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Abstract: Financial time-series are well known for their non-linearity and non-stationarity nature.
The application of conventional econometric models in prediction can incur significant errors. The
fast advancement of soft computing techniques provides an alternative approach for estimating
and forecasting volatile stock prices. Soft computing approaches exploit tolerance for imprecision,
uncertainty, and partial truth to progressively and adaptively solve practical problems. In this study,
a comprehensive review of latest soft computing tools is given. Then, examples incorporating a
series of machine learning models, including both single and hybrid models, to predict prices of
two representative indexes and one stock in Hong Kong’s market are undertaken. The prediction
performances of different models are evaluated and compared. The effects of the training sample size
and stock patterns (viz. momentum and mean reversion) on model prediction are also investigated.
Results indicate that artificial neural network (ANN)-based models yield the highest prediction
accuracy. It was also found that the determination of optimal training sample size should take the
pattern and volatility of stocks into consideration. Large prediction errors could be incurred when
stocks exhibit a transition between mean reversion and momentum trend.

Keywords: machine learning; stock price prediction; Hong Kong’s market; SVR; HMM; ANN;
DWT; EMD

1. Introduction

Stock market is one of the most attractive and profitable investment arenas. The ability to predict
stock movement can bring in enormous arbitrage opportunities, which are the main motivation for
researchers in both academia and the financial industry. The classical efficient market hypothesis
(EMH) states that stock price has reflected all the available information in the market and no one can
consistently earn over the benchmark return solely based on the analysis of past stock price [1–3].
In other words, the movement of stock price follows a random walk and is totally unpredictable.
However, evidences from various studies have shown that the market is not completely efficient [1,4,5],
especially with the advent of computational intelligence technologies [6–8]. Various models and
algorithms have been developed to exploit the market’s inefficiency [9]. Cochrane [10] has claimed the
predictability of the market return as the “New Facts in Finance.”

It is conventional to adopt econometric models (e.g., an autoregressive integrated moving average
(ARIMA)) to predict stock prices. The rapid development in the speed and capability of commercial
computers has prompted an emerging collection of methodologies, such as fuzzy systems, neural
networks, machine learning, and probabilistic reasoning. Those methods collectively, are called
soft computing, which aims to exploit tolerance for imprecision, uncertainty, and partial truth to
progressively and adaptively solve practical problems [11]. Soft computing approaches have been
successfully applied in various fields such as freight volume prediction [12], process control [13], and
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wind prediction [14]. Most of the current non-linear and emerging machine learning models, such as
the hidden Markov model, support vector machine, and artificial neural network, can be classified as
soft computing models.

Note that classical statistical and econometric models, such as ARIMA and sophisticated
autoregressive conditional heteroskedasticity (ARCH) models [15], are specifically developed for linear
and stationary processes. A detailed comparison of different statistical models for stock price prediction
and associated model details (e.g., data preprocessing, model input variables, model parameters, and
performance measurements) has been summarized and documented by Atsalakis and Valavanis [16].
In addition, the application of above models for prediction may incur significant errors, as financial
time-series are intrinsically non-linear, non-stationary, and exhibit high volatility. Actually, the role
of statistical models in data analysis has been questioned by many scholars. It is criticized that
approaching problems by searching for the most appropriate data model may restrict our imagination
and cause a loss of accuracy and interpretability of the problem [17,18]. Therefore, people turn to
non-linear, soft computing models for solving the dilemma. As the main component of soft computing
is machine learning (ML), both terms will be used interchangeably from this point forward.

The machine learning approach for financial modeling is an attempt to find financial models
automatically through progressive data’s adaptation without any prior statistical assumptions [9].
The learning process can be considered as the mechanical process of acquiring a habit. Most ML
models were created in 1980s and evolved slowly until the advent of super-powerful computers [6].
Those models can learn from complex data and adaptively extract optimal relationships between the
input and output variables. The early success in stock market movement prediction and asset value
estimation has further promoted its popularity [19]. ML itself is undoubtedly a powerful tool for
data mining. However, the misapplication can also lead to disappointment. Arnott et al. [20] have,
therefore, proposed a back-testing protocol for manipulating ML in quantitative finance.

Apart from the non-stationarity of financial time-series, another major challenge is
multi-scaling [21], which refers to the fact that statistical properties of time-series change with
time-horizons. To deal with the problem, various signal decomposition tools (e.g., discrete
wavelet transform (DWT) and empirical mode decomposition (EMD)) have been borrowed from
electrical engineering. Different hybrid methods incorporating the “divide-and-conquer” principle or
“decomposition-and-ensemble” have been developed to predict the volatile time-series and obtained
excellent performance [22]. The decomposition process can reduce the complexity of the time series
and retrieve components of different frequencies and scales, enabling an improved prediction at
specific time-horizons.

Despite the prevalent advantages, ML models have their own shortcomings. Some people criticize
the fact that ML requires a large set of parameters. Others claim those models tend to suffer from
overfitting. There is no consensus among financial experts regarding the predictive capacity of different
models. Therefore, it is the primary objective of this research to compare the forecasting power of
different ML models by a case study of two representative indexes and one stock in Hong Kong’s
market. Note that this study does not aim to develop trading strategies to earn extraordinary return.

The reminder of this study is organized as follows. Section 2 comprehensively reviews the
commonly used “intelligent” ML methods. In Section 3, we give details of adopted ML algorithms for
this study. The numerical experiment and numerical results are given in Section 4. Finally, conclusions
regarding the applicability and accuracy of different models are drawn.

The contribution of this study is a comprehensive review of various ML approaches and their
application in financial time-series prediction. In addition, different hybrid models and single ML
models were utilized to predict two indexes and one stock in Hong Kong’s market. Moreover, the effects
of training sample size and stock trends on the prediction accuracy were evaluated and interpreted.
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2. Literature Review

Atsalakis and Valavanis [23] surveyed the most common machine learning algorithms, including
support vector machines (SVMs) and neural networks for financial time-series prediction. The recent
popularity of intelligent technology has further expanded the family of neural networks to include fuzzy
neural networks and other hybrid intelligent systems [24]. The application of hybrid machine learning
in stock prediction has greatly improved the predicative capacity. In this section, a comprehensive
review of the most fundamental single (i.e., SVM and artificial neural network (ANN)) and hybrid
machine learning approaches (i.e., EMD and DWT based models) for financial time-series forecasting
is carried out.

2.1. Hidden Markov Model

A process is defined as a Markov chain if its distribution of the next states does not depend on the
previous state when the current state is given. For conventional Markov chain, the observations are
visible and connected by state transition probabilities. In comparison, the hidden Markov chain has
visible observations connected by hidden states. The multiple hidden states are assumed to follow
multivariate Gaussian distribution. The probability of a certain observation is the product of the
transition probability and emission probabilities.

The stock market can be viewed in the similar manner. The hidden states, which drive the stock
market’s movement, are invisible to the investors. The transition between different states is determined
by company policy and economic conditions. For brevity, the emission probability between hidden
states and output stock price is assumed to follow multivariate Gaussian distribution. This simplified
assumption can induce errors when the stock exhibits strong skewness, which has been explicitly
overcome by models accounting for skewness [25]. All the underlying information are reflected in the
visible stock prices. Therefore, the hidden Markov model (HMM) can make a reasonable model for
financial data.

Hassan and Nath [26] applied the principle to predict stock prices of airline companies and
found that comparable prediction results with neural networks could be obtained. The rationale
behind the HMM model is to locate the stock patterns from past stock price behavior, then statistically
compare the similarity between neighboring price elements and make a prediction of tomorrow’s
stock price. Hassan [27,28] further extended the HMM model by integrating with fusion model (viz.
ANN and genetic algorithms (GA)) and a fuzzy model to optimize the selection of input and output
sequences. Later, maximum a posterior HMM [29] and extended coupled HMM models [30] were
developed to predict stock prices in the USA and Chinese stock markets. Table 1 summarizes the
abovementioned references.
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Table 1. Summary of the hidden Makarov model (HMM) based prediction methods used by this study as references.

Article Stock Market Input Variables Training Method Comparative Studies Best Model

[26] - Opening, high, low and closing price HMM ANN Similar performance
[28] USA Opening, high, low and closing price ANN-HMM-GA ARIMA Similar performance
[27] - Opening, high, low and closing price HMM-Fuzzy HMM, HMM-ANN-GA, ARIMA and ANN HMM-Fuzzy
[29] USA Fractional change, fractional high and low Maximum a Posterior HMM HMM-Fuzzy, ARIMA and ANN HMM

[30] China Open, high, low and closing price; news articles Extended coupled HMM SVM, TeSIA, CMT, ECHMM-NE,
ECHMM-NC, ECHMM ECHMM
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2.2. Support Vector Machine

A support vector machine (SVM) was originally developed for classification problems [31] and
later extended for regression analysis (support vector regression, SVR). It can be viewed as a linear type
model as it maps the input parameter into high-dimensional space for linear manipulation. The key
step in applying the SVM is to find the support vectors and then maximize the margins between the
vectors and the optimal decision boundary. Mathematically, the optimization problem finally evolves
to a constrained optimization problem, which can be solved by the method of Lagrange multipliers.

With the introduction of an ε-sensitive loss function and versatile kernel functions, the capacity of
SVM has been greatly extended to solve non-linear regression problems. The major advantage of SVM
is that SVM implements a structural risk minimization principle (equal to the sum of conventional
empirical risk minimization and a regularization term) [32], which is unlikely to suffer an overfitting
problem [33]. It is found to have excellent generalization performance on a wide range of problems.

Table 2 shows a brief comparison of stock prediction by SVR based models. The application of
SVM in financial time-series prediction was initiated by Tay and Cao [34]. They adopted SVM to
forecast the return of five future contracts from the Chicago Mercantile Market and concluded that SVM
outperformed a backpropagation neural network (BPNN). Similarly, Kim [33] used SVM to predict
the Korean stock market. Twelve technical indicators were used as input variables and the optimal
controlling parameters (viz. upper bound C and kernel parameter δ2) were determined via trial and
error. The prediction results were much better than those of its counterparts BPNN and the case-based
reasoning method (CBR). In addition to stock price prediction, Huang et al. [35] utilized SVM to
forecast the weekly movement of the Nikkei 225 index by correlating with macroeconomic factors (viz.
exchange rate and Standard and Poor’s 500 Index (S&P500)). The prediction of up-to-minute stock
price was carried out by Henrique et al. [36]; they concluded that the incorporation of a moving window
could improve the predictability of the SVR. Recently, the SVM algorithm has been combined with
other feature selection techniques (e.g., filter method and wrapper method) to improve the accuracy of
trend prediction [37,38].

Table 2. Summary of support vector machine (SVM) based prediction methods used by this
study’s references.

Article Stock Market Input Variables Training Method Comparative
Studies Best Model

[34] USA Daily closing price of five future
contracts SVM BPNN SVM

[33] Korea 12 technical indicators SVM ANN and CBR SVM

[35] Japan Weekly price of S&P500 Index and
USD/Yen exchange rate SVM LDA, QDA, EPNN SVM

[38] USA 29 technical indicators and lagged
index price SVM BPNN SVM

[37] Indonesia 14 technical indicators Particle swarm
optimization-SVR - -

[36] Brazil, USA
and China

5 technical indicators for daily and
1-minute price SVR Random walk

model SVR

2.3. Artificial Neural Network

Inspired by the human biological neural system (brain), the artificial neural network (ANN) was
developed to mimic the processing mechanism of human neurons. The major advantage of ANN
is its ability to learn from past experience and generalize underlying rules from past observations
without any prior assumptions regarding the data’s distribution. It is well suited for solving problems
whose embedding rules are hard to specify by explicit formulations. Moreover, it provides a universal
function approximation for complex, non-linear and non-stationary processes [39]. It is not susceptible
to the problem of model misspecification, which is common to statistical parametric models.

ANN-based models have gained wide acceptance in multiple disciplines, particularly for
complicated pattern recognition and nonlinear forecasting tasks. Its application in the financial
market, e.g., credit evaluation, portfolio management, and financial prediction and planning, is
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detailed and summarized by Bahrammirzaee [24]. Atsalakis and Valavanis [23] also reviewed over 100
scientific publications and summarized the available neural and neuro-fuzzy techniques to forecast
stock markets. The application of neural network in stock market forecasting was initiated by White [40]
in 1988 and the constructed neural network failed to beat the efficient market hypothesis. Later, Kimoto
et al. [41] employed a modular neural network for Tokyo’s exchange price index and a superior
performance over conventional multiple regression analysis was concluded. Qiu and Song [42]
adopted BPNN algorithms to forecast the trend of Nikkei225 based on two types of technical indicators
filtered from the genetic algorithm (GA). The prediction accuracy reached as high as 81.3%. The
successes of ANN when evaluating stock movement in Istanbul’s stock exchange and the Chinese
market were reported by Kara et al. [43] and Cao et al. [44], respectively. Song et al. [45] predicted a
weekly stock price from Chinese A stock by BPNN and concluded the results from BPNN outperformed
other four neural network based models (viz. radial basis function neural network (RBFNN), SVR,
least square-SVR (LS-SVR), and the general regression neural network (GRNN)). A time lagging effect
between predicted and actual stock price was also observed. Table 3 shows a brief comparison of stock
prediction by ANN based models.

Despite its advantages when dealing with volatile process, one of the major criticisms of
ANN-based models is the interpretability of the model and the uncertainty of the selection of
the control parameters (e.g., input variables, number of hidden layers, and hidden nodes), which are
fully dependent on researcher’s prior experience [46].

Table 3. Summary of artificial neural network (ANN)-based prediction methods used by this
study’s references.

Article Stock Market Input Variables Training Method Comparative Studies Best Model

[40] USA Daily stock return NN - Over-optimistic

[41] Japan Technical indicators and economic
indexes NN Multiple regression

analysis NN

[44] China Daily closing price; quarterly book
value; common share outstanding ANN CAPM, Fama and

Frech’s 3 factor model ANN

[43] Turkey 10 technical indicators ANN SVM ANN

[47] USA Daily opening, high, low and closing
price; trading volume ANN ARIMA ANN

[42] Japan Technical indicators GA-ANN - -

[45] China Weekly close price BPNN RBF, GRNN, SVR,
LS-SVR BPNN

2.4. Discrete Wavelet Transform-Based Models

Discrete wavelet transform (DWT) as well as its generalization [48–51], are commonly used for
image procession [52,53], earthquake prediction, and so forth [51,54]. It gained popularity in the
economic and finance industries due to its capability of revealing localized information for data in the
time domain. The method provides an alternative perspective to inspect the relationship in economics
and finance [4,55]. More specifically, the method can decompose a discrete time sequence into binary
high and low-frequency parts. The high-frequency component can capture the local discontinuities,
singularities, and ruptures [56]. On the other hand, the low frequency delineates the coarse structure
for the long-term trend of the original data. The combination of high and low frequency enables the
extraction of both hidden and temporal patterns of the original time-series. By working with the
decomposed parts, it is conceivable that the future stock of each part can be better predicted due to the
much less inherent variation of each component.

For most studies, DWT has been treated as a denoising tool to eliminate redundant variables
and integrate with other modelling tools for prediction [57–59]. Li et al. [57] derived nine alternative
technical indicators based on coarse coefficients to predict the direction of the Down Jones Industrial
Average (DJIA). The results revealed that wavelet analysis could help extract meaningful input variables
for improving the forecasting performance of a genetic programming algorithm. Apart from feature
selection, the direct application in stock price prediction has also been performed by various scholars.
Jothimani et al. [60] applied a hybrid method to predict the weekly price movement of the National
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Stock Exchange Fifty index. The stock price was first decomposed by enhanced maximum overlap
discrete wavelet transform (MODWT) and each component was predicted by SVR and ANN methods.
The simulation results indicated the hybrid method could improve the directional accuracy from
merely over 50% to about 57%. However, it should be noted that the stock price studied exhibits a
momentum pattern. The performance for stocks exhibiting mean reversion pattern are not known.
Chandar et al. [61] adopted DWT approach to decompose stock prices of five different companies
into approximation and detail components. The decomposed components were combined with other
variables (e.g., volume) to serve as input parameters for BPNN. It was found that the combined models
yielded much smaller errors compared with the conventional BPNN model. Table 4 shows a brief
summary of stock prediction by DWT.

Table 4. Summary of discrete wavelet transform (DWT)-based prediction methods used by this
study’s references.

Article Stock Market Input Variables Training Method Comparative Studies Best Model

[62] - Weekly exchange rate GBP/USD DWT-ANN/ARIMA ARIMA, ANN and Zhang′s
hybrid model DWT-ANN/ARIMA

[60] India Weekly closing price MODWT-ANN/SVR ANN, SVR MODWT-ANN/SVR

[56] USA Minute-in-day closing price DWT-BPNN ARMA, Random walk
model DWT-BPNN

[59] China Monthly closing price DWT-BPNN BPNN DWT-BPNN

[58] Taiwan, USA,
UK, Japan 10 technical indicators DWT-ABC-RNN DWT-BP-ANN, BNN DWT-ABC-RNN

[57] USA 9 technical indicators DWT-FGP - -

2.5. Empirical Mode Decomposition-Based Models

Empirical mode decomposition (EMD) was invented by Huang et al. [63] and it has been widely
used in many fields, such as earthquake analysis and structure analysis [64]. The major advantage
of EMD is the ability to adaptively represent a nonstationary signal as the summation of a series of
zero-mean-amplitude modulation components. It is possible to reveal hidden patterns and identify
potential trends for forecasting [65].

The rationale of EMD is to decompose a complicated time-series process into multiple simpler
orthogonal low-frequency components (viz. intrinsic mode function (IMF)) with strong correlations,
rendering a more accurate prediction. The reconstruction of the original process is enabled by the
addition of all the IMFs and the residual component. Each IMF has retained local characteristics of the
original signal and could be better extracted and analyzed.

Drakakis [66] was initiated to explore the feasibility of using EMD to study the stationarity of
Dow-Jones’ volume. He found that the decomposed IMFs centered around zero and were some
kind of posterior orthonormal wavelet basis. At the same time, Nava et al. [67] applied a combined
EMD and SVR algorithm to predict the multistep ahead price of S&P 500. The combined model
was found to outperform benchmark models (i.e., SVR). Particularly, the high-frequent IMFs were
better to forecast short-term performance. In contrast, the long-term behavior could be well captured
by the low-frequency IMFs. Similarly, a combined EMD and SVR method to forecast Taiwan stock
exchange capitalization weighted index (TAIEX) was undertaken by Cheng and Wei [68]. Superior
prediction results were obtained over classic SVR and autoregressive (AR) models. Lin et al. [69]
implemented EMD and the least squares-SVR method to estimate three foreign exchange rates and
better performance was obtained. EMD was also combined with the ANN model to predict the
volatility of the Baltic dry index (BDI) [70]; the forecasting results were found to be reasonably better
than pure SVR and ANN models. Table 5 shows a brief comparison of stock prediction by EMD.



Axioms 2019, 8, 116 8 of 21

Table 5. Summary of empirical mode decomposition (EMD)-based prediction methods used by this
study’s references.

Article Stock Market Input Variables Training Method Comparative Studies Best Model

[22] USA, UK Daily crude oil spot price
EMD + ARIMA + ALNN;

EMD-FNN-ALNN;
EMD-ARIMA-Average

ARIMA, FNN EMD - FNN - ALNN

[71] China Closing price EMD-SVM SVM EMD-SVM

[69] - Daily exchange rate USD/NTD,
JPY/NTD and RMB/NTD EMD-LSSVR EMD-ARIMA, LSSVR,

ARIMA EMD-SVR

[68] Taiwan Closing price EMD-SVR AR, SVR EMD-SVR
[65] Taiwan, HK Closing price EMD-ANFIS SVR, AR, ANFIS EMD-ANFIS

[67] USA Intraday price EMD-SVR ARIMA, Directed SVR,
Recursive SVR EMD-SVR

3. Data and Methods

3.1. Data Sets

The application of various soft computing techniques for analyzing USA’s markets and other liquid
markets have been studied extensively. For those mature markets, institutional investors dominate
the market and determine the overall trend. There is limited research specifically for Hong Kong’s
market. The peak trading value of Hong Kong’s market is about one hundred billion Hong Kong
Dollar (HKD) per day, half of which is contributed by personal investors. Therefore, it is worthwhile to
have a detailed study of the applicability of the abovementioned machine learning models specifically
in Hong Kong’s market.

In this study, two indexes and one stock, namely the Hang Seng Index (HSI), Hang Seng China
Enterprises Index (HSCEI) and Tencent, were taken for the numerical experiments. The choice of the
three time series was based on the consideration of liquidity and representativeness of Hong Kong’s
market. For all the three stocks, the past ten years’ daily closing prices between March 9, 2009 and
March 8, 2019 downloaded from Yahoo finance served as the input variables. There are 2474 daily
closing prices in total. For the dates with no stock price data, interpolation was used to deduce the
appropriate values. It should be noted that interpolated values only account for 0.4% of all the prices
and should not affect the results and the conclusions of this study. Figure 1 shows the time plots of
the three stocks. It is evident that Tencent shows a strong, monotonic, increasing trend before 2018.
In contrast, the pattern for both HSI and HSCEI tend to be recurrent throughout the whole period.
Table 6 shows the calculated basic statistics (i.e., mean, standard deviation, and skewness) of the
daily returns of the three chosen stocks. Specifically, the daily return is defined as the percentage of a
stock’s price change over the previous day’s closing price. It should be noted that skewness can have a
major influence on portfolio construction [72] and model selection [25], which has been the interest of
many researchers.
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Table 6. Basic statistics of daily return of the three stocks.

Statistics 1 Hang Seng Index Hang Seng China
Enterprises Index Tencent

Mean (µ) 0.05% 0.04% 0.19%
Standard Deviation (σ) 1.24% 1.54% 2.07%

Skewness (Sk) 0.01 0.10 0.14
Kurtosis (β) 2.51 1.98 2.04

Note: 1 µ =
∑N

i=1 ri
N , σ =

√∑N
i=1 (ri−µ)

2

N , Sk = 1
N

∑N
i=1 (ri−µ)

3

σ3 , and β = 1
N

∑N
i=1 (ri−µ)

4

σ4 where r and N stand for daily
return and population number, respectively.

It should be noted for all the numerical simulations, the test dataset was fixed at the latest 200 days’
closing prices. All the other data were taken for training to determine the optimal weights for different
ML models. The dynamic training window size was fixed at five, which means the next-step stock price
was predicted by the pre-determined weighted sum of past 5 days’ stock price. The determination of
5 day was based on a partial autocorrelation plot (PACP) and published literature [60]. It should be
noted that only one-step ahead prediction was carried out in this study.

3.2. Comparison Criteria

Forecasting error measures can be based on absolute, percentage, symmetric, relative, scaled, and
other errors [73]. Each performance measure evaluates forecasting error from a different aspect. As
suggested by Shcherbakov et al. [73], absolute error (e.g., mean absolute error) is recommended for
comparing time-series predictions. To remove scale dependency, the absolute error can be transformed
into absolute percentage error. In this study, the predictive power of the forecasting models was
evaluated by absolute percentage error (APE) and mean absolute percentage error (MAPE). APE is
defined as the absolute percentage difference between actual stock price and predicted value at a
given day i. MAPE is the average of all the calculated APEs. The detailed formulation is defined as
follows [74]:

APE =

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣,
MAPE =

1
n

n∑
i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣
where n is the total number of the test data points; yi and ŷi are the actual price and predicted stock
price on day i.

3.3. HMM

The rationale behind the HMM model is to locate the stock patterns from past stock price behavior,
then statistically compare the similarities between neighboring price elements and make predictions of
tomorrow’s stock price [26]. The price differences between the matched segments and the next day
are deduced.

For stock price prediction, the priority is to calculate the likelihood of current observation sequence
and try to identify the most similar sequence in the history. Then, the future stock price can be predicted
based on the next step price from history sequence. While in reality, the hidden states are invisible and
the transmission probabilities are not readily available.

The main purpose of applying HMM is to estimate the optimal parameters (i.e., mean and variance
for GMM, transmission, and emission probabilities) and identify the similar sequence in history. The
number of hidden states was allowed to vary between two and five, with the optimal value determined
by Akaike information criterion (AIC) [75]. The goal can be achieved by the combination of three
algorithms (viz. forward algorithm, Viterbi algorithm and EM algorithm) [76].
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3.4. SVM

SVM is developed specifically for dealing with linearly non-separable problems by classical
regression methods. The ideal is to transform the input from original space into a high-dimensional
feature space via a mapping function. The problem then becomes linear regression or classification
over new feature space. The optimal regression function is formulated as follows:

y = ωT
·ϕ(x) + b,

where ϕ is the mapping function to transform the input variable; ω and b are the coefficients estimated
by the following constrained quadratic minimization problem [77]:

Minimize
1
2
‖ω2
‖+ C

n∑
i=1

(ξi + ξ∗i ),

subject to
yi −ω, xi − b ≤ ε+ ξi,

ω, xi + b− yi ≤ ε+ ξ∗i ,

ξi , ξ∗i ≥ 0,

where yi is the istock price; C denotes penalty parameter; ξi and ξ∗i are slack variables to cater for data
lying outside bandwidth ε. The minimization problem can be converted to dual representation after
applying Lagrangian and optimality conditions:

y =
n∑

i=1

(αi − α
∗

i )k(xi, x) + b,

where αi and α∗i are Lagrangian multipliers and the kernel function k(xi, x j) = exp(−
‖xi−x j

2
‖

2σ2 ) for the
radial basis function (RBF) used in this study. The advantage of RBF is its flexibility in handling
diverse input sets and weighing closer training points more heavily [78]. This is most appropriate for
predicting stock prices with trends. The performance of SVR depends on the selection of the model
parameters C and σ, both of which are determined via 5-fold cross validation by grid searching among
{1, 10, 100, 1000} and {1e-2, 1e-1, 1, 1e1, 1e2} for C and σ, respectively.

3.5. ANN

Among all the neural networks, the BP algorithm is the most widely adopted classical learning
method. A typical three-layer BP neural network consisting of an input layer, hidden layer, and
output layer is utilized in this study. The neurons between consecutive layers are connected via
weight functions. The information from the input layer transfers to the output by weighted sum
of the input variables. The estimated output is then compared with the actual value and errors are
backpropagated via the network for updating weights and biases repeatedly. Figure 2 shows the
graphical representation of the BPNN. For the general point of view, the neural network can reveal any
hidden patterns, given sufficient training data.
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Each hidden neuron performs an operation of weighted summation. Mathematically, the output
at the ith neuron of the hidden layer can be formulated as follows:

hi = σ(

p∑
j=1

ωi, jx j + bi) ,

where σ is the activation function and is taken to be the sigmoid function; ωi, j is weight coefficient
associated with input x j from previous layer; bi denotes the bias; and p represents the number of input
variables. For a single output, as shown in Figure 2, its final output is calculated as follows:

ŷ(t) = bo +

q∑
i=1

ωi·hi ,

where ŷ(t) is the predicted stock price, q is the number of hidden neurons, bo and ωi are the bias and
weight, respectively. The error term for the backpropagation is estimated via mean sum error (MSE):

MSE =
1
n

n∑
t=1

(yt − ŷt)
2,

where yt is the actual stock price and n denotes the number of test samples.
In this study, the Keras sequential model [6] was adopted as the modelling tool. All the input stock

prices were normalized by the maximal stock price before feeding into the network. The determination
of the optimal number of hidden neurons was based on past experience via a trial-and-error manner.
There are some guidelines [79] in the literature regarding the selection of the optimal number of hidden
layers. In this study, a pruning approach method was adopted. The optimal number was assumed to
be 256 and was successively reduced by half until a satisfactory prediction was obtained. In this study,
the one-hidden-layer network with 32 nodes was selected. The batch size and epoch were chosen to
be 50 and 128, respectively. The determination of epoch and size of layer is achieved via check of
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validation loss. It is noted that by the use of abovementioned parameters, there was no overfitting in
the validation process.

3.6. DWT

Wavelet analysis overcomes the drawback of conventional Fourier transformation by introducing
more flexible basis functions (e.g., Haar basis) and scaling functions, enabling the multiresolution
representation of a time-series. DWT is specifically for dealing with discrete processes. DWT is capable
of identifying and locating local variations within time domain. A typical dyadic DWT successively
decomposes the original signal into high and low frequency components with the sequential ratio
reduced by half. Detailed wavelet analysis can refer to [51]

As,k =

∫
y(t)·Φs,k(t)dtDs,k =

∫
y(t)·Ψs,k(t)dt,

where As,k and Ds,k are approximation and detail coefficients; s and k denote scaling and translation
parameters, respectively; Φ and Ψ represent father and mother wavelets, approximating the smooth
(low frequency) and the detailed (high-frequency) components. Father and mother wavelets are
defined as follows:

Φs,k(t) = 2−s/2
·Φ(2−st− k),Ψs,k(t) = 2−s/2

·Ψ(2−st− k),

After deriving all the coefficients, the original signal can be reconstructed as the sum of a series of
orthogonal wavelets:

y(t) =
∑

k

As,k·Φs,k(t) +
∑

k

Ds,k·Ψs,k(t) +
∑

k

Ds−1,k·Ψs,k(t) + · · ·+
∑

k

D1,k·Ψ1,k(t).

The level of decomposition was set to two in this study. An increase in level may possibly
lead to the loss of information. The popular Daubechies [80] wavelet was selected as the desired
decomposition wavelet.

3.7. EMD

EMD method can decompose a noisy signal into multiple IMFs and the residual through sifting
process. EMD is regarded as a data-adaptive processing technique, which has never been fully
appreciated to its full potential of revealing the truth and extracting the coherence hidden in scattered
numbers [64]. The generated IMFs represent fast to low frequency oscillations and the residual
component denotes the mean trend of the time series data. The integration of all the oscillation
components synthesizes the original signal.

Given a signal y(t), the sifting process for finding the IMF sifting procedures for the decomposition
is summarized as follows

(1) Identify all the local maxima and minima of y(t).
(2) Connect all the local maxima and local minima separately by the cubic spline to form the upper

envelope line h(t) and lower envelope line l(t).
(3) Calculate the mean value of the upper and lower envelope m(t) = (h(t) + l(t))/2.
(4) Derive a new time-series c(t) by subtracting the mean envelope, c(t) = y(t) −m(t).
(5) If c(t) satisfies the properties of IMF [64]; then, c(t) is regarded as an IMF, and y(t) in step 1 is

replaced with the new process r(t) = y(t) − c(t). Otherwise, substitute y(t) in step 1 by c(t) and
repeat all of the above process.



Axioms 2019, 8, 116 13 of 21

When the specified number of IMFs is obtained, the sifting process comes to an end. Similarly, the
original signal can be reconstructed by the aggregation of all the IMFs and the residual as follows.

y(t) =
N∑

i=1

ci(t) + rN(t).

In this study, all the signal decomposition processes were performed with the PyEMD package in
Python 3.6.

3.8. Overall Process of Hybrid Machine Learning Models

For each given stock time-series, it was first preprocessed by DWT and EMD to extract multiple
components of high and low frequency. Each decomposed part was then independently predicted by
ANN and SVR and aggregated to obtain the final forecasts. The below flowcharts, namely Figures 3
and 4, detail the modelling procedures for DWT and EMD based hybrid models for stock price
prediction, respectively.Axioms 2019, 8, x FOR PEER REVIEW 17 of 25 
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4. Experimental Results

In this study, all the numerical simulations were performed by various packages (i.e., hmmlearn,
sklearn, keras, PyEMD, and PyWavelets) in Python 3.6. Firstly, experiments were separately
conducted by HMM, SVR and ANN. For the hybrid method, the “divide-and-conquer” principle
was implemented [22]. Each time-series was decomposed by DWT and EMD before integrating with
SVR and ANN for further forecasting. The final prediction value was obtained by aggregating all
the predictions.

4.1. MAPE Comparison

Table 7 summarizes the MAPE for one-day ahead prediction by different models. For reference,
the standard deviation of daily return of the three stocks is shown in Table 6. It is noted that Tencent
has the largest standard deviation (S.D.) for a daily return of 2.07%, compared with 1.24% and 1.54%
for HSI and HSCEI, respectively. This can be explained by the fact that HSI and HSCEI are market
indices which made up of many low volatile companies from different sectors.

Table 7. Comparison of mean absolute percentage errors (MAPEs) for different models.

Methodology
Hang Seng Index Hang Seng China

Enterprises Index Tencent

MAPE (%) Rank MAPE (%) Rank MAPE (%) Rank

Benchmark S. D. 1.24 - 1.54 - 2.07 -
Random walk 0.97 - 1.13 - 1.68 -

HMM 1.42 4 1.27 3 2.41 4
SVR 1.69 6 1.86 6 2.70 5

DWT - SVR 1.85 7 2.04 7 3.10 7
EMD - SVR 1.45 5 1.57 5 2.60 6

ANN 1.12 2 1.04 1 1.81 1
DWT - ANN 1.11 1 1.20 2 1.83 2
EMD - ANN 1.21 3 1.35 4 2.25 1 3

Note: 1 MAPE for Tencent was obtained using a fixed training sample size of 200.

As for the forecasting of HSI, ANN based models yielded the smallest MAPEs. More specifically,
hybrid DWT-ANN and single ANN algorithms outperformed that of EMD-ANN. That may imply that
DWT can help decompose the original time-series into meaningful subcomponents, facilitating the
prediction of ANN. Further improvement could be obtained by DWT-ANN if different combinations
of wavelets and decomposition levels were utilized. In comparison, the results are not so encouraging
for SVR based models. Although the optimal hyperplane parameters for SVR were determined by
cross-validation, the MAPE for those models was still larger than 1.45%. This result is different from
previous studies [33,38], which have reported that the SVR model outperforms ANN models. Note that
the input variables of those models involve technical indicators, which are derived from both trading
price and volume. Intuitively, the prediction performance can be improved if more market information
is incorporated. Another point to note is that SVR performance can be improved if a self-adaptive EMD
method is used to decompose the stock price first. This may imply that the underlying information
embedded within the stock price has not been fully exploited by SVR. Moreover, the prediction MAPE
for HMM model lies in between ANN and SVR based models. Of all the above mentioned results, only
ANN based models have smaller prediction errors than the benchmark daily standard deviation (S.D.)
of HSI itself (see Table 7). Overall, it implies that the stock market is indeed predictable.

Similar results were also obtained for HSCEI and Tencent. The prediction results from ANN
based models surpassed both HMM and SVR based models. More importantly, DWT based ANN
models consistently outperformed that of EMD based ANN models, particularly for stocks exhibiting
higher fluctuations. In addition, it is observed that time-series preprocessed by EMD can be better
predicted by SVR for all the three stocks than DWT based models. This can be explained by the fact
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that sub-series of DWT are derived by convolution with a pre-determined basis function (viz. wavelet).
The performance of DWT-SVR may possibly depend on the choice of wavelet. It is also worthwhile
to note that HMM model has a smaller MAPE (1.27%) to the S.D. of HSCEI. As the rationale of the
HMM algorithm is to locate the similar observation sequence from historical data for one-step ahead
prediction, HMM works best for stocks with recurrent patterns. This is reflected in Figure 1, where
HSCEI mainly fluctuates between 10,000 and 12,500. It is noted that the MAPE for random walk,
which assumes the best prediction for the tomorrow’s stock price equals yesterday’s price, is also
included for comparison. It can be seen only the ANN prediction for HSCEI beats the result of random
walk. It may imply that prediction purely based on stock price can hardly beat the efficient market
hypothesis. More stock and market information (e.g., trading volume and market sentiment) should
be incorporated to strengthen the prediction capability of soft computing techniques.

4.2. Sample Size Effect

One of the major criticism of ANN is that the calculation tends to be trapped by local extrema
during training process and requires lots of training parameters [46]. The significance of sample size
determination has often been neglected. In this study, we took all the historical data beyond the
latest 200-day closing price as the training sample. The total size of training sample was over 2000,
which was used to optimize the weights of the 32 hidden neurons. A hidden layer with 32 neurons is
considered enough to approximate any forms of functions. When applying the hybrid method, namely
EMD-ANN, to predict the stock price of Tencent, we observed the performance was quite poor, even
though a series of neural network parameters (i.e., number of hidden layers, number of neural nodes,
activation function, and epoch number) were tuned. Finally, we reduced the sample size from over
2000 to 200. The performance was greatly improved, with the MAPE reducing from 4.10% to 2.25%.
Figure 5 shows the comparison of EMD+ANN models utilizing different sample sizes.
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The large deviation of predicted and actual stock price for a larger sample size can be explained by
the fact that Tencent exhibits a monotonic increasing trend before 2018 (see Figure 1). The training over
those samples adds weight to the belief that the stock will continue to monotonically increase, leading to
worse forecasting for the recent large drawdown. In essence, it is overfitting to the past stock price [46].
It is noted that the same phenomenon does not apply to both HSI and HSCEI, possibly due to the more
recurrent stock pattern and smaller volatility. For this particular case, the importance of sample size
seems to overweight the combination of different neural network parameters. A rationale method to
determine the optimal sample size taking stock patterns and stock volatility into consideration should
be developed.
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4.3. Momentum and Mean Reversion Stock Pattern Effect

Previous studies have mainly focused on performance comparisons of different algorithms but
cast little light on their applicability and interpretation. In this section, the prediction performance
over different time horizons and stock patterns are compared in detail. Tencent was selected for the
comparison, as it exhibited the highest volatility of all the three stocks (see Table 6).

Mean reversion is defined as stock return exhibiting negative auto-correlation at certain
horizons [81]. In contrast, momentum describes the continuation of stock return trend [82]. In
this study, three trading strategies, namely positive momentum, negative momentum, and mean
reversion, were developed to detect the stock trend. More specifically, positive momentum adopts the
strategy that if the previous day’s return was positive then stock is to be bought and held on the next
day. On the contrary, negative momentum denotes shorting the stock if a negative return occurred the
previous day. While mean reversion represents buying and holding the stock if the previous day’s
return was negative.

Figure 6 shows the cumulative return of Tencent utilizing the three trading strategies. It is clear
that negative momentum dominates the first 100 time steps and an increasing trend of mean reversion
strategy is prevalent after 125 time steps. The time plots of APE from all the algorithms are shown in
Figure 7. Clearly, no differences in terms of APE can be observed irrespectively of whether momentum
or mean reversion dominates. Another salient point needing to be noted is that all the algorithms show
a bad performance during the transition period between momentum and mean reversion. That implies
that algorithms capable of detecting market turning points should be integrated when developing
prediction algorithms [83].Axioms 2019, 8, x FOR PEER REVIEW 20 of 25 
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5. Conclusions

This study investigated and compared the performance of different machine learning algorithms;
namely, the hidden Markov model (HMM), support vector machine (SVM), and artificial neural network
(ANN). In addition, discrete wavelet transform (DWT) and empirical mode decomposition (EMD)
methods were also used to preprocess time-series data and each subsequence was then integrated with
SVR and ANN to predict the performance of three stocks; viz., the Hang Seng Index (HSI), Hang Seng
China Enterprises Index (HSCEI), and Tencent.

The results indicate that ANN based models yield smaller MAPEs to those from HMM and
SVR based models. More importantly, comparable prediction performances could be obtained by
DWT-ANN and ANN algorithms for stocks with low and high variations. This may imply that DWT
could decompose original time-series into meaningful subcomponents to facilitate the prediction of
ANN. Further improvements could possibly be achieved if different wavelets and decomposition
levels are employed. In contrast, the MAPE predicted by the SVR model can be further reduced when
combined with EMD methods, as EDM can adaptively decompose stock price into multiple ‘pure’
parts without any prior basis. In addition, HMM calculates the MAPE in between ANN and SVR based
models. Of all the predictions, only ANN based models can have smaller MAPEs than the intrinsic
S.D. of an individual stock price.

Factors affecting the forecasting performance of hybrid ANN models are also investigated. It is
noted that the prediction into the future depends on the choice of training sample size. For Tencent, it
exhibited momentum trends over the past 10 years; the recent mean revert patterns could not be well
captured if the model trained over the whole 10-year stock price. Thus, it is critical to select a training
dataset when there is a change in the stock pattern. In addition, the performance of different machine
learning models for Tencent over momentum and mean reverting patterns were also compared. Results
indicate that the adopted models work well during both momentum and mean reverting stock patterns.
However, during the transition period between different stock patterns, the performances of all the
hybrid models were quite poor.

It should be noted that the purpose of this study is to demonstrate the forecasting capacity of
common machine learning models. The decomposition methods, namely DWT and EMD, still have
great room for further improvement, such as the optimal feature selection and special handling of
large local variations. Tailor-made, specific forecasting techniques could be employed for forecasting
different time-scale subseries, and thereby gain an improvement in prediction.
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Abbreviations

AIC Akaike Information Criterion
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
APE Absolute Percentage Error
AR Autoregressive Model
ARCH Autoregressive Conditional Heteroskedasticity Model
ARIMA Autoregressive Integrated Moving Average
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BDI Baltic Dry Index
BP Backpropagation
BPNN Backpropagation Neural Network
CAPM Capital Asset Pricing Model
DJIA Down Jones Industrial Average
DWT Discrete Wavelet Transform
EM Expectation-Maximization Algorithm
EMD Empirical Mode Decomposition
EMH Efficient Market Hypothesis
GA Genetic Algorithm
GMM Gaussian Mixture Model
GRNN General Regression Neural Network
HMM Hidden Markov Model
HSCEI Hong Seng China Enterprises Index
HSI Hang Seng Index
IMF Intrinsic Mode Function
LDA Linear Discriminant Analysis
LS-SVR Least Square Support Vector Regression
MAPE Mean Absolute Percentage Error
MODWT Maximum Overlap Discrete Wavelet Transform
ML Machine Learning
NN Neural Network
RBF Radial Basis Function
RBFNN Radial Basis Function Neural Network
S.D. Standard Deviation
SVM Support Vector Machine
SVR Support Vector Regression
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