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Abstract—Digital affine shear filter banks with 2-layer struc-
ture (DAS-2 filter banks) are constructed and are shown to be
with the perfect reconstruction (PR) property. The implementa-
tion of digital affine shear transforms using the transition and
subdivision operators are given. The redundancy rate analysis
shows that our digital affine shear transforms have redundancy
rate no more than 8 and it decreases with respect to the
number of directional filters. Numerical experiments on image
processing demonstrate the advantage of our DAS-2 filter banks
over many other state-of-the-art frame-based transforms. The
connection between DAS-2 filter banks and affine shear tight
frames with 2-layer structure is established. Characterizations
and constructions of affine shear tight frames with 2-layer
structure are provided.

I. INTRODUCTION AND MOTIVATIONS

Given a 2D image, e.g., Barbara (see Fig. [7), it usually
consists of three main parts of features: smooth areas, edges,
and oscillating patterns. A key step in image processing is to
capture these important features as precise as possible, which
then play a crucial role in further applications such as pattern
recognition, computer vision, machine learning, etc.

In the image domain, smooth areas are usually separated
by edges with various orientations. Oscillating patterns can
fill inside a smooth area as background noise, textures, and
so on. Edges could be corrupted by noise and dissolved
inside smooth areas. Though geometrically they are essentially
different, all these features could mix together due to the
presence of noise. In the frequency domain, smooth areas are
with respect to low-frequency features. Edge information are
concentrated along certain directions but could spread over
the whole spectrum. Oscillating patterns are corresponding to
high-frequency features. Moreover, from the point of view of
time-scale analysis, smooth areas are simple structures that can
be easily regarded as very coarse scale information while edges
and oscillating patterns could appear from very coarse to very
fine scales. In order to capture as many types of features as
possible, one necessarily needs to use multiscale representation
systems that have both good frequency separability and nice
directional selectivity.

With respect to applications of wavelets [8] and [27],
multiresolution/multiscale analysis has become an important
approach and an indispensable tool in many applications. For
1D signals with singularities, wavelets have been proved to
provide optimal approximation rate due to their ability of

capturing singularities using wavelet coefficients at different
scales. However, for 2D images, singularities are edge-like
structures with various orientations which could come from
the wavefront sets of certain partial differential equations
[22]. Representation of such edge-like singularities requires
huge amount of active wavelet coefficients due to the lack
of directional selectivity if only tensor-product approach is
considered, which results in poor approximate rate of cartoon-
like functions in 2D [9]. The introduction of curvelets [3]]
solves such an issue by incorporating the rotation operations
into the wavelet systems in addition to the (parabolic) dilation
and translation operations. Since then, directional multiscale
representation systems, e.g., contourlets [6]] and shearlets [[11]],
[12], have been shown to be superb over many other multiscale
representation systems, such as the tensor-product real-value
orthonormal wavelets, dual-tree complex wavelets [29]] in both
theory (sparse approximation for cartoon-like functions) and
applications (denoising or inpainting); e.g., see [2], [4], [10],
[13], [14], [20], [23], [24], [29], etc. In particularly, shearlets,
which replace the rotation operations by shear operations, have
gained a lot of attention due to their additional nice properties
such as integer lattice preservation, rich group structure [I],
coorbit space theory [7].

In practice, the applications of directional multiscale re-
presentation systems are based on their underlying (2D) di-
rectional filter banks, e.g., shearlet filter banks, that can be
written as Uj;ol{a;bj)’({by,ﬁ =1,...,s;}, where at level j,
the frequency domain T? := [—m, 7)? is tiled by a low-pass
filter a (middle squares in Fig. [I)), some directional high-pass
filters b@’f in the horizontal cone X, and some directional high-
pass filters b{/’e in the vertical cone Y. Fig. a)—(b) illustrates
the frequency tiling of such a directional filter bank (e.g., DAS-
1 in [32]]). Each (colored) wedge-shaped area in Fig. Eka)—(b)
is the frequency response of a directional filter. It is no doubt
that such kinds of filter banks are capable of capturing edge-
like information and have been shown to perform very well
in image processing; see [6]], [16]], [25], [26], etc.

However, as mentioned, other than edge features, an image
could also contain oscillating patterns such as textures. Directi-
onal filter banks with frequency tiling in Fig. [[(a)-(b) might
put too much weight on the edge-like structures while at the
same time ignores the oscillating patterns of an image. Taking
Fig. ] for example, the image in Fig. [J(a) has a tablecloth
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Fig. 1: (a) Frequency tiling of DAS-1 in [32] (horizontal cone
X in T?). (b) Frequency tiling of DAS-1 in [32] (vertical cone
Y). (c) Frequency tiling of DAS-2 in this paper (horizontal
cone X, 2-layer high-pass filters). (d) Frequency tiling of
DAS-2 in this paper (vertical cone Y, 2-layer high-pass filters).

(cropped from the image Barbara) containing line texture
with different orientations including patterns of the form \\\,
/11, and their mixture. In Fig. 2{b), the image is corrupted by
Gaussian noise with noise variance o = 30 and its line texture
almost disappears. Using directional filter bank from
which performs standard denoising process to the noisy image,
one can recover most of the information such as background
and sharp edges as shown in Fig. [2fc). However, large portion
of the line texture (\\\ patterns) on the tablecloth could not
be recovered by this filter bank. One of the reasons is its lack
of representing highly oscillating patterns.

In order to capture both edge-like features and highly
oscillating patterns, the papers and [[18] introduce tensor
product complex tight framelets TP-CTFg and TP-CTFY,
which have many nice properties including simple way of filter
bank design, directionality, tensor product structure, etc. Here
is the main idea: TP-CTF¢ or TP—(CTFé is generated by the
tensor product of a 1D filter bank {a™,a~;b], b7, b5, b5 } ha-
ving nice frequency splitting property in the sense that a™, a~
are concentrated on the positive and negative low-frequency
part (near 0) of T, respectively, while b:r, b, are concentrated
on the high-frequency part (near +7) of positive and negative
axis of T, respectively for + = 1,2. In such a case, the
directional high-pass filters of TP-CTFg or TP—(CTFé have a
very nice 2-layer structure (Fig. [3). The middle white square in
Fig. a) is tiled by the low-pass filters from those a* ® a*.
The inner layer squares (see Fig. [B(b)) are with respect to
those high-pass filters coming from a® ® b, l)1i ® a*, and
bljE ® bli. They are usually edge-like filters so that they can be
used to capture edge-like structures. The outer layer squares
(see Fig. [3[c)) are with respect to high-pass filters coming
from by ® h and h ® b for all h € {a*, b, b3 }. Since they
are located more far away from the low frequency spectrum
than those inner layer filters, they look more ‘oscillating’ and
hence are suitable for ‘texture-like’ structure.

The numerical results in [17], confirm the advantages
of such filter banks in image/video processing. However, due
to the tensor product approach of TP-CTFg and TP-CTFY,
they also have some disadvantages. First, the number of
directional high-pass filters at each level is limited and fixed
(14 directions), which is undesirable in practice especially
when the resolution of an image is very high that requires
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Fig. 2: (a) Tablecloth (cropped from the image Barbara).
(b) Corrupted by Gaussia noise (¢ = 30). (c) Denoised by
DAS-1 in . (d) Denoised by TP—(CTF% || (e) Denoised
by TP-CTFg [17]. (f) Denoised by DAS-2 in this paper.

large number of directional filters in order to capture as many
features with different orientations as possible. Second, though
from their frequency tiling (Fig. [3), each high-pass filter does
have certain directionality, yet in the time domain it is not
well-localized along certain direction due to their square-like
frequency response. Last but not least, due to the fixed number
of 1D filters {a*,bF, b5}, the number of free parameters
is limited which prevents the search of optimal filter bank
systems for image processing. Indeed, such disadvantages can
be seen from Fig. 2(d)—(e), which shows the denoised results
for the corrupted image in Fig. [2[b). One can see that due to
the limitation of directions, large portion of line texture (\\\
patterns as well as some / / / patterns) on the tablecloth is still
missing using either TP-CTFg or TP—(CTFé.

Motivated by the successful applications of affine shear tight
frames in [16], [32], and the tensor product complex tight
framelets for image/video processing in [17]], [18]], in this
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Fig. 3: (a) Frequency tiling of TP-CTFg¢ or TP—CTF% in
[18]]. (b) Inner layer filters (colored squares). (c) Outer layer
filters (colored squares). Each colored square represents the
frequency response of a high-pass filter.
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paper, we remedy the aforementioned issues by introducing
affine shear tight frames with 2-layer structure and focus on
the development and applications of digital affine shear filter
banks with 2-layer structure. The main idea is to incorporate
the 2-layer structure in [17]], [18] into the directional filter
bank introduced in [[16f], [32]. Fig. Ekc)—(d) illustrates the the
frequency tiling of our affine shear filter banks with 2-layer
structure (DAS-2). At each level j, the frequency domain T?
is split into horizontal cone X and vertical cone Y as those
of DAS-1 in [16f, [32]. For each cone, in addition to the
outer layer of directional high-pass filters, we further split
the low-frequency domain so that it has an additional inner
layer of directional high-pass filters. In such a way, we obtain
a flexible directional filter bank that is capable of capturing
not only edge-like features, but also oscillating patterns. The
2-layer idea seems very simple yet it yields striking impro-
vement comparing to many state-of-the-art directional frame
approaches. See Fig. [2[f) for the denoised result of our DAS-2
for the corrupted image in Fig. 2(b). One can clearly see that
our DAS-2 can indeed recover a large portion of line texture
on the tablecloth (including both the \\\ patterns and / / /
patterns), which is also confirmed by the PSNR values of the
denoised results (See more details in Section [V)).

The contributions of our paper lie in the following aspects.
First, we introduce digital affine shear filter banks with 2-layer
structure which have never been considered in the directional
shearlet filter banks literature, as far as we concern. The
2-layer structure allows one to tailer-make their own DAS-
2 filter banks and provides a natural bridge between edges
and textures. Second, we provide analysis, characterization,
and construction of affine shear tight frames with 2-layer
structure. Last but not least, we demonstrate that our DAS-2
filter banks enjoy many desirable properties including arbitrary
number of directions (limited by image resolution), 2-layer
structure for edge- and texture-like features, low redundancy
rate, fast transform algorithms, etc. The DAS-2 filter banks
brings unique and indispensable features which cannot be
achieved by other frame-based filter bank systems as well
as significant improvements in many applications as shown
but not restricted by those in the paper. The fast algorithmic
transforms together with the low redundancy rate of DAS-2
filter banks make them suitable for massive data processing,

especially in machine learning and pattern recognition.

The structure of the paper is as follows. In Section [[I} we
provide the details for the construction of DAS-2 filter banks.
In Section based on our DAS-2 filter banks, we present the
digital affine shear transforms (both forward transform for de-
composition and backward transform for reconstruction) based
on the transition and subdivision operators. In Section[[V] ana-
lysis of redundancy rate and computational complexity shows
that our DAS-2 filter bank transforms have redundancy rate
no more than 8 and O(N log N) computational complexity
with input date size N. Numerical experiments are conducted
in Section [V] while the connection between our DAS-2 filter
bank and affine shear tight frames with 2-layer structure is
given in Section

II. DIGITAL AFFINE SHEAR FILTER BANKS WITH 2-LAYER
STRUCTURE

In this section, we present the detailed construction of
our digital affine shear filter banks with 2-layer structure
DAS ;({a; B3, BIo"} . j—1), where at level j, a is the
low-pass filter while B7* = B%" U B3 for ¢ € {in,out} with

do bty 2" g pdnty 2"
By = {bx }e:—2’“5 and By" = {by }52_2@;

is the set of high-pass filters in the horizontal cone X
(Fig. [[[c)) and vertical cone Y (Fig. [[[d)), respectively. Here,
L = in is to indicate inner layer filters and ¢ = out for outer
layer ones. Note that a 2-dimensional filter v can be regarded
in the image domain as a sequence in [;(Z?) := {u : Z* —
C: >, |u(k)| < oo} or in the frequency domain as a 27Z>2-
periodic function U(§) = >,z u(k)e™#, & € T2 We
build our DAS-2 filter banks from the frequency domain to
have the 2-layer structure as in Fig. Ekc)—(d) (see also Fig. @)
We first define an auxiliary 1D “bump” function v
supported on [—c¢ — €,¢ + €]. Let v be a function such
that v(z) = 0 for ¢ < —1, v(z) = 1 for z > 1, and
lv(z)|*> + |v(—x)|*> = 1 for all z € R. Such a function
can be constructed to be smooth in C*°(R) or differentiable
in C*(R); see [16], [32]. Define v, (z) := v(£E€) for
< —c+eand v () = v(=LE) for z > c—e.
We then define the inner, middle, outer functions a, a1, as €
C(R?) (see Fig. a), (b), and (h), respectively) by
a =Vcg,e0] ® Vico,cols 0
ay = V[cl,el]®V[cl,el]u Gy 1= Vlcy,e0] ® Vicy,ea]s
for some parameters 0 < ¢y < ¢ < cg = 7 and €g, €1, >0
satisfying c¢o+¢eg < 7/2 (for downsampling by 2), (¢ +€1) —
(co — €0) < m/2 (for downsampling by 4), and ¢; — ¢; —
€9 > /2 (for downsampling by 4). We identify the function
@ as a function in C(T?) in frequency domain. In the image
domain, it then serves as our low-pass filter a. The filter @ is
supported inside [—7 /2, 7/2]2. The other two functions @y, a»
are auxiliary functions for building the inner and outer layer
high-pass filters. One can show that

D laa(€ +2mk))? = 1,

kezZ?

£eT?. )



Define the inner and outer functions b, b°“* by pout =
VIazl? = a1 and bm |a1]? — |a|2 (see Fig. Hc)
and (i)). The function b‘”‘t is supported on the outer layer
[762 —€2,C2 + 62]2\[761 +61, C1 — 61]2 while the function bln
is supported on the inner layer [—c; — €1, ¢1 + €1]*\[—co +
€0, o — €0)2. We then apply the splitting technique to b* for
the construction of high-pass filters /*** by using a splitting
auxiliary function . := v[2. for 0 < ¢ < 1/2. This
splitting process is illustrated in Fig. Bfa)—(1).
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Fig. 4: DAS-2 filter bank construction. (a) a. (b) a;. (c) bin =

[a1]? — [a]?. (d) Splitting of bim to bm ki Wthh is further
spllt to positive part and negatlve part to form (e) Bibint —
bm kit and () bjém, — bm kjt,— (g) a1. (h) ds. (i)
bm” [a2|2 — |@1|2. (j) Splitting of b"“t to b°Ut~ki ¢ which

is further split to posmve part and negative part to form &)
b] Lout,+ bout 0+ and (1) bj Lout,— __ bout kj,l,—

(i) pout

In practice, at level j, we use integer 2ki to control the

number of directions. Define for & = (£1,&,) € R?,
P = (22 4 0).
2ki 3)
Ty, (€)= Z (I (ExO* + 7" “(EvE)[?)
t=—2F;

where Ex =I5 := [f) f] is the identity matrix, Ey := [[f (1)]

is the elementary matrix. To guarantee smoothness of boun-
dary, we further split v*i-*(¢) to positive part %3¢+ and

negative part v*i-~ of £;-axis by

YREF(E) = A x e 500 YT () = A (E)xqes <0

Here, v*3:47 for 7 € {4, —} are the splitting elements while
Iy, serves as the role of normalization for the tightness
purpose; see Section [V1]
Now at level j, given integers k”" k‘)”t for determmmg the
A3
\/ Fk‘J €3]
concentrating along certain directions in the inner layer for
¢ = in and the outer layer for L= = out, respectively (see

LT
Hd) and (j)). Note that b (&)2 \/1“7(5)

periodic functions and hence are not filters. We define by

to be the 27 Z2-periodization of b* (¢ )1“7((;)) as b0V (€) ==
K

number of directions, we can obtain functions X (&)2

may not be 2wZ2-

G40, T

D keze b€ + 2Wk)% for £ € T?. These are the

inner and outer layer 1gh pass filters in the horizontal cone X.

For the vertical cone Y, we define bJ:°"7(€) := b5 (Ey€)
as their flipped version filters. Note that each high-pass filter
bl45T is of complex value (see Fig. E] for examples of high-
pass filters in inner and outer layers). The filter bank

{(Z Bgzn Bjout}_{a bgfb‘r,g__2k:L QkL
T € {+,—},¢ € {in,out}, OE{X Y}
is then said to be a digital affine shear filter bank with 2-layer
structure (DAS-2 filter bank).
In view of () and (3), one can easily prove the following
result, which we omit and refer to [32, Theorem 3.1].

Theorem 1: Retaining notations in this section and assuming
Ck, €k, € for k = 0,1,2 satisfying 0 < ¢g < ¢1 < ¢c3 = 7,

“4)

co+ €0 < /2, ((31 + 61) 5?2_2 <m/2, g}z_jlg € >7/2,
and 0 < ¢ < Z— — 3, then the filter bank {a; B/, B}

forms a DAS-2 filter bank with the PR property:

2b
AP+ Y. Y e =1

Kt
Tob0 9%
— o —

A(6)a(s + 2mw) = 0, b (VLT (€ + 2mw,) =0, (6)

for all ¢ € T2, |¢| < 2%, w € [1Z2] N [0,1)%\{0}, and w, €
[(AZ9)~TZ2]N[0,1)%\{0}, where ¢ € {in,out}, 7 € {+, -1,
o€ {X,Y}, and Al := E,diag(4, 25 )E,.

&)

The equation (B) shows the partition of unity property of
the DAS-2 filter bank. The first equation in (6) indicates that
convolution of an input data with the low-pass filter a could
be then downsampled by at least a factor of 2 along both
dimensions. The downsampled output data is decreased by a
factor of at least 4 in size. We therefore associate the low-pass
filter a with a sampling matrix 2l,. The second equation in
(@) indicates that convolution of data with such a filter 574"
could be then downsampled by at least a factor of 4 along
one dimension and at least by a factor of 2k; along the other
dimension. The downsampled output data is decreased by a
factor of at least 2%i12 in size. We associate the high-pass
filter b747 with a sampling matrix A* = E,diag(4, 2 )E,.

At level j, the parameter kj determines the number of
directions in the inner or outer layer while the parameters
ck, €k, k = 0,1,2 and € determine the shape of a directional
high-pass filter. In practice, we can predefine such parameters
and obtain a sequence of filter banks for multiscale data
analysis. More precisely, given a sequence of nonnegative
integers k%, ¢ € {in,out},j = 0,...,J — 1 for some fixed
integer J > 1 with respect to the finest scale, we can obtain
a sequence of DAS-2 filter banks (see also Fig. [5)

DAS; ({(a,21y); B, B2 (7

Wlth Bj)L = {(bg7é7L7T7 Ag)b) ‘€ = _2k;7 ceey 2]6; P T €
{+,—},0 € {X,Y}}, which can be used in the problems
of image processing. In the sequel, for simplicity, we omit



the sampling matrices and simply write {a; B%", B7:°%} for
a DAS-2 filter bank. We also omit the ranges of ¢ € {in, out}
for inner and outer layers, o € {X,Y} for X and Y cones,
and 7 € {4, —} for positive and negative axes.

III. DIGITAL AFFINE SHEAR TRANSFORMS

In this section, we detail the forward (decomposition) and
backward (reconstruction) filter bank transforms based on our
DAS-2 filter banks given in

In a nutshell, given an image v’
decompose v/ to an approximation data v/~ using the low-
pass filter a and a sequence of detail data {w/ =147 2 ¢ 1 7}
using high-pass filters {b” =147 . ¢ 1 7}. Further decompo-
sition can be done on the approximation data v/~! using a
DAS-2 filter bank at level J — 2. On the other hand, given
approximation and detail data at level J — 1, a data at level J
can be reconstructed using corresponding DAS-2 filter bank.
Such a process is illustrated in Fig. [5] for J = 2. More precise
descriptions are given below.

For simplicity of presentation, we assume that our images
live on dyadic grids A(K) := ([0,...,25 —1] x[0,...,2X2 —
1]) NNZ with K := (K1, K3) € N2, where Ny := NU {0}. We
remark that with simple boundary extension techniques, our
numerical implementations work for images of any size.

Given an input image v/ : A(K) — C and a sequence
DAS ;({a, B7"", B/} /) of DAS-2 filter banks as in
(@, the (multilevel) forward digital affine shear transform
decomposes v” to a sequence of filtered coefficients

a DAS-2 filter bank

{0°} U {wd b - Je) < 28, LTO}J 0> (8)

with v/ = T o1, (V) WO o= Ty g (V7F1), whi-
leas the (multilevel) backward digital aﬁ‘ine ‘shear transform
reconstructs a sequence of filtered coefficients in (8) back to
a data sequence as follows:

)+ Z S,MAJLwJ"T) )

L,T,0
{=

oj4+1
’U] - a 2'2

for j =0,...,J — 1 with ¢° ::vo, where

Tuav:=(v®u*) A and S,av:=|detAl[(vTA)®ul,

are the transition operator and subdivision operator associated
with a filter v and a sampling matrix A, respectively, which
are detailed in [32] Section 3.2].

In short, let F and F~! denote the (2D) discrete Fourier
transform and its inverse. Then, the circular convolution is gi-
ven by v@u := F 1 (F(v) ®F (u)), where ® is the Hadamard
(entrywise) product, and hence it can be implemented fast
using ££t2 and 1 ££t2 (e.g., in MATLAB). For a sampling
matrix A := diag(2™,2™2) for m := (my,mz) € N2, the
downsampling operation v | A and the upsampling operation
v 1 A are defined by [v | Al(k) := v(Ak) for k € A(K —m)
and

1 e A1
01 Al(K) = {U(A k) if ATk e A(K),
0 otherwise.

In view of the PR property of each DAS-2 filter bank given
in (3) and (6), we have the following result regarding the PR
property in terms of the subdivision and transition operators.

Corollary 2: Let {a; B%" B7:°u'} be a DAS-2 filter bank
satisfying () and (6). Then,

_A,_Z Z Sb_]eLTAJL leLTAJ‘( )]:

ITOe 2]

8@,2'2 2'2

for any data sequence v : A(K) — C.

The pseudo code for the forward and backward digital
affine shear transforms are described in Algorithms 1 and 2.
The implementation has been made available as a MATLAB
package in http://personal.cityu.edu.hk/~xzhuang7/softs.

Algorithm 1. Forward Digital Affine Shear Transform
1: Input: Image v’/ and DAS-2 filter banks
DAS; ({a; B, Blowt} /7).
2: Output: filtered coefficients {v°} U {wlt+7 « |f| <
2’“: L, T,0 3] 01
Mam steps:
for j=J—1to0do
vl Too1, (07 11).
for each b%,%47 in B2 U B)out do
wi’e’L’T — 7—1)“('];,2,L,T’A‘(j7.b(vj+1).
end for
end for

R A

Algorithm 2. Backward Digital Affine Shear Transform

I: Input: Filtered  coefficients (% U {wdber
o) < 28 70 jg and DAS-2 filter banks

DAS ; ({a, B ”’, B O“t}jz )

Output: Image v”.

Main steps:

for j=0to J—1do
VIt 8, o1, (V7).
for each bJ:447 in BJin U Bout do

VI e T Sy g (w]EET),

end for

end for

R A AN A S o

IV. REDUNDANCY RATE AND COMPUTATIONAL
COMPLEXITY

In this section, we estimate the redundancy rate and compu-
tational complexity of the digital affine shear transforms based
on our DAS-2 filter banks.

The redundancy rate of a filter bank transform is defined to
be the ratio of the size of the total output coefficients to the

size of the input data. For real-value data v, by the symmetry
Jrlst,—

of filters, we have wl“-+ = wy, and hence we only need
to compute {v°} U {wg“ Tl < 28,0010 Let N =
2K1+K2 pe the size of the input data v : A(K17 Ks) — R.
At level j, after the downsampling processing with sampling
matrix A%' = diag(4,2%), the coefficient matrix w’"" =
7;;&"""'+,A§yvj+l is then living on the lattice A(Ky,Ks) with
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Fig. 5: Two-level DAS-2 filter bank transforms. Each box is a convolution operation with the filter inside, a circle with
@ is a downsampling operation, and a circle with () is a upsampling operation. A box together with a circle ) on the
‘input’ side (decomposition) corresponds to a transition operator 7, o, wWhile a box with a circle () on the ‘output’ side
(reconstruction) corresponds to a subdivision operator S, . The index ¢ and 7 range over their domains.

Ki = Ky—(J—1—j)—2and Ky = Ky—(J—1—j)—k%, which
is of size N = Q(J_fv_jprz : (Jfllj)+k’j'- = 2<Jf\§>+k5_ . Since the
implementation of the transition operator is based on the £ft,
one can show that (see [32, Section 3.2]) the computational
complexity of w%" 44 F s Nlog N. The size and computational
complexity of w] b0F are the same as those of w’’" ™.
Fixed the level j and the layer ¢, the total number of high-
pass filtered coefficient matrices w’““* for 0 € {X,Y}
and ¢ < [2Fi] is 2(2%7! 4 1). Consequently, the size of
the total output high-pass filtered coefficients at level j is
>, 22(,,% x 2(2FT1 4 1) x 2, where the factor ‘x2° is
due to the complex-value of the outputs w?**+. The low-
pass coefficient 20 is of size N / 227 Therefore, after the J-
level decomposition the total size of output coefficients is

22.( Qks+1 +1) 1
Z Z W *+3527 | and thus the redundancy
rate r is given by
2+27 1 ko 4
7n*ZZQQ(J -5 4J <(4+2 k"”"ﬂ)'gﬁ&

where ki 1= min{k;;-"7 k:;-’“t :j=0,...,J—1}

Consequently, the redundancy rate of the digital affine shear
transforms is bounded below by 16/3 and above by 8. More
importantly, the redundancy rate does NOT increase with
respect to the number of directional filters, which is a very
desirable property in practice. In fact, the more directional
filters we have, the lower redundancy rate of our digital affine
shear transforms. For k,,,;,, = 0, 1,2, 3, 4, the redundancy rate
is bounded by 8,62,6,52,51, respectively.

Since the transition operator 7, ov and subdivision operator
Su,Av can be implemented based on the ££t2 and 1 ££t 2, the
computational complexity of these operators are proportional
to the size of the input data. Similar to [32| Section 3.2],
one can show that the computational complexity of both the
forward and backward transforms base on our DAS-2 filter

banks is proportional to rNlog N with N the size of input
data and r the redundancy rate given above.

V. NUMERICAL EXPERIMENTS

In this section, we apply our digital affine shear transforms
based on our DAS-2 filter banks for the tasks of image proces-
sing including denoising, inpainting, and texture classification.
We compare the performance of our system to several other
state-of-the-art directional multiscale representation systems.

The parameters of a,a; and as in and are given
by co = w1 = 1.844,co = 0.844,¢g = 0.086,¢; =
0.157, €2 = 0.381, and € = 0.469 for «,.. We choose J = 5 for
DAS5({a; B, Bt} _) as in (7); that is, we decompose
to 5 levels. The shear parameter (kY, kj, kb, k%, k§) is set to
be (2,2,1,1,0) for the outer layer ¢« = out and (1,1,0,0,0)
for the inner layer ¢+ = ¢n. That is, for the highest level
j = 4, we use 2(2’“2“+1 + 1) = 18 shear directions for
the outer layer (9 on horizontal cone and 9 on vertical cone)
and 2(2F"+1 4 1) = 10 directions for the inner layer. The
redundancy rate of our system DASs({a; BH", BIeut}d_ )
is % ~ 6.39. Fig. |§] shows some examples of our high-pass
filters in the image domain. Two high-pass filters b44 oyt
and b4 4out:t 4t level j = 4 concentrating at —45° (E = 4)
are 1llustrated. Note that they are complex-value and hence the
real and imaginary parts are given separately. One can clearly
see that the inner layer filters are more edge-like while the
out-layer filters are more texture-like.

For our DAS-2 as well as DAS-1, the local soft-thresholding
(LS) technique is applied (see [ 16, Section 6]). More precisely,
for each high-pass coefficient matrix w in (§), we normalize
w to wy = ﬁ with b being its induced filter satisfying

= Tpgv”’ for the input data v/ and some downsampling
matrix B. Let o be the variance of a noise obeying normal
distribution N (0,0?) and A be the lattice where w lives. For
each k € A, compute local coefficient variance o, : A —

[0,00) by gy (k) = \/(ﬁ S, lws(n)[2 = 02) . where
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Ay is the lattice k + [—L, L]? that centered at position k for
some integer L > 0. The threshold ¢,, : A — [0,00] is then
defined by t,,(k) = %q5, k € A. The local-soft thresholding
wy, = n;° (wp) applying to wy is then given by wy(k) =
nfj{lf) (wp(K)), k € A, where 7:°7" () = max{|z| —t, 0} 57 is
the soft-thresholding operator. The threshold coefficient wy, is
then renomralized back to @ := b2 - m}* (wy).

For image denoising, we tested 4 images: Lena, Barbara,
Boat, and Fingerprint (see Fig.ma)—(d)). Gaussian noise
N(0,0) with o = 5,10, 30, 50,80 are added to each image.
We apply the forward transform to the image and obtain a set
of output filtered coefficients, which are then thresholded using
the local soft-thresholding technique with the convolution
window filter of size 9 x 9. Backward transform is then applied
to the thresholded filtered coefficients.

We compare our results to several state-of-the-art frame-
based denoised methods including The DAS-1 in [32],
TP-CTFg and TP-CTF} in (18], DT-CWT in [29], DNST
in [26], and NSCT in [6]. DAS-1 decomposes the image to
J = 5 levels with 18 directional filters in the finest level j = 4,
10 directional filters in levels 5 = 3,2,1, and 6 directional
filters in level 5 = 0. Its redundancy rate is about 6.16. The
DAS-1 uses local soft-thresholding technique as well with
convolution window filter of size 11 x 11. The TP-CTFg
and TP—(CTF% decompose the image to J = 5 levels with
each level having 14 directional filters. They use the bivariate
shrinkage thresholding technique and their redundancy rates
are 10.67 and 2.67, respectively. The DT-CWT decomposes
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Fig. 7: (a)—-(d) Images. (e)—(h) Masks.

(h) M80

the image to J = 6 levels with each level having 6 directional
filters. It uses the bivariate shrinkage thresholding technique
and its redundancy rate is 4. The DNST decomposes the image
to J = 4 levels. 16 shear directions are used for finest levels
7 = 3 and j = 2 while 8 shear directions are used for the
other two levels 7 = 1,0. The redundancy of DNST is 49.
The NSCT uses 4,8, 8,16, 16 directions from the coarser to
finer levels. Its redundancy rate is 53. DNST and NSCT both
use hard thresholding.

The comparison results are reported in Table [[| in terms of
PSNR (unit dB), where PSNR(v,7) = 10log1q gy 7y With
MSE(v,0) = 2 Youen [v(k) — 0(k)|? for input image v and
reconstruction image v on a lattice A.

o DAS-2 DAS-1 TP-CTFE{; TP-CTFg DT-CWT DNST NSCT
(6.39) (6.16) (2.67) (10.67) [©) (49) (53)
512 X 512 Lena
5 3836 38.14(0.22) 38.16(0.20) 38.37(-0.01) 38.25(0.11) 38.01(0.35) 37.71(0.65)
10 3539 35.12(0.27) 35.22(0.17) 35.48(-0.09) 35.1900.2) 35.35(0.04) 34.92(0.47)
30 30.62 30.61(0.01) 30.38(0.24) 30.80(-0.18) 30.50(0.12) 30.68(-0.06) 30.32(0.3)
50 28.30 28.49(-0.19) 28.11(0.19) 28.54(-0.24) 28.22(0.08) 28.21(0.09) 28.02(0.28)
80 26.20 26.54(-0.34) 26.11(0.39) 26.47(-0.27) 26.15(0.05) 25.78(0.42) 25.80(0.4)
512 X 512 Barbara
5 37.77 37.32(0.45) 37.63(0.14) 37.84(-0.07) 37.37(0.4) 37.17(0.6) 36.96(0.81)
10 34.14 33.64(0.5) 33.97(0.17) 34.18(-0.04) 33.54(0.6) 33.62(0.52) 33.35(0.79)
30 28.73 28.33(0.4) 28.33(0.4) 28.38(0.35) 27.89(0.84) 27.97(0.76) 27.28(1.45)
50 26.29 26.01(0.28) 25.73(0.56) 25.71(0.58) 25.36(0.93) 25.31(0.98) 24.57(1.72)
80 24.10 23.99(0.11) 23.51(0.59) 23.53(0.57) 23.27(0.83) 22.96(1.14) 22.65(1.45)
512 X 512 Boat
5 36.93 36.63(0.30) 36.74(0.19) 36.92(0.01) 36.73(0.20) 36.04(0.89) 35.79(1.14)
10 33.27 33.01(0.26) 33.10(0.17) 33.41(-0.14) 33.19(0.08) 33.15(0.12) 32.65(0.62)
30 28.25 28.31(-0.06) 27.99(0.26) 28.44(-0.19) 28.23(0.03) 28.44(-0.19) 27.95(0.30)
50 26.08 26.24(-0.16) 25.79(0.29) 26.25(-0.17) 26.06(0.02) 26.23(-0.15) 25.94(0.14)
80 24.23 24.46(-0.23) 24.05(0.19) 24.41(-0.17) 24.22(0.01) 24.17(0.06) 24.11(0.12)
512 X 512 Fingerprint

5 36.27 35.20(1.07) 36.29(-0.02) 36.27(0.00) 35.82(0.44) 35.28(0.99) 34.93(1.34)
10 32.08 30.97(1.11) 32.23(-0.15) 32.10(-0.02) 31.74(0.34) 31.76(0.31) 31.33(0.75)
30 26.26 26.24(0.02) 26.37(-0.11) 26.06(0.21) 26.37(-0.11) 26.20(0.07) 26.13(0.13)
50 24.00 24.11(-0.11) | 24.01(-0.01) 23.67(0.33) 23.95(0.05) 23.78(0.22) 23.89(0.11)
80 22.10 22.18(-0.08) 21.99(0.11) 21.66(0.44) 21.91(0.19) 21.63(0.47) 21.79(0.31)

TABLE I: PSNR of denoised images using various transforms.
Numbers in brackets are the PSNR differences between the
DAS-2 column and the current column. Positive numbers
indicate better performance of DAS-2 than others in dB.

From Table I the performance of our DAS-2 is in general
better than the methods of DT-CW'T, DNST, and NSCT for
all images, given that the redundancy rates of DNST and
NSCT are extremely high (49 and 53 due to their undecimation
property). Comparing to DAS-1, the performance of DAS-2
is better when the noise variance o is relatively low (< 50).



Especially when the image is of texture-rich such as Barbara
and Fingerprint, the DAS-2 could bring up to 0.5 dB
improvement for Barbara and up to 1.1 dB improvement
for Fingerprint. Comparing to TP-CTF{, our DAS-2
performs better for the images of Lena, Barbara, and
Boat. The performance of TP—(CTFé is quit well for the
image Fingerprint given that it only has redundancy rate
as low as 2.67. Finally, comparing to TP-CTFg which has
redundancy rate 10.67, we see that DAS-2 and TP-CTFg
perform quite similar for all images when o is low (< 30).
When o is high, our DAS-2 performs better than TP-CTF¢
for images Barbara and Fingerprint, while for Lena
and Boat, TP-CTFg performs better than our DAS-2.

Note that most of information in the images of Lena and
Boat are edge-like. The image Barbara contains both oscil-
lating patterns (texture) and edge-like features while the image
Fingerprint is mainly oscillating patterns. The PSNRs
in Table [I] confirm our expectation of DAS-2 filter banks. It
preserves the performance over general images comparing to
other state-of-the-art methods while significant improves the
performance for images containing both edge-like structures
and texture-like structures. Fig. [2| illustrates the significant
improvement in visualization of our DAS-2 comparing to other
methods for the image Barbara.

Next, we test the performance of our DAS-2 filter banks
in image inpainting. We use 4 types of masks: Textl
(small gaps), Text2 (larger gaps), M50 (50% of random
pixel missing), and M80 (80% of random pixel missing); see
Fig. [7] (e)—(h) for the 4 masks. Each images in Fig. [7] (a)-
(d) is masked with each mask and added Gaussian noise
for ¢ € {0(no noise),5,10,30,50}. We then employ the
same inpainting framework developed in [30], which uses
an iterative thresholding algorithm with gradually decreasing
threshold values. The results are reported in Table Since
DAS-1 and TP-CTFg outperform many other approaches (see
[32) Section 4]), here we only report the comparisons among
DAS-2, DAS-1, TP-CTF}, and TP-CTF.

For masks Textl and Text2, DAS-2 outperforms DAS-
1 and TP—(CTFé for all cases except for a few cases of
slightly underperformance, e.g., the cases of ¢ = 0 for
Fingerprint for both masks and ¢ = 0 for Barbara
with mask Text1. Comparing to TP-CTFg, DAS-2 outper-
forms TP-CTFg for images Barbara and Fingerprint
while slightly underperforms TP-CTFg¢ for images Lena and
Boat. See Figs. [§] and [0 for their visual comparisons.

For masks M50 and M80, DAS-2 outperforms DAS-1 for
all images when noise variance o < 50. DAS-2 outperforms
TP-CTF}, for images Lena, Barbara, and Boat while it
underperforms TP—(CTF% for the image Fingerprint for
o < 50. Comparing to TP-CTFg, DAS-2 performs better
for images Barbara and Fingerprint while TP-CTFg
performs better for the other two images.

Finally, we introduce an experiment on texture classifi-
cation, to further justify that our DAS-2 is more desirable
for texture representation than other transforms. We use a
feature descriptor HSC introduced in [28|] for our texture

1 Textl Tex(2
o ” DAS-2 [ DAS-1 TP-CTFé’ TP-CTFg ” DAS-2 [ DAS-1 TP-CTFJG' TP-CTFg
512 X 512 Lena
0 37.91 [ 37.98(-0.07) [ 37.71(0.2) [ 38.02(-0.11) [[ 34.04 [ 33.93(0.11) [ 33.92(0.12) | 34.31(-0.27)
5 35.16 | 35.15(0.01) | 34.87(0.29) | 35.19(-0.03) 32.81 32.63(0.18) | 32.52(0.29) | 32.97(-0.16)
10 3341 33.34(0.07) | 33.08(0.33) | 33.42(-0.01) 31.69 | 31.58(0.11) | 31.32(0.37) | 31.80(-0.11)
30 29.66 | 29.68(-0.02) | 29.32(0.34) | 29.81(-0.15) 28.72 | 28.84(-0.12) | 28.34(0.38) | 28.89(-0.17)
50 27.64 | 27.82(-0.18) | 27.33(0.31) | 27.85(-0.21) 27.02 | 27.20(-0.18) | 26.60(0.42) | 27.22(-0.2)
512 X 512 Barbara
0 36.60 | 36.16(0.44) | 36.68(-0.08) | 36.59(0.01) 33.69 | 33.41(0.28) | 32.99(0.7) | 32.68(1.01)
5 34.14 [ 33.75(0.39) [ 33.97(0.17) [ 34.05(0.09) 32.40 [ 31.94(0.46) | 31.54(0.86) | 31.32(1.08)
10 32.11 31.67(0.44) | 31.76(0.35) | 31.81(0.3) 30.81 | 30.39(0.42) | 29.99(0.82) | 29.85(0.96)
30 || 27.80 | 27.38(0.42) | 27.21(0.59) | 27.18(0.62) 2695 | 26.65(0.3) | 26.24(0.71) [ 26.24(0.71)
50 25.57 | 25.29(0.28) | 24.91(0.66) | 24.91(0.66) 24.95 | 24.73(0.22) | 24.18(0.77) | 24.30(0.65)
512 X 512 Boat
0 34.8 34.69(0.11) | 34.57(0.23) | 34.96(-0.16) 30.73 | 30.74(-0.01) | 30.39(0.34) | 30.80(-0.07)
5 3276 | 32.63(0.13) | 32.46(0.30) | 32.81(-0.05) 29.84 | 29.82(0.02) | 29.42(0.42) | 29.83(0.01)
10 [[ 30.95 [ 30.82(0.13) [ 30.65(0.30) [ 31.04(-0.09) [[ 28.82 [ 28.85(-0.03) [ 28.40(0.42) | 28.80(0.02)
30 2731 | 27.38(-0.07) | 26.95(0.36) | 27.41(-0.10) 26.18 | 26.34(-0.16) | 25.79(0.39) | 26.24(-0.06)
50 25.47 | 25.60(-0.13) | 25.11(0.36) | 25.57(-0.10) 24.72 | 24.84(-0.12) | 24.32(0.40) | 24.80(-0.08)
512 X 512 Fingerprint
0 31.78 | 31.22(0.56) | 31.87(-0.09) | 31.35(0.43) 28.30 | 27.70(0.60) | 28.36(-0.06) | 27.78(0.52)
5 30.40 | 29.85(0.55) | 30.39(0.01) | 30.03(0.37) 27.69 | 27.13(0.56) | 27.65(0.04) | 27.17(0.52)
10 28.79 | 28.19(0.60) | 28.77(0.02) | 28.46(0.33) 26.76 | 26.32(0.44) | 26.67(0.09) | 26.24(0.52)
30 25.02 | 24.99(0.03) | 24.98(0.04) | 24.70(0.32) 24.12 | 24.12(0.00) | 23.99(0.13) | 23.59(0.53)
50 23.22 | 23.25(-0.03) | 23.05(0.17) | 22.76(0.46) 22.60 | 22.64(-0.04) | 22.39(0.21) | 22.00(0.60)
I 50% missing 80% missing
o [ [ DAS-2 [ DAS-1 TP—’CTFé TP-CTFg [ [ DAS-2 [ DAS-1 TP—CTFé TP-CTFg
512 X 512 Lena
0 37.69 | 35.72(1.97) | 37.68(0.01) | 38.00(-0.31) 31.86 | 30.74(1.12) | 31.99(-0.13) | 32.33(-0.47)
5 35.09 | 33.97(1.12) | 34.99 (0.1) | 35.40(-0.31) 31.03 | 30.20(0.83) | 30.76(0.27) | 31.44(-0.41)
10 33.08 | 32.57(0.51) | 32.86(0.22) | 33.40(-0.32) 29.92 | 29.54(0.38) | 29.34(0.58) | 30.25(-0.33)
30 28.89 | 28.90(-0.01) | 28.52(0.37) | 29.18(-0.29) 26.61 | 26.76(-0.15) | 25.94(0.67) | 26.95(-0.34)
50 26.75 | 26.92(-0.17) | 26.39(0.36) | 27.06(-0.31) 24.78 | 25.01(-0.23) | 24.11(0.67) | 25.15(-0.37)
512 X 512 Barbara
0 35.86 | 33.77(2.09) | 35.75(0.11) | 35.73(0.13) 29.32 | 27.84(1.48) | 28.55(0.77) | 28.16(1.16)
5 33.44 32.14 (1.3) | 33.23(0.22) | 33.42(0.02) 28.57 | 27.30(1.27) | 27.73(0.84) | 27.73(0.85)
10 31.29 | 30.47(0.82) | 30.94(0.35) | 31.11(0.18) 27.43 | 26.72(0.71) | 26.56(0.87) | 26.70(0.73)
30 26.73 | 26.32(0.41) | 25.95(0.78) | 25.95(0.78) 24.23 | 24.16(0.07) | 23.18(1.05) | 23.34(0.89)
50 24.47 | 24.25(0.22) | 23.59(0.88) | 23.60(0.87) 2230 | 22.26(0.04) | 21.42(0.88) | 21.90 (0.4)
512 X 512 Boat
0 3427 | 32.65(1.62) | 34.00(0.27) | 34.42(-0.15) 28.16 | 27.24(0.92) | 28.03(0.13) | 28.58(-0.42)
5 32.17 [ 31.25(0.92) [ 32.01(0.16) [ 32.50(-0.33) [[ 27.48 [ 26.83(0.65) [ 27.28(0.20) | 27.98(-0.50)
10 30.33 | 29.98(0.35) | 30.11(0.22) | 30.65(-0.32) 26.61 26.45(0.16) | 26.23(0.38) | 27.08(-0.47)
30 26.39 | 26.48(-0.09) | 26.07(0.32) | 26.66(-0.27) 24.22 | 24.34(-0.12) | 23.75(0.47) | 24.46(-0.24)
50 24.56 | 24.63(-0.07) | 24.23(0.33) | 24.75(-0.19) 2276 | 22.89(-0.13) | 22.41(0.35) | 22.96(-0.20)
512 X 512 Fingerprint
0 33.64 | 29.35(4.29) | 34.19(-0.55) | 34.12(-0.48) 26.25 | 23.87(2.38) | 26.77(-0.52) | 26.00(0.25)
5 31.12 | 28.40(2.72) | 31.54(-0.42) | 31.50(-0.38) 25.58 | 23.64(1.94) | 25.87(-0.29) | 25.33(0.25)
10 [[ 28.84 [ 27.57(1.27) [ 29.09(-0.25) | 28.88(-0.04) [[ 24.54 [ 24.10(0.44) [ 24.60(-0.06) | 24.12(0.42)
30 24.33 | 24.35(-0.02) | 24.43(-0.10) | 24.07(0.26) 22.12 | 22.10(0.02) | 21.81(0.31) | 21.51(0.61)
50 [] 22.41 | 22.40(0.01) | 22.32(0.09) | 22.01(0.40) 20.60 | 20.57(0.03) | 20.26(0.34) [ 19.96(0.64)

TABLE II: PSNR of inpainted Lena, Barbara, Boat, and
Fingerprint using different transforms for masks Text1,
Text2, M50 and M80.

classification: Fixed a transform in DAS-2, DAS-1, TP—(CTFl,
TP-CTFg, DT-CWT, DNST, and NSCT, application of such
a transform to an image results in a sequence of filtered
coefficient matrices w with respect to various orientations. A
histogram (vector) is computed from the absolute values of
the entries in w. Such histograms from all the output filtered
coefficient matrices are then concatenated as a feature vector
for the given image with respect to such a transform, and
normalized with respect to the Lo-norm. We use the UMD
texture dataset [31] to extract feature representations for each
transform and then use the approach of SVMs [5] to perform
texture classification. The UMD texture database consists of
25 classes and 40 samples of 1280 x 960 pixels in each class
(1000 images in total). In the classification process, we take
10 samples randomly from each class for training and the
remaining 30 samples for testing. 30 repeated experiments
are carried out to obtain the average classification rate. The
results are reported in Table [III] and it can be seen that DAS-2
outperforms the other transforms consistently, of which only
TP-CTFg gives a comparable performance. But DAS-2 has a
significantly lower redundancy rate.



(a) Tablecloth

(b) Missing data

(c) DAS-1

(e) TP-CTFg (f) DAS-2

Fig. 8: Comparison results of inpainting. (a) Original (table-
cloth cropped from Barbara). (b) Missing data (with mask
Text?2) plus corrupted by Gaussian noise with ¢ = 10. (¢)
DAS-1: look similar to DAS-2. (d) TP-CTFg: mask can be
seen. (e) TP-CTFg: clearly see the mask. (f) DAS-2: noise
removed and missing area is inpainted.

Texture Classification
DAS-2 | DAS-1 TP-(CTFé TP-CTFg | DT-CWT | DNST | NSCT
(6.39) | (6.16) (2.67) (10.67) 4) (49) (53)
85.8% | 80.71% | 83.4% 85.31% 81.85% | 77.79% | 79.9%

TABLE III: Average classification rate of various transforms
on the UMD texture database.

VI. AFFINE SHEAR TIGHT FRAMES WITH 2-LAYER
STRUCTURE

In this section, we connect our DAS-2 filter banks to the
affine shear tight frames with 2-layer structure for theoretical
justifications of the sparse representation property.

Given a sequence {a;bl“7} j € Ny of DAS-2 filter
banks, it naturally connects to a sequence of directional

(c) DAS-1 (d) TP-CTF}

(e) TP-CTF¢

(f) DAS-2

Fig. 9: Comparison results of inpainting. We compare three
parts of the eye: the eyebrow, the bottom eyelash, and the iris.
(a) Original (eye part cropped from Lena). (b) Missing data
(with mask Text2) plus corrupted by Gaussian noise with
o = 10. (c) DAS-1: recover the eyebrow better than the other
methods but not so good at the bottom eyelash and the iris. (d)
TP-(CTFg: not as good as other methods for all three parts. (e)
TP-CTFg: better than DAS-1 and TP—(CTFé for the bottom
eyelash and the iris. (f) DAS-2: recover more details at the iris
and the bottom eyelash than other methods.

framelet systems (with 2-layer structure). In fact, one can
defined a function (or distribution) ¢ through @(§) :=
lim 00 Hj:o a(27771¢),¢ € R? which automatically satis-
fies the refinement relation $(2¢) = a(&)p(€), ¢ € R2. From
 and the high-pass filters b{;fﬂ&ne can define the functions
(or distributions) JZ’Z’L’T by {bvg’e’L’T(Aj’Lﬁ) = 32’2’”(5)@(5),
¢ € R One can then form a sequence of affine systems
AS s (@i {30 = £,1,7,0}52 ;) similar to those defined in
[16]. Under certain subsampling relations Theorem 5],
one can obtain a sequence of affine shear systems (with 2-



layer structure), which we detail below.

Recall that Ex = Iy and Ey = [} (], ¢ € {in,out},
and 0 € {X,Y}. We define S*:=[§ {] and S;:=[; Y]
as the shear matrices. At scale j, we consider the aniso-

in 1/2 J—1/2
tropic dilation matrices A7 := diag(27-/2,/2 ) and

Adout = diag(2J ,ﬁj) for the inner and outer layers,

respectively. We also define B7* := (A7)~! for . € {in, out}.
An affine shear system is obtained by applying shear,
dilation, and translation to generators at different scales. To
balance the shear operation, we consider cone-adapted systems
[12], [14], [15], [21]], which usually consist of three subsys-
tems: one subsystem covers the low frequency region, one
subsystem covers the horizontal cone X := {{ = (£1,&) €
R? : |¢&5/€1] < 1}, and one subsystem covers the vertical cone
Y = {€ = (&,&) € R? 1 |&/&] < 1} in the frequency
plane. Unlike the affine shear systems introduced in [16]] that
have only a single layer structure, in this paper we introduce
affine shear systems with 2-layer structure. That is, at each
scale j, the horizontal and vertical cones are further divided
into an inner layer and an outer layer. More precisely, Let
{e} U Wiin Y Wiout to be the set of generators in Lo (IR?)
with Wit = {br yBbt .| < 54}, where 55", 59" are
nonnegative integers. An affine shear system (with 2-layer
structure and with the initial scale .J) is then defined to be

AS (s {7 WHMY5E ) o= (27 p(27 - —k) k€ 2%} (10)
U {] det A7 |22 (STAT . —K) : k € Z2,]0] < 55,1, 0}
In a nutshell, at scale j, the set {p(27 - —k) : k € Z?}

of functions covers the low- frequency spectrum. The set
{2t (STEATE - —K) : £ = —st,... 55,k € Z?} covers the
horizontal and vertical cone for 0 = X, Y and inner and outer
cone for ¢ = in, out, respectively.

We say that AS;(@; {7, WIou}2% 1) is an affine
shear tight frame (with 2- layer structure) for Lo(R?) if
all generators {@} U {®77, Whout}ee ; C [4(R?) and

for all f € La(R?), [If113 = Ypeze [(f:270(27
Z;iJ ZL,O > ZkeZ? <f, | det Aj’L|%¢Z’£’L(S_£Aj"' ) —k)>‘

MRA structure is a very desirable property because a filter
bank and a fast transform algorithm can be easily introduced
based on it. As argued in [19], a sequence of affine systems
intrinsically gives an MRA structure and hence a filter bank
and its associated fast transform algorithm. We next follow
the notion of a sequence of affine shear systems [16], [32]]
to construct our affine shear tight frames with 2-layer struc-
ture. Similar to [16, Theorem 2], one can give a complete
characterization of a sequence of affine shear systems to be
a sequence of affine shear tight frames. In this paper, we are
interested in the case that all generators awnnegative in

the frequency domain (that is @ > 0 and wg’“ > 0 for all
4,4, 1,0), since it leads to simple characterization conditions
and easy construction of digital affine shear filter banks. In
such a case, we have the following simple characterization
result for a sequence of affine shear systems (with 2-layer

)+
2

structure) to be a sequence of affine shear tight frames (with
2-layer structure)(see [|32, Theorem 2.1]).

Theorem 3: Fixed Jy € Z, let AS j(¢p; {W7in, Wiout ;’O,J)

be defined as in (T0) for integer J > Jo. Suppose h(£) >
for all h € {p} U {wdin, wrout}eo | Then for all J > JO,

AS 5 (p; { Wi @i, "m}OC ) is an affine shear tight frame for
L>(R?) if and only if the following identities hold:
Jim (|B(277)F%,9) = (Lg) Vge CZ(R), D
for all j > J,
BETIP = @+ Z Ot e
L,0 2775
and for every h in {¢} U {U5i" Wi O“t}] Jos
RER(E +27k) = 0, ace. £ €R2 ke Z2\{0}.  (13)

The conditions in Theorem [3] greatly simplify our con-
struction of affine shear tight frames with 2 layer structure. In
fact, condition (I2) implies that we can obtain the generators
Ybe from the splitting of [(27771)|% — |$(277+)|2, and
condition (13) shows that the generators need to have non-
overlap 2772 shifts. We next briefly present the construction
of affine shear tight frames (with 2-layer structure).

Let v q be the 1D ‘bump’ function as given in Section
Let ~, :7 u[l/ge] for 0 < e < 1/2 and o := v g for

ct+e< 1+2s . Define 2D functions (&1, &2) := v.(£2/&1)
and P := a® a. Define w', w"t as follow:
=l - B2,

(14)

= 1B 122 — [30)12.
For A > 1, define Z,\ =[A=(1/2+e)) +1=[A+(1/2~
e)], Aj in 1= \f7 2, and Aj oyt = NG Deﬁne 1"” &) =
>, ze__s Y(SBHEL) = T, (17 (A & s Lo+

e (A, %2 +£)|2> for £ # 0 and ¢ € {in,out}, where s} =

£y, It is easy to check that I‘; has the following properties:
0<T; <2, I‘;(EO) =T(:), and T (&) = T';(&) for £ # 0.
Now define ¥7-“* by

@ ZZWL(Q_j(SgBA;)_lf) '75(52/51))

\/T5((SeBx 1)
Y (61/62)
L5((SeBxe )~ o)’

for ¢ € {in, out}. It is easy to show that (TI), (I2), and (I3)

hold for the above construction of @, ¢Z7Z’L. Consequently, we
have the following result.

Corollary 4: Let AS (i, {O7", Whout}2e 1), ] > Jy be
a sequence of affine shear systems with 2-layer structure and
with ¢, 974 being defined as in (T4)), (T3), respectively. Then

15)

—

PR =t (279 (S,By) )




AS j (o, { W7, WIut 1% 1) is an affine shear tight frame for
every J > Jy.

As proved in [16]], an affine shear tight frame has a
underlying (generalized) filter bank [19]. Similarly, for an
affine shear tight frame with 2-layer structure given above,
it also has an underlying (generalized) DAS-2 filter bank.

Indeed, define G(¢) := Z55, b(€) := ), and b5 (¢) =

Then it is easy to show b%(¢) =

$gt (5,B) 27 )

@(6)
=Yy 82 40) G0 VeV 40
D) e and B = (O g Furt

her splitting of boht to positive axis and negative axis,
we obtain a sequence of DAS-2 filter banks similar to
those in Section @ Moreover, fix Jy = 0 and rearrange
\Ijj,in — \I,Qj—l’\l,j,out — \IJQj; i.e., ,(/}gj—l,é — wg,é,in and
P20t = op:bout Then, the affine shear tight frame with 2-
layer structure AS j (¢, {7, W74} ;) can be regarded as
a special case of an affine shear tight frame AS s (0, {¥7}52)
in [[16] with A = /2. Since the affine shear tight frame
provides (nearly) optimal sparse approximation for cartoon-
like functions [14], we conclude that our affine shear tight
frame with 2-layer structure also provides (nearly) optimal
sparse approximation for cartoon-like functions.

We remark that though in the function setting, our affine
shear tight frames with the 2-layer structure can be regraded as
a special case of the affine shear tight frames using non-dyadic
scale parameter, yet in practice, our DAS-2 filter banks cannot
be replaced by applying the DAS-1 filter banks iteratively.
One of the reasons is that the downsampling process causes
the information loss of the images. More precisely, due to the
downsampling process, the low-pass filtered image (obtained
from the DAS-1 filter bank at previous level) to be processed
already lost certain information which originally might be
captured if the 2-layer filter bank is used in the previous level.
Thus, the two-layer structure is necessarily and important
when one would like to extract more information from a given
image at certain level.
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