 30.32(0.29)
50 28.49 28.22(0.27) 28.54(-0.05) 28.21(0.28) 27.19(1.30) 28.02(0.47)
80 26.54 26.15(0.39) 26.47(0.07) 25.78(0.76) 25.16(1.38) 25.80(0.74)
100 25.63 25.20(0.43) 25.52(0.11) 24.58(1.05) 24.22(1.41) 24.71(0.92)

512× 512 Barbara

σ DAS DT-CWT TP-CTF6 DNST FDCT NSCT

5 37.32 37.37(-0.05) 37.84(-0.52) 37.17(0.15) 33.83(3.49) 36.96(0.36)
10 33.64 33.54(0.10) 34.18(-0.54) 33.62(0.02) 29.17(4.47) 33.35(0.29)
30 28.33 27.89(0.44) 28.38(-0.05) 27.97(0.36) 24.44(3.89) 27.28(1.05)
50 26.01 25.36(0.65) 25.71(0.30) 25.31(0.70) 23.38(2.63) 24.57(1.44)
80 23.99 23.27(0.72) 23.53(0.46) 22.96(1.03) 22.22(1.77) 22.65(1.34)
100 23.07 22.42(0.65) 22.64(0.43) 22.06(1.01) 21.61(1.46) 21.90(1.17)

shear transforms. However, when the noise level is high, the digital affine shear transforms
significantly outperform TP-CTF6 for Barbara. The performance of digital affine shear trans-
forms is slightly worse than that of the TP-CTF6 on Lena because edge information is not as
significantly important as those for the image Barbara.

Table 5
PSNR of inpainted Lena and Barbara using different transforms.

512× 512 Barbara

Text 1 Text 2 50% missing 80% missing

σ DAS [27](TP-CTF6) DAS [27](TP-CTF6) DAS [27](TP-CTF6) DAS [27](TP-CTF6)

0 36.16 36.59(-0.43) 33.41 32.68(0.73) 33.77 35.73(-1.96) 27.84 28.16(-0.32)
5 33.75 34.05(-0.30) 31.94 31.32(0.62) 32.14 33.42(-1.28) 27.30 27.73(-0.43)
10 31.67 31.81(-0.14) 30.39 29.85(0.54) 30.47 31.11(-0.64) 26.72 26.70(0.02)
20 29.06 28.99(0.07) 28.15 27.71(0.44) 27.99 28.00(-0.01) 25.26 24.70(0.56)
30 27.38 27.18(0.20) 26.65 26.24(0.41) 26.32 25.95(0.37) 24.16 23.34(0.82)
50 25.29 24.91(0.38) 24.73 24.30(0.43) 24.25 23.60(0.65) 22.26 21.90(0.36)

512× 512 Lena

0 37.98 38.02(-0.04) 33.93 34.31(-0.38) 35.72 38.00(-2.28) 30.74 32.33(-1.59)
5 35.15 35.19(-0.04) 32.63 32.97(-0.34) 33.97 35.40(-1.43) 30.20 31.44(-1.24)
10 33.34 33.42(-0.08) 31.58 31.80(-0.22) 32.57 33.40(-0.83) 29.54 30.25(-0.71)
20 31.08 31.26(-0.18) 30.02 30.10(-0.08) 30.41 30.84(-0.43) 28.09 28.36(-0.27)
30 29.68 29.81(-0.13) 28.84 28.89(-0.05) 28.90 29.18(-0.28) 26.76 26.95(-0.19)
50 27.82 27.85(-0.03) 27.20 27.22(-0.02) 26.92 27.06(-0.14) 25.01 25.15(-0.14)

4.2. Comparisons of video denoising and inpainting. In this subsection, we apply our
digital affine shear transforms to the task of denoising and inpainting in video processing.
The parameters c0, c1, ε0, ε1 of a,g in (3.1) and (3.2) are the same as in the task of image
denoising/inpainting. We choose J = 4 for DAS({Bj}J−1

j=0 ) as in (3.6); that is, we decompose
to four scales. The shear parameters (k3, k2, k1, k0) are set to be (2, 1, 1, 0). That is, for the
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finest scale j = 3, we use totally 3(2k3+1 + 1)2 = 243 shear directions (81 for each cone). For
the next two scales j = 2, 1, we use 75 shear directions, and for the coarsest scale, we use 27
shear directions. The redundancy of our system DAS({Bj}3j=0) is 17.88. The window size L
to compute local coefficient variance σw is set to be 2, i.e., we are using a 5× 5× 5 window.

We next apply our system to the task of denoising in video processing. We test two
videos, Mobile and Coastguard, which can be downloaded from http://www.shearlab.org (see
the original source at http://www.cipr.rpi.edu/resource/sequences/). Both are of size 192 ×
192×192. We first employ symmetric boundary extension (with 16 pixels) on the noisy image
to avoid the boundary effect. We then apply our forward transform to obtain the coefficients.
After performing the local-soft threshold procedure, we then apply the backward transform
to the thresholded coefficients and remove the extended boundary to obtain the final denoised
image. See Figure 2.

We compare our denoising performance to 3D dual-tree complex wavelets [26], 3D tensor
product complex tight framelets [17, 18], surfacelets [23], and 3D compact support shearlets
[22]. The 3D DT-CWT in [26] has redundancy rate 8. The number of directional filters of
DT-CWT at each scale is 56. The number of scales is five. The 3D TP-CTF6 is detailed
in [18] and has redundancy rate 29.71 and 208 directional filters for each scale. The number
of scales is 4. The bivariate shrinkage thresholding technique is employed for both DT-
CWT and TP-CTF6. For 3D DNST from the ShearLab package, we choose the one with
redundancy rate 154 (three scales). The surfacelet transform (SURF) from SurfBox at http:
//minhdo.ece.illinois.edu/software has redundancy rate 6.4. The 3D DNST and sufacelet
transform use hard thresholding for denoising.

We compare the denoising performance over different noise levels σ ∈ {10, 20, 30, 50, 80,
100}. The comparison results are presented in Table 6. The values in the brackets are gain
(+) or loss (−) of our method compared to other methods. From Table 6, we see that our
method outperforms both two low-redundancy 3D transforms DT-CWT and surfacelets. For
the other two high-redundant 3D transforms TP-CTF6 and DNST, our performance is worse
while the noise level is small (σ < 50) but significantly better when the noise level is high
(σ > 50).

We finally apply our system to the task of inpainting in video processing. Again, we
only compare with the benchmark system TP-CTF6 using the same inpainting framework in
[27]. The parameters for our digital affine shear transforms are the same as those for video
denoising. The comparison of TP-CTF6 has been done in [18]. Interested readers are referred
to [18, section 4.2] for more details. We test on two videos, Mobile and Coastguard, for two
cases: 50% random missing pixels and 80% random missing pixels. For each case, the videos
are also corrupted by Gaussian noise with noise variance σ ∈ {0, 10, 30}. The results are
reported in Table 7. From Table 7, we can conclude that when the noise level is low and the
percentage of missing pixels is small, TP-CTF6 performs in general better than digital affine
shear transforms. However, when the noise level is high, the digital affine shear transforms
significantly outperform TP-CTF6.

5. Proofs. In this section, we prove Theorems 2.1 and 2.2.

http://www.shearlab.org
http://www.cipr.rpi.edu/resource/sequences/
http://minhdo.ece.illinois.edu/software
http://minhdo.ece.illinois.edu/software
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Table 6
PSNR of denoised Mobile and Coastguard.

192× 192× 192 Mobile

σ DAS DT-CWT TP-CTF6 SURF DNST

10 34.99 34.72(0.27) 35.52(-0.53) 32.79(2.20) 35.91(-0.92)
20 31.50 30.86(0.64) 31.77(-0.27) 29.95(1.55) 32.18(-0.68)
30 29.57 28.67(0.90) 29.66(-0.09) 28.26(1.31) 29.99(-0.42)
50 27.26 26.06(1.20) 27.08(0.18) 26.11(1.15) 27.22(0.04)
80 25.20 24.00(1.20) 24.82(0.38) 24.25(0.95) 24.75(0.45)
100 24.23 23.17(1.06) 23.82(0.41) 23.40(0.83) 23.62(0.61)

192× 192× 192 Coastguard

σ DAS DT-CWT TP-CTF6 SURF DNST

10 33.70 33.21(0.49) 34.15(-0.45) 30.86(2.84) 33.81(-0.11)
20 30.27 29.61(0.66) 30.62(-0.35) 28.26(2.01) 30.28(-0.01)
30 28.47 27.71(0.76) 28.73(-0.26) 26.87(1.60) 28.40(0.07)
50 26.40 25.56(0.84) 26.48(-0.08) 25.17(1.23) 26.17(0.23)
80 24.65 23.83(0.82) 24.53(0.12) 23.61(1.04) 24.17(0.48)
100 23.86 23.08(0.78) 23.65(0.21) 22.87(0.99) 23.22(0.64)

Table 7
Performance in terms of PSNR values of two video inpainting algorithms: 3D DAS (redundancy rate

17.88) and 3D TP-CTF6 (reduandancy rate 29 5
7

) with respect to different Gaussian noise (σ = 0, 10, 30, where
σ = 0 means no noise). The percentages 50% and 80% are experiments with 50% and 80% uniformly randomly
missing pixels, respectively.

192× 192× 192 Mobile 192× 192× 192 Coastguard

50% missing 80% missing 50% missing 80% missing

σ DAS TP-CTF6 DAS TP-CTF6 DAS TP-CTF6 DAS TP-CTF6

0 37.91 41.74(-3.83) 30.55 28.61(1.94) 34.91 37.75(-2.84) 28.48 27.41(1.07)
10 32.19 33.09(-0.90) 28.26 27.84(0.42) 30.66 31.48(-0.82) 26.95 26.67(0.28)
30 27.56 27.87(-0.31) 25.11 23.53(1.58) 26.62 27.15(-0.53) 24.55 23.29(1.26)

5.1. Proof of Theorem 2.1. We define the following functions for the purpose of chara-
terization:

(5.1)


Ik
ϕj

(ξ) := ϕ̂j(ξ)ϕ̂j(ξ + 2πk), k ∈ Zd, ξ ∈ Rd;

IkΨj (ξ) :=
∑~sj

~̀=−~sj
ψ̂j,~̀(S~̀ ξ)ψ̂j,

~̀(S~̀ (ξ + 2πk)), k ∈ Zd, ξ ∈ Rd;

Ik
ϕj

(ξ) = IkΨj (ξ) := 0, k ∈ Rd\Zd, ξ ∈ Rd.

We have the following characterization for a sequence AS(ϕJ ; {Ψj}∞j=J), J > J0, of affine

shear systems to be a sequence of affine shear tight frames for L2(Rd) (also see [19, Theorem
2]), which include the result in Theorem 2.1 as a special case.

Theorem 5.1. Let J0 ∈ Z be an integer and AS(ϕJ ; {Ψj}∞j=J) be defined as in (2.2) with
J > J0. Then the following statements are equivalent to each other:

(1) AS(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(Rd) for every integer J > J0.
(2) The following identities hold:
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lim
j→∞

∑
k∈Zd
|〈f, ϕj

Mj
λ;k
〉|2 = ‖f‖22,(5.2)

∑
k∈Zd
|〈f, ϕj+1

Mj+1
λ ;k
〉|2 =

∑
k∈Zd
|〈f, ϕj

Mj
λ;k
〉|2 +

d∑
n=1

~sj∑
~̀=−~sj

∑
k∈Zd
|〈f, ψj,~̀

S−~̀AjλEn;k
〉|2(5.3)

for all j > J0 and for all f̂ ∈ D(Rd).
(3) The following identities hold:

lim
j→∞
〈|ϕ̂j(Njλ·)|

2, ĥ〉 = 〈1, ĥ〉 ∀ĥ ∈ D(Rd),(5.4)

IN
j
λk

ϕj
(Njλξ) +

d∑
n=1

IB
j
λEnk

Ψj
(BjλEnξ) = IN

j+1
λ k

ϕj+1 (Nj+1
λ ξ)(5.5)

for j > J0, a.e. ξ ∈ Rd, and k ∈ ([Mj
λZ

d] ∪ [Mj+1
λ Zd] ∪ ∪dn=1[EnA

j
λZ

d]), where Ik
ϕj
, IkΨj

are defined as in (5.1).
In particular, if ĥ > 0 for all h ∈ {{ϕj} ∪ {Ψj}}j>J0, then any of items (1)–(3) is equivalent
to (2.4)–(2.6).

Proof. The claim follows directly from [14, Theorem 13 and Corollary 12]. Since this
result plays a central role in this paper, for the convenience of the reader, we provide a proof
here by following lines developed in [14, Theorem 13].

Note that by our assumption on Mλ and Aλ, it is easy to show that

(5.6) {j ∈ Z : j > J0, [N
j
λBc(0)] ∩ Zd 6= {0}} is a finite set for every c ∈ [1,∞),

where Bc(x) denotes the d-dimensional ball of radius c centred at x ∈ Rd.
(1)⇒(2) Consider (2.3) with two consecutive J and J+1 with J > J0. Then the difference

gives (5.3). Now by (5.3), it is easy to deduce that

(5.7)
∑
k∈Zd
|〈f, ϕJ ′

MJ′
λ ;k
〉|2 =

∑
k∈Zd
|〈f, ϕJ

MJ
λ ;k
〉|2 +

J ′−1∑
j=J

d∑
n=1

~sj∑
~̀=−~sj

∑
k∈Zd
|〈f, ψj,~̀

S−~̀AjλEn;k
〉|2 ∀J ′ > J.

Therefore, by (2.3) and letting J ′ →∞, we see that (5.2) holds.
(2)⇒(1) By (5.3), we deduce that (5.7) holds. By letting J ′ → ∞ and in view of (5.2),

we conclude that (2.3) holds.
(2)⇔(3) By [14, Lemma 10], we can show that (5.3) is equivalent to

(5.8)

∫
Rd

∑
k∈Λj

f̂(ξ)f̂(ξ + 2πk)Ij(ξ)dξ = 0,

where Λj = [Mj
λZ

d] ∪ [Mj+1
λ Zd] ∪ ∪dn=1[EnA

j
λZ

d] and

Ij(ξ) :=
[
IN

j
λk

ϕj
(Njλξ) +

d∑
n=1

IB
j
λEnk

Ψj
(BjλEnξ)

]
− IN

j+1
λ k

ϕj+1 (Nj+1
λ ξ).
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Since Mλ = λ2In and Aλ = diag(λ2, λId−1) with λ > 1, we see that the lattice Λj is discrete.
By the same argument as in the proof of [14, Theorem 13], we see that (5.8) is equivalent to
(5.5).

By [14, Lemma 10], we see that (5.2) is equivalent to

(5.9) lim
j→∞

∫
Rd

∑
k∈[Mj

λZd]

f̂(ξ)f̂(ξ + 2πk)IN
j
λk

ϕj
(Njλξ) = ‖f‖22 ∀f̂ ∈ D(Rd).

Since f̂ ∈ D(Rd) is compactly supported, there exists c > 0 such that f̂(ξ)f̂(ξ + 2πk) = 0 for

all ξ ∈ Rd and |k| > c. By (5.6), there exists J ′′ > J0 such that f̂(ξ)f̂(ξ + 2πk)IN
j
λk

ϕj
(Njλξ) = 0

for all ξ ∈ Rd, k ∈ [Mj
λZ

d]\{0}, and j > J ′′. Consequently, for j > J ′′, (5.9) becomes

lim
j→∞

∫
Rd
|f̂(ξ)|2I0

ϕj (N
j
λξ) = ‖f‖22 ∀f̂ ∈ D(Rd),

which is equivalent to (5.4).
When all generators are nonnegative in the frequency domain, by item (3) of Theorem 5.1,

for k ∈ Zd\{0}, (5.5) is equivalent to (2.4). For k = 0, (5.5) is equivalent to (2.5). Together
with condition (2.6) and by item (3) of Theorem 5.1, the claim of Theorem 2.1 follows from
the equivalence between item (1) and item (3) of Theorem 5.1.

5.2. Proof of Theorem 2.2. In this subsection, we prove Theorem 2.2.

Proof. By our construction, we have for ξ ∈ Rd,

|ϕ̂(Njλξ)|
2 +

d∑
n=1

~̀
λj∑

~̀=−~̀
λj

|ψ̂j,~̀(S~̀BjλEnξ)|
2 = |ϕ̂(Njλξ)|

2 +
|ωλ,t,ρ(Njξ)|2

Γj(ξ)

d∑
n=1

~̀
λj∑

~̀=−~̀
λj

|γj,~̀(Enξ)|2

= |ϕ̂(Njλξ)|
2 + |ωλ,t,ρ(Njξ)|2 = |ϕ̂(Nj+1ξ)|2.

Hence, (2.5) holds. By the definition of ϕ, (2.6) also holds. Note that all generators satisfy

ψ̂j,~̀ > 0 and ϕ̂ > 0. For ϕ, we have ϕ̂(ξ)ϕ̂(ξ+2πk) = 0 for k 6= 0 since supp ϕ̂ ⊆ [−ρπ, ρπ]2 with

ρ 6 1. By (2.14), we have ψ̂j,~̀(ξ) = ωλ,t,ρ(ξ1, λ
−j(ξ2−`2ξ1), . . . , λ−j(ξd−`dξ1))

∏d
n=2 γε(ξn/ξ1)√
Γj((S~̀ B

j
λ)−1ξ)

.

Hence the support of ψ̂j,~̀ on ξ1 is controlled by [−ρπ, ρπ], while the support of ψ̂j,~̀ on ξn is

controlled by that of γε(ξn/ξ1) for n = 2, . . . , d. Now it is easy to show that supp ψ̂j,~̀ ⊆
[−ρπ, ρπ]× [−(1 + 2ε)ρπ, (1 + 2ε)ρπ]d−1 ⊆ [−π, π]d by that ρ 6 1

1+2ε . Hence, ψ̂j,~̀(ξ)ψ̂j,~̀(ξ +
2πk) = 0 for k 6= 0. Consequently, (2.4) holds. Now, by Theorem 2.1, we conclude that
AS(ϕ; {Ψj}∞j=J) is an affine shear tight frame for L2(Rd) for all J > 0. Since all generators

ϕ,ψj,
~̀

are functions in C∞(Rd), all elements in AS(ϕ; {Ψj}∞j=J) are functions in C∞(Rd).
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By the definition of ωλ,t,ρ, it is easy to see that

|ωλ,t,ρ(ξ)|2 =
∣∣∣βλ,t,ρ(ξ1)

d−1∏
n=2

αλ,t,ρ(ξn)
∣∣∣2 +

∣∣∣βλ,t,ρ(ξ2)αλ,t,ρ(ξ1)

d−1∏
n=3

αλ,t,ρ(ξn)
∣∣∣2

+ · · ·+
∣∣∣ d−1∏
n=1

βλ,t,ρ(ξn)αλ,t,ρ(ξd)
∣∣∣2 +

∣∣∣ d∏
n=1

βλ,t,ρ(ξn)
∣∣∣2.

When ξ = (ξ1, . . . , ξd) ∈ Rd satisfies |ξn| 6 λ−2(1 − t)ρπ for n = 2, . . . , d, by the defini-
tion of αλ,t,ρ and βλ,t,ρ, we have ωλ,t,ρ(ξ1, . . . , ξn) = βλ,t,ρ(ξ1)

∏d
n=2αλ,t,ρ(ξn) = βλ,t,ρ(ξ1).

Consequently, if the support {ξ = (ξ1, . . . , ξd) ∈ Rd : ξ ∈ supp(ψ̂j,`)
S`B

j
λ;0,k
} satisfies |ξn| 6

λ2j−2(1− t)ρπ for n = 2, . . . , d, then we have

(ψ̂j,~̀)
S~̀B

j
λ;0,k

(ξ) = λ−(d+1)j/2ωλ,t,ρ(λ
−2jξ)

d∏
n=2

γε(λ
jξn/ξ1 + `n) · e−ik·S~̀B

j
λξ

= λ−(d+1)j/2βλ,t,ρ(λ
−2jξ1)

d∏
n=2

γε(λ
jξn/ξ1 + `n) · e−ik·S~̀B

j
λξ

= ψ̂
S~̀B

j
λ;0,k

(ξ).

Now let us find the range of ~̀ such that the support constraint holds. At scale j, we have

suppωλ,t,ρ(λ
−2j ·) ⊆ [−λ2jρπ, λ2jρπ]d\[−λ2j−2(1− t)ρπ, λ2j−2(1− t)ρπ]d.

Then, the support constraint means that at scale j, one needs |ξn/ξ1| 6 λ−2(1 − t)ρ for all
n = 2, . . . , d. Hence, the support of γε(λ

jξn/ξ1 + `n) must satisfy

−λ−2(1− t)ρ 6 −λ−j(1/2 + ε+ `n) 6 ξn/ξ1 6 λ−j(1/2 + ε− `n) 6 λ−2(1− t)ρ.

Consequently, we obtain

−λj−2(1− t)ρ+ (1/2 + ε) 6 `n 6 λj−2(1− t)ρ− (1/2 + ε).

That is, |`n| 6 λj−2(1− t)ρ− (1/2 + ε). In summary, letting rj := bλj−2(1− t)ρ− (1/2 + ε)c
and defining ~̀ and ~rj as in the theorem, we have

{ψ(S−
~̀·) : |~̀| 6 ~rj} ⊆ Ψj , j > J,

and

{ψ
S−~̀AjλEn;k

: k ∈ Zd, |~̀| 6 ~rj}∞j=J ⊆ AS(ϕ; {Ψj}∞j=J).

We are done.
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