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Directional Compactly Supported Tensor Product Complex Tight Framelets with
Applications to Image Denoising and Inpainting∗

Bin Han† , Qun Mo‡ , Zhenpeng Zhao† , and Xiaosheng Zhuang§

Abstract. Compactly supported tight framelets are of great interest and importance in both theory and appli-
cation. In this paper we discuss how to construct directional compactly supported tensor product
complex tight framelets having varied directionality and good performance for applications in image
processing. Our construction algorithms employ optimization techniques and put extensive empha-
sis on frequency response and spatial localization of their underlying one-dimensional tight framelet
filter banks. Several concrete examples of directional compactly supported tensor product com-
plex tight framelet filter banks are provided in this paper. Our numerical experiments show that
such constructed directional compactly supported tensor product complex tight framelets have good
performance for applications such as image denoising and inpainting compared with several other
state-of-the-art transform-based methods.
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1. Introduction and motivations. Transform-based image processing including denoising
and inpainting plays a crucial role in many real-life applications such as medical imaging (MRI,
CT, PET, etc.), remote sensing, and astrology, seismology, neuroimaging, and so on [3, 31, 33,
39, 41]. Sparsity is the key for the successful applications of various approaches where sparsity
is captured by suitable representation systems. It has been shown that for a large class of im-
ages modeled by “cartoon-like” functions, directional multiscale representation systems such
as curvelets and shearlets can provide (nearly) optimal sparse representation [2, 29]. Direc-
tionality is no doubt one of the most important features of a multiscale representation system.
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(a) DB (b) CTF3 (c) CTF4 (d) CTF5 (e) CTF6

Figure 1. Illustration of frequency tilings of tensor product systems using (a) Daubechies orthogonal
wavelet filter bank DB = {a; b}, and complex tight framelet filter banks: (b) CTF3 = {a; b+, b−}, (c)
CTF4 = {a+, a−; b+, b−}, (d) CTF5 = {a; b+1 , b

−
1 , b

+
2 , b
−
2 }, and (e) CTF6 = {a+, a−; b+1 , b

−
1 , b

+
2 , b
−
2 }. The

(big) square in each subfigure represents the frequency domain T2 = [−π, π)2. The middle white block is the
tiling of the low-pass filter while each colored block corresponds to a directional high-pass filter. The tilings with
respect to CTF4 are similar to the tilings of the dual tree complex wavelet transform (DT-CWT) in [28, 37].
The numbers of (effective) directions in (a)–(e) are 2, 4, 6, 8, 14, respectively.

Curvelets or shearlets are usually band-limited tight frame systems [2, 14, 15]. They are
typically constructed through a nontensor product approach in the sense that the curvelet or
shearlet system in higher dimension cannot be obtained simply through the tensor product
of an underlying one-dimensional system. The goal of this paper is to construct spatially
compactly supported tight framelets. On the one hand, since the invention of compactly
supported real-valued orthogonal wavelets by Daubechies [9], development of compactly sup-
ported wavelet/framelet systems has been one of the main themes in wavelet analysis and
applications [7, 10, 16, 36]. For high-dimensional problems, the tensor product approach pro-
vides a simple and efficient way for the construction of multidimensional wavelet systems. On
the other hand, it is well known that tensor product real-valued wavelets lack directionality
in practice. In fact, for a Daubechies orthogonal wavelet filter bank DB = {a; b}, where a, b
are the low- and high-pass real-valued filters, respectively, the energy of the low-pass filter a
in the frequency domain T := [−π, π) is concentrated near the origin, while for the high-pass
filter b it is concentrated away from the origin. In such a case, the tensor product Daubechies
orthogonal wavelet filter bank in two dimensions (2D) is {a ⊗ a; a ⊗ b, b ⊗ a, b ⊗ b}, which
only favors the horizontal direction (via a ⊗ b) and the vertical direction (via b ⊗ a); see
Figure 1(a) for its frequency tiling and note that the checkerboard filter b⊗b has no direction-
ality. Of course, to achieve more directionality, one can abandon the tensor product approach
and turn to the nontensor product approaches as those in curvelet- and shearlet-like systems
[1, 3, 5, 18, 26, 35, 42]. However, in view of its simplicity and efficiency when facing high-
dimensional problems (image, video, etc.), we restrict ourselves in this paper to the tensor
product approach for the construction of directional systems.

To achieve more directionality based on the tensor product approach, one can consider
complex-valued framelet systems instead of real-valued wavelet systems. The main idea is
very simple. Taking complex tight framelet filter bank (see section 2) CTF3 = {a; b+, b−} for
example, one first designs a (complex-valued) high-pass filter b+ with its frequency response
mainly in the positive part of T. Then, a filter b− defined by b− := b+ gives rise to a
(complex-valued) high-pass filter with its frequency response mainly in the negative part of T.
The tensor product of CTF3 in 2D produces a filter bank {a⊗ a; a⊗ b±, b±⊗ a, b±⊗ b±} with



COMPACTLY SUPPORTED TENSOR PRODUCT FRAMELETS 1741

(a) Table cloth (b) σ = 25 (c) DB (27.18) (d) CTF3 (28.01) (e) CTF6 (29.25)

Figure 2. Denoising comparison. (a) Cropped image from Barbara. (b) Noisy image with white Gaussian
noise (σ = 25). (c) Denoised by DB (db4). (d) Denoised by compactly supported CTF3. (e) Denoised by
compactly supported CTF6. The numbers 27.18, 28.01, and 29.25 are the peak signal-to-noise ratio (PSNR)
values of the denoised image using DB, CTF3, and CTF6, respectively.

9 filters and 4 directions, where a⊗ b+ and b+ ⊗ a are with respect to horizontal and vertical
directions (±90◦) while b+⊗ b+ and b−⊗ b+ are with respect to the diagonal and antidiagonal
directions (±45◦); see Figure 1(b) for its frequency tiling. We also point out that the complex
orthonormal wavelets in [17] have symmetry but lack directionality.

Using the splitting technique which we detail later in section 3, we can obtain a filter
bank CTF4 = {a+, a−; b+, b−} by splitting the low-pass filter a in CTF3 to two low-pass
filters a+, a− whose frequency responses are mainly near the positive origin [0, ε] and the
negative origin [−ε, 0] of T for some ε > 0, respectively. Then the tensor product of CTF4

in 2D gives a filter bank {a ⊗ a; a± ⊗ b±, b± ⊗ a±, b± ⊗ b±} with 13 filters and 6 directions
(±15◦,±45◦,±75◦; see Figure 1(c) for its frequency tiling and note that we use the original
low-pass filter a ⊗ a instead of a± ⊗ a±). Such a system is indeed similar to the DT-CWT
proposed in [28, 37]. Splitting b+ into two high-pass filters b+1 , b

+
2 as well as defining b−1 :=

b+1 , b
−
2 := b+2 can produce complex tight framelet filter banks CTF5 := {a; b+1 , b

−
1 , b

+
2 , b
−
2 }

and CTF6 := {a+, a−; b+1 , b
−
1 , b

+
2 , b
−
2 }. The tensor product of CTF5 in 2D has 25 filters and

8 directions while the tensor product of CTF6 in 2D has 33 filters and 14 directions. See
Figure 1(d)–(e) for their frequency tilings.

With more directionality, it brings more performance improvement in practice. Figure 2
gives a comparison in image denoising using such CTFn systems as developed in this paper.
One can see that the image in Figure 2(a) (cropped from Barbara) corrupted by white Gauss-
ian noise with σ = 25 loses many directional features in Figure 2(b). As expected, the denoised
image by the tensor product Daubechies orthogonal wavelet filter bank (DB) in Figure 2(c)
does not recover much detail with respect to the directional patterns on the table cloth while
CTF3 and CTF6 can recover more details on the table cloth than that of DB. Moreover, CTF6

clearly performs better than both DB and CTF3 due to its rich directionality (see section 5
for more details on image denoising).

A family of directional tensor product complex tight framelets (TP-CTFs) following the
above idea has been introduced in [19] and further developed in [24, 25]. Experimental results
demonstrate that TP-CTFs have significantly better performance than many other transform-
based methods for the model problems of image denoising in [24], image inpainting in [39],
and video denoising/inpainting in [25]. However, the TP-CTFs constructed in [19, 24, 25] are
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band limited (we thus term them TPb-CTFn with b standing for band limited). Hence, in the
spatial/time domain, they cannot have compact support. Since compactly supported wavelets
or framelets have good space-frequency localization and lead to efficient computational algo-
rithms, they are of great importance both theoretically and practically. The initial effort on
finding directional compactly supported TP-CTFs, which we term TPc-CTFn in this paper
in comparison to its band-limited counterpart TPb-CTFn in [19, 24, 25], has been started
in [23], which concentrates on the simplest directional compactly supported TPc-CTF3 with
only two high-pass filters in one dimension.

In this paper we are interested in constructing directional compactly supported TPc-CTFn
with n = 3, 4, 5, 6 and good performance for applications such as image denoising and image
inpainting. It is necessary to point out here that finding concrete good examples of directional
compactly supported TPc-CTFn, though it appears to be easy and trivial, is one of the most
difficult tasks in this paper. For example, one problem that we are facing is what kinds of
low-pass filters are suitable for constructing directional compactly supported TPc-CTFn such
that they have superior performance for practical applications. Though the low-pass filters for
the B-spline functions and Daubechies orthogonal wavelets in [9] are very popular and widely
used in the literature of wavelet analysis, as we explain in this paper, they are not suitable
for our purpose. Indeed, directional compactly supported TPc-CTFn with n = 3, 4, 5, 6 can
also be constructed from these low-pass B-spline filters by our algorithms, but they do not
perform that well in the image denoising/inpainting problem.

The contributions of this paper lie in the following aspects. First, we provide step-by-step
algorithms for the construction of directional compactly supported TPc-CTFn by utilizing
both theoretical analysis and optimization techniques. Second, we define a quantity to mea-
sure the frequency separation property of a filter, based on which the frequency separation
ability of the families of Daubechies orthogonal wavelet filters, interpolatory filters, and B-
spline filters can be studied. More importantly, a suitable new family of low-pass filters can be
built for the construction of compactly supported CTFn with good performance. Third, we
provide concrete examples of compactly supported CTFn for n = 3, 4, 5, 6 and demonstrate
the effectiveness of such compactly supported CTFn in image denoising and image inpainting.
Last but not least, the design of band-limited CTFn in [19, 24, 25] together with the design of
compactly supported CTFn in this paper gives a complete picture on the analysis, construc-
tion, and applications of CTFn in both band-limited and compactly supported settings. We
also point out that our constructed compactly supported CTFn also offer the possibility of
being adapted to bounded intervals with high vanishing moments. As a consequence, their
performance in applications such as image processing may be further improved by reducing the
boundary artifacts and improved sparsity near boundaries. Due to the complexity of adapting
framelets to bounded intervals, we shall leave this topic as a future research problem, while
in this paper we mainly concentrate on developing the necessary theory and algorithms for
constructing compactly supported CTFn with directionality.

The structure of this paper is as follows. In section 2, we briefly recall the construction of
directional band-limited TPb-CTFn with n > 3, and discuss the frequency separation property
of a filter. In section 3, we study how to split a finitely supported low-pass filter a into two
finitely supported auxiliary filters a+ and a− with good frequency separation properties. Then
we study particular low-pass filters which are used in our construction of directional compactly
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supported TPc-CTFn with n = 3, 4, 5, 6 for image processing. In section 4, we provide step-by-
step algorithms for constructing compactly supported CTFn with n = 3, 4, 5, 6 having good
frequency separation property with prescribed filter supports. Several concrete numerical
examples are given to illustrate our construction algorithms in section 4. Finally, in section 5,
we test our directional compactly supported TPc-CTFn with n = 3, 4, 5, 6 in image denoising
and inpainting by comparing the performance with their band-limited counterparts as well as
other state-of-the-art transform-based methods. Conclusions and further remarks are given
in section 6. Proofs of some theorems are postponed to section 7.

2. Preliminaries on tensor product complex tight framelets. To prepare for the con-
struction of directional compactly supported TPc-CTFn with n ∈ {3, 4, 5, 6}, in this section
we briefly review tight framelets and tight framelet filter banks and the construction of direc-
tional band-limited TPb-CTFn with n > 3 in [19, 24, 25].

2.1. Tight framelet filter banks and tight framelets in L2(Rd). A d-dimensional filter
u := {u(k)}k∈Zd is a sequence of complex numbers defined on Zd. By u ∈ l0(Zd) we mean that
u is a sequence on Zd having finite support. For 1 6 p < ∞, we say that u = {u(k)}k∈Zd ∈
lp(Zd) if ‖u‖p

lp(Zd)
:=
∑

k∈Zd |u(k)|p < ∞. For u = {u(k)}k∈Zd ∈ l2(Zd), we define its Fourier

series (or symbol) to be û(ξ) :=
∑

k∈Zd u(k)e−ik·ξ, ξ ∈ Rd. For a one-dimensional filter
u ∈ l0(Z), we define its filter support fsupp(u) := [m,n] and filter length len(u) := n − m,
where u(m)u(n) 6= 0 and u(k) = 0 for all k ∈ Z\[m,n]. We often list a filter u by u =
{u(m), . . . , u(n)}[m,n].

For a, b1, . . . , bs ∈ l2(Zd), we say that {a; b1, . . . , bs} is a (d-dimensional dyadic) tight
framelet filter bank if

(2.1) |â(ξ)|2 +
s∑
`=1

|b̂`(ξ)|2 = 1 and â(ξ)â(ξ + πω) +
s∑
`=1

b̂`(ξ)b̂`(ξ + πω) = 0

for ω ∈ ([0, 1]d ∩ Zd)\{0} and for almost every ξ ∈ Rd. Moreover, a (d-dimensional dyadic)
tight framelet filter bank {a; b1, . . . , bs} is called a (d-dimensional dyadic) orthogonal wavelet
filter bank when s = 2d − 1.

If there exist positive numbers C and τ such that |â(ξ)−1| 6 C|ξ|τ for all ξ ∈ [−π, π)d (this
condition is automatically satisfied if a ∈ l0(Zd) and â(0) = 1), then the following functions
are well defined for a tight framelet filter bank {a; b1, . . . , bs}:

φ̂(ξ) :=
∞∏
j=1

â(2−jξ) and ψ̂`(ξ) := b̂`(ξ/2)φ̂(ξ/2), ξ ∈ Rd, ` = 1, . . . , s,

where the Fourier transform is defined to be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for f ∈ L1(Rd). Then it

is known from [18, Theorem 17 and Corollary 12] that {φ;ψ1, . . . , ψs} is a tight framelet for
L2(Rd), that is,

‖f‖2L2(Rd) =
∑
k∈Zd
|〈f, φ(· − k)〉|2 +

∞∑
j=0

s∑
`=1

∑
k∈Zd
|〈f, 2dj/2ψ`(2j · −k)〉|2 for all f ∈ L2(Rd).
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If a ∈ l0(Zd) with â(0) = 1, then {φ;ψ1, . . . , ψs} is a tight framelet for L2(Rd) if and only if
{a; b1, . . . , bs} is a tight framelet filter bank (for more details on framelets and framelet filter
banks, we refer to the book [22]). As a consequence, in this paper we mainly concentrate on
tight framelet filter banks instead of tight framelets for L2(Rd).

A d-dimensional dyadic tight framelet filter bank can be easily obtained through the
tensor product of a one-dimensional tight framelet filter bank. For filters u1, . . . , ud ∈ l1(Z)
in one dimension, we define their d-dimensional tensor product filter u1 ⊗ · · · ⊗ ud to be
(u1 ⊗ · · · ⊗ ud)(k1, . . . , kd) := u1(k1) · · ·ud(kd) for k1, . . . , kd ∈ Z. In particular, we define
⊗du := u⊗· · ·⊗u as the tensor product of d copies of u. If {a; b1, . . . , bs} is a one-dimensional
tight framelet filter bank, then it is straightforward to check that ⊗d{a; b1, . . . , bs} is a d-
dimensional tight framelet filter bank with the d-dimensional low-pass filter ⊗da.

2.2. Directional band-limited tensor product complex tight framelets. We now briefly
recall the construction of directional band-limited TPb-CTFn in [19, 24, 25]. For cL < cR
and two positive numbers εL, εR satisfying εL + εR 6 cR − cL, we define a bump function
χ[cL,cR];εL,εR on R [16, 19, 24, 25] by

χ[cL,cR];εL,εR(ξ) :=


0, ξ 6 cL − εL or ξ > cR + εR,

sin
(
π
2Qm( cL+εL−ξ

2εL
)
)
, cL − εL < ξ < cL + εL,

1, cL + εL 6 ξ 6 cR − εR,
sin
(
π
2Qm( ξ−cR+εR

2εR
)
)
, cR − εR < ξ < cR + εR,

where Qm(x) := (1 − x)m
∑m−1

j=0

(
m+j−1

j

)
xj satisfying Qm(x) + Qm(1 − x) = 1 (see [9]). For

simplicity, we take m = 1 (that is, Q1(x) = 1 − x) throughout this paper. Let s ∈ N and
0 < c1 < c2 < · · · < cs+1 := π and ε0, ε1, . . . , εs+1 be positive real numbers satisfying

0 < ε0 < c1−ε1, 0 < ε1 6 min(c1,
π
2−c1), and (c`+1−c`)+ε`+1+ε` 6 π, ` = 1, . . . , s.

The filters a, b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s are defined through their 2π-periodic Fourier series on the

fundamental interval T = [−π, π) as follows:

(2.2) â := χ[−c1,c1];ε1,ε1 , b̂+` := χ[c`,c`+1];ε`,ε`+1
, and b̂−` := b̂+` (−·), ` = 1, . . . , s.

Then CTF2s+1 := {a; b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s } is a (one-dimensional dyadic) tight framelet filter

bank with total (2s + 1) one-dimensional filters. The directional band-limited tensor product
complex tight framelet filter bank TPb-CTF2s+1 in dimension d is given by

TPb-CTF2s+1 := ⊗dCTF2s+1 = ⊗d{a; b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s }.

This family of tensor product complex tight framelet filter banks has been introduced in [19].
To further improve the directionality of TPb-CTF2s+1, another closely related family of

directional band-limited tensor product complex tight framelet filter banks TPb-CTF2s+2 has
been introduced in [24]. Let 0 < ε0 < c1 − ε1. Define filters a, b+1 , . . . , b

+
s , b
−
1 , . . . , b

−
s as in

(2.2), and define two auxiliary complex-valued filters a+ and a− by

(2.3) â+ := χ[0,c1];ε0,ε1 , â− := â+(−·).
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Figure 3. An example of CTF6 = {a+, a−; b+1 , b
+
2 , b
−
1 , b
−
2 }. Middle 2: â+ (Solid line) and â− (dotted line).

Left: b̂−2 (circle-dotted line) and b̂−1 (dash-dotted line). Right: b̂+1 (dashed line) and b̂+2 (circled line).

Then CTF2s+2 := {a+, a−; b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s } is a (one-dimensional dyadic) tight framelet

filter bank with total (2s+2) one-dimensional filters. See Figure 3 for an illustration of such a
CTF2s+2 with s = 2. Now the directional band-limited tensor product complex tight framelet
filter bank TPb-CTF2s+2 in d dimensions is defined to be

TPb-CTF2s+2 := {⊗da; TPb-CTF -HP2s+2},

where TPb-CTF -HP2s+2 := (⊗d{a+, a−; b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s })\(⊗d{a+, a−}). See [19, 23,

24, 25, 39] for detailed discussions on tensor product complex tight framelets and their appli-
cations to image/video processing. Due to the last identities in (2.2) and (2.3), it is important
to notice that

a− = a+, b−1 = b+1 , . . . , b−s = b+s ,

where u(k) := u(k), k ∈ Z, or, equivalently, û(ξ) := û(−ξ).

2.3. Directionality and frequency separation property. The above constructed direc-
tional band-limited TPb-CTFn with n > 3 are band limited and do not have compact support
in the spatial domain. In view of the importance of compactly supported tensor product
complex tight framelets in both theory and application, it is highly desirable to know whether
it is possible to construct directional compactly supported TPc-CTFn with good performance
in practical applications over other state-of-the-art transform-based methods in the literature.

The paper [23] is the first one to pursue this goal by studying directional compactly
supported TPc-CTF3. However, TPc-CTF3 often performs inferior in applications (due to
lack of a sufficient number of directions) compared with TPb-CTF4 or TPb-CTF6. Moreover,
the several constructed examples of TPc-CTF3 in [23] are of only theoretical interest and do
not perform very well for image processing, due to several factors that we address later in
this paper. Therefore, it is necessary and important for us to study directional compactly
supported TPc-CTFn with n = 3, 4, 5, 6 in this paper, in particular, for their applications in
image processing.

As explained in [23, 24, 25], the directionality of TPb-CTFn with n > 3 in high dimensions
is mainly because of the following frequency separation property:

(2.4) b̂+` (ξ) ≈ 0, ξ ∈ [−π, 0] or b̂−` (ξ) ≈ 0, ξ ∈ [0, π], ` = 1, . . . , s.

That is, all â+, b̂+1 , . . . , b̂
+
s nearly vanish on [−π, 0] and mostly concentrate on [0, π], while

all â−, b̂−1 , . . . , b̂
−
s nearly vanish on [0, π] and mostly concentrate on [−π, 0]. The frequency
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separation property in (2.4) motives the definition of a quantity to measure the frequency
separation ability for general filters. In fact, for a filter b = {b(k)}k∈Z which is not identically
zero, we introduce the following quantity:

(2.5) fsp(b) :=
min

{
1
π

∫ 0
−π |̂b(ξ)|

2dξ, 1
π

∫ π
0 |̂b(ξ)|

2dξ
}

1
2π

∫ π
−π |̂b(ξ)|2dξ

.

It is straightforward to observe that 0 6 fsp(b) 6 1. The smaller the quantity fsp(b) is, the
better the frequency separation of the filter b will be. If b is a real-valued filter, then b̂(ξ) =

b̂(−ξ) and one can check that fsp(b) = 1. However, things can be quite different for complex-

valued filters. Define a sequence c = {c(k)}k∈Z by ĉ(ξ) := |̂b(ξ)|2 and Cb := Im(
∑∞

j=1
c(2j−1)

2j−1 ),

where Im(x) denotes the imaginary part of x ∈ C. Noting that c(k) = c(−k) for all k ∈ Z, we
have

1

π

∫ 0

−π
|̂b(ξ)|2dξ =

1

π

∫ 0

−π
ĉ(ξ)dξ =

1

π

∫ 0

−π

∑
k∈Z

c(k)e−ikξdξ = c(0) +
1

π

∑
k 6=0

∫ 0

−π
c(k)e−ikξdξ

= c(0) +
2i

π

∑
j∈Z

c(2j − 1)

2j − 1
= c(0) +

2i

π

 ∞∑
j=1

c(2j − 1)

2j − 1
+

0∑
j=−∞

c(2j − 1)

2j − 1


= c(0) +

2i

π

∞∑
j=1

c(2j − 1)− c(2j − 1)

2j − 1
= c(0)− 4Cb

π
.

Similarly, we have 1
π

∫ π
0 |̂b(ξ)|

2dξ = c(0)+4Cb
π . Together with 1

2π

∫ π
−π |̂b(ξ)|

2dξ = c(0) = ‖b‖2l2(Z),

the quantity fsp(b) in (2.5) can be easily computed by

fsp(b) = 1− 4|Cb|
πc(0)

.

For any tight framelet filter bank {a; b+, b−}, i.e., the perfect reconstruction property (2.1)
holds, with b− = b+, [23, Theorem 1] says

(2.6) fsp(b+) = fsp(b−) >
1
π

∫ π
0 A(ξ)dξ

1− ‖a‖2l2(Z)

=: fslbhp(a),

where hp in fslbhp(a) stands for high pass and
(2.7)

A(ξ) :=
2− |â(ξ)|2 − |â(ξ + π)|2 −

√
4
(
1− |â(ξ)|2 − |â(ξ + π)|2

)
+ (|â(ξ)|2 − |â(ξ + π)|2)2

2
.

The quantity fslbhp(a) in (2.6) gives a lower bound on fsp(b+), fsp(b−) for the high-pass filters
b+, b− in a tight framelet filter bank {a; b+, b−}. If the filter a has real coefficients, [23,

Theorem 1] further shows that there exists a tight framelet filter bank {a; b̊+, b̊−} with b̊− = b̊+
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such that fsp(̊b+) = fsp(̊b−) = fslbhp(a). However, b̊+ and b̊− cannot have finite support in
the spatial domain. As shown in [23, Theorem 2], the quantity fslbhp(a) is often very small
for most known low-pass filters in the literature. Though we cannot achieve such a theoretical
lower bound when considering compactly supported tight framelet filter banks, in this paper,
we can seek compactly supported CTF3 and CTF4 with quantities fsp(b±) as small as possible,
which can be done by employing optimization techniques in our design.

3. Splitting low-pass filters with frequency separation property. Two auxiliary filters
a+ and a− are required in the construction of CTF2s+2 with a positive integer s. Note that
the only difference between CTF2s+1 and CTF2s+2 is that we have to split the low-pass filter
a in CTF2s+1 into two auxiliary filters a+ and a− with a good frequency separation property.
In this section, we focus on how to split a real-valued low-pass filter a into two auxiliary filters

a+ and a− such that a− = a+ with â+ almost vanishing on the interval [−π, 0]. Then we
discuss and introduce a particular family of low-pass filters for our construction of directional
compactly supported TPc-CTFn in the next section.

3.1. Analysis and algorithm for splitting a low-pass filter into two auxiliary filters.
Given a one-dimensional tight framelet filter bank {a; b1, . . . , bs}, that is, the perfect re-
construction property (2.1) holds, to preserve the perfect reconstruction property of a new
framelet filter bank {a+, a−; b1, . . . , bs} derived from splitting of a low-pass filter a, the two
auxiliary filters a+ and a− have to satisfy

(3.1) |â+(ξ)|2 + |â−(ξ)|2 = |â(ξ)|2 and â+(ξ)â+(ξ + π) + â−(ξ)â−(ξ + π) = â(ξ)â(ξ + π)

for almost every ξ ∈ R. The following theorem (see its proof in section 7) provides a theoretical
lower bound on how well the frequency separation can be for the two auxiliary filters a+ and
a− obtained from any splitting of the low-pass filter a satisfying (3.1).

Theorem 3.1. Let a ∈ l2(Z) be a filter on Z. For any complex-valued filters a+, a− ∈ l2(Z)
satisfying (3.1), the following inequality holds:

(3.2) |â+(ξ + π)|2 + |â−(ξ)|2 > min(|â(ξ)|2, |â(ξ + π)|2), a.e. ξ ∈ [0, π].

Moreover, there exist particular filters a+, a− ∈ l2(Z) satisfying (3.1) and

(3.3) |â+(ξ + π)|2 + |â−(ξ)|2 = min(|â(ξ)|2, |â(ξ + π)|2), a.e. ξ ∈ [0, π].

If in addition the filter a is real valued, then the particular filters a+ and a− can further satisfy
the relation a− = a+.

For any two auxiliary filters a+ and a− with a− = a+ obtained from splitting a real-valued
filter a, according to (3.2) in Theorem 3.1, we must have

(3.4) fsp(a+) = fsp(a−) >
1
π

∫ π
0 min(|â(ξ)|2, |â(ξ + π)|2)dξ

‖a‖2l2(Z)

=: fslblp(a),

where lp in fslblp(a) stands for low-pass. Note that 0 6 fslblp(a) 6 1. From (3.3), such a
lower bound fslblp(a) can be achieved by a certain pair (a+, a−) of filters, but they are not
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finitely supported. Thus, under the setting of compactly supported filters, we instead turn to
the searching of pairs (a+, a−) with a good frequency separation property.

We study how to split a finitely supported filter a into two finitely supported auxiliary
filters a+ and a− in the following result whose proof is given in section 7.

Theorem 3.2. Let a = {a(k)}k∈Z ∈ l0(Z) be a finitely supported filter on Z such that the
Laurent polynomials a(z) and a(−z) do not have common zeros in C\{0}, where a(z) :=∑

k∈Z a(k)zk. Then (3.1) holds for filters a+, a− ∈ l0(Z) if and only if there exist u+, u− ∈
l0(Z) such that

(3.5) â+(ξ) = â(ξ)û+(2ξ), â−(ξ) = â(ξ)û−(2ξ) with |û+(ξ)|2 + |û−(ξ)|2 = 1.

If in addition the filter a is real valued, then both a− = a+ and (3.1) are satisfied if and only
if (3.5) holds for some filters u+, u− ∈ l0(Z) satisfying u− = u+.

Theorem 3.2 makes precise the relation between (a+, a−) and a, which essentially says
that (a+, a−) can be obtained from a via any pair (u+, u−) of filters with the partition of

unity property : |û+(ξ)|2 + |û−(ξ)|2 = 1. For more details, see its proof in section 7. Based on
Theorem 3.2 and the frequency separation quantity, we present in Algorithm 3.1 the procedure
of splitting a low-pass filter a into two auxiliary filters a+ and a− with a good frequency
separation property which we summarize here:

(S1) We first parameterize the filters u+, u− through u1 and u2 as defined in (3.6) with
parameters t0, . . . , tN ∈ [−π, π] for some N . Since |u1(ξ)|2 + |u2(ξ)|2 = 1, it is straight-

forward to check that |û+(ξ)|2 + |û−(ξ)|2 = 1.
(S2) The two auxiliary filters a+, a− are then linked to a through (3.7), which implies that

u− = u+.
(S3) This optimization step gives a+, a− with small frequency separation quantities fsp(a+)

and fsp(a−). By Theorem 3.2, if the low-pass filter a is real valued, this optimization
step is also equivalent to mint0,...,tN fsp(a+), and the procedure produces a+, a− satis-
fying a− = a+ and fsp(a−) = fsp(a+).

3.2. Design and choices of low-pass filters for TPc-CTFn. With Algorithm 3.1, we
know how to split a low-pass filter into two auxiliary filters. The question for the construction
of compactly supported CTFn then becomes what kind of low-pass filters we should choose
for splitting! This subsection is devoted to answer such a question.

Let us first recall a few quantities for a filter u ∈ l0(Z). A filter u has order n of vanishing
moments if û(ξ) = O(|ξ|n) as ξ → 0, and we denote vm(u) := n with n being the largest such
integer. Here we used the notation û(ξ) = O(|ξ|n) as ξ → 0 to stand for û(0) = û′(0) = · · · =
û(n−1)(0) = 0. A filter u has order m of sum rules if û(ξ + π) = O(|ξ|m) as ξ → 0, and we
denote sr(u) := m with m being the largest such integer. A filter u has order m linear-phase
moments with phase c := Re(

∑
k∈Z u(k)k) if û(ξ) = e−icξ + O(|ξ|m) as ξ → 0 (see [17]). In

particular, we denote lpm(u) := m with m being the largest such integer.
If {a; b1, . . . , bs} is a tight framelet filter bank, then it is easy to check ([10] and [22,

Proposition 3.3.1]) that

(3.8) min(vm(b1), . . . , vm(bs)) = min(sr(a), 1
2 lpm(a ∗ a?)) with â ∗ a?(ξ) := |â(ξ)|2.
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Algorithm 3.1 Low-pass filter splitting.

Input: A finitely supported real-valued low-pass filter a ∈ l0(Z).
(S1) Choose an integer N ∈ N ∪ {0} and define

(3.6)

[
u1(ξ) u2(ξ)
u3(ξ) u4(ξ)

]
:=

[
cos(t0) − sin(t0)
sin(t0) cos(t0)

] N∏
j=1

[
cos(tj) − sin(tj)

e−iξ sin(tj) e−iξ cos(tj)

]
,

where t0, . . . , tN ∈ [−π, π] are real numbers to be determined later.

(S2) Define two filters a+ and a− by â+(ξ) := â(ξ)û+(2ξ) and â−(ξ) := â(ξ)û−(2ξ),
where

(3.7) û+(ξ) := [u1(ξ) + iu2(ξ)]/
√

2, û−(ξ) := [u1(ξ)− iu2(ξ)]/
√

2.

(S3) Find a solution {t0, . . . , tN} of the following optimization problem:

min
t0,...,tN

∫ π

0

(
|â+(ξ + π)|2 + |â−(ξ)|2

)
dξ.

Ouput: Filters a+ and a− satisfying all the conditions in (3.1) with a− = a+.

In order to have high vanishing moments for the high-pass filters b1, . . . , bs, it is necessary for
the low-pass filter a to have large sum rules sr(a) and high linear-phase moments lpm(a ∗ a?).

In the context of filter design, there are a few statistics-related quantities that are of
interest in applications. Following [22, (2.0.8) and (2.0.9)], for a filter u = {u(k)}k∈Z ∈ l0(Z),
we define its expectation/mean E(u) and (normalized) variance Var(u) by

E(u) :=

∑
k∈Z |u(k)|2k
‖u‖2l2(Z)

and Var(u) :=

∑
k∈Z |u(k)|2(k − E(u))2

‖u‖2l2(Z)

.

Note that Var(u) = minc∈R
∑

k∈Z |u(k)|2(k − c)2/‖u‖2l2(Z) with the minimum value achieved

at c = E(u). The smaller the quantity Var(u), the better spatial localization of the filter u.
To build directional compactly supported TPc-CTFn, we have to design one-dimensional

complex tight framelet filter banks CTFn from a given low-pass filter a:

CTFn =

{
{a; b+1 , . . . , b

+
s , b
−
1 , . . . , b

−
s } if n = 2s+ 1 is odd,

{a+, a−; b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s } if n = 2s+ 2 is even.

The following are some desirable properties for a low-pass filter a in a CTFn:
(i) relatively large sum rules sr(a) and high linear-phase moments lpm(a ∗ a?);
(ii) small frequency separation quantities fslbhp(a) and fslblp(a) as in (2.6) and (3.4),

respectively;
(iii) small variance Var(a) and short support length len(a).
By the identity in (3.8), item (i) guarantees that all the high-pass filters b+1 , . . . , b

+
s ,

b−1 , . . . , b
−
s in the tight framelet filter bank CTFn have a relatively high order of vanish-

ing moments, which are closely related to the sparse representation of their associated tight
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Table 1
The frequency separation quantities fslbhp(a) and fslblp(a) for three low-pass filter families: the B-spline

filters aBm, the interpolatory filters aIm, and the Daubechies orthogonal wavelet filters aDm for m = 1, . . . , 8. Note
that for Daubechies orthogonal wavelet filters, we have fslblp(a

D
m) = fslbhp(a

D
m). The listed variance Var(aDm) is

the smallest among all possible choices of aDm satisfying |âDm(ξ)|2 = âI2m(ξ).

m 1 2 3 4 5 6 7 8

Var(aBm) 0.250000 0.333333 0.450000 0.571429 0.694444 0.818182 0.942308 1.06667

Var(aI2m) 0.333333 0.428571 0.507137 0.574308 0.633798 0.687718 0.737374 0.783634

Var(aDm) 0.250000 0.328124 0.453684 0.425360 0.559572 0.531640 0.569226 0.631786

fslblp(a
B
m) 0.363380 0.151173 0.066291 0.029913 0.013745 0.006395 0.003004 0.001421

fslblp(a
I
2m) 0.151173 0.094585 0.073303 0.061623 0.054049 0.048651 0.044564 0.041335

fslblp(a
D
m) 0.363380 0.257277 0.209530 0.181110 0.161768 0.147526 0.136479 0.127588

fslbhp(a
B
m) 0.363380 0.027195 0.004327 0.000822 0.000170 0.000037 0.000008 0.000002

fslbhp(a
I
2m) 0.027195 0.020072 0.016720 0.014666 0.013237 0.012168 0.011328 0.010645

fslbhp(a
D
m) 0.363380 0.257277 0.209530 0.181110 0.161768 0.147526 0.136479 0.127588

framelets. Moreover, large lpm(a∗a?) implies that |â(ξ)|2 is very close to 1 in a neighborhood
of the origin. If 1− |â(ξ)|2 is not very small in a neighborhood of the origin, then the low fre-
quency information of a transformed signal will significantly leak away for the high-pass filters
to handle and will result in a not-so-good frequency balance between the low-pass filter and
high-pass filters. Due to (2.6) and (3.4), item (ii) is important for the auxiliary filters a+, a−

and all the high-pass filters b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s to have good frequency separation properties

simultaneously. Small Var(a) in item (iii) means good spatial localization of the low-pass filter
a and short support length len(a) improves computational efficiency. More importantly, larger
len(a) means longer support of a and all its derived high-pass filters often have longer support
as well. This not only worsens the computational efficiency but also makes the construction
of one-dimensional complex tight framelet filter bank CTFn much more complicated.

We now examine three popular filter families in literature:

(1) The B-spline filter aBm of order m is given by âBm(ξ) := 2−m(1 + e−iξ)m, m ∈ N.

(2) The interpolatory filter aI2m is given by âI2m(ξ) := cos2m(ξ/2)Pm,m(sin2(ξ/2)), where

(3.9) Pm,`(x) :=

`−1∑
j=0

(
m+ j − 1

j

)
xj .

(3) The Daubechies orthogonal wavelet low-pass filter aDm of order m is supported on

[0, 2m− 1] and satisfies |âDm(ξ)|2 = âI2m(ξ) := cos2m(ξ/2)Pm,m(sin2(ξ/2)).
We refer to [6, 9] and [22, sections 2.1–2.2] for more details about these families of filters. The
variance Var(a) and the frequency separation quantities fslblp(a) and fslbhp(a) are listed in
Table 1 for these three filter families.

Table 1 indicates that B-spline filters have small frequency separation quantities fslbhp(a
B
m)

and fslblp(a
B
m) with high sum rules sr(aBm) = m and very short support len(aBm) = m. However,

aBm has relatively large variance (and, hence, is not that good in spatial localization) and very
low linear-phase moments with lpm(aBm∗(aBm)?) = 2, which forces all the high-pass filters in any
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constructed tight framelet filter bank CTFn to have at most one vanishing moment. In fact,

the function 1− |âBm(ξ)|2 is not that small in a neighborhood of the origin and, consequently,
a significant portion of the low frequency information will leak away to be handled by the
high-pass filters. This requires their associated high-pass filters to be extremely efficient for
reasonably good performance in applications, which prevents B-spline filters aBm from being
effective for our construction of compactly supported CTFn.

From Table 1, we see that the interpolatory filter aI2m has small frequency separation
quantities fslbhp(a

I
2m) and fslblp(a

I
2m) with high sum rules sr(aI2m) = 2m and reasonably small

variance Var(aI2m). Therefore, the family of interpolatory filters aI2m is a good choice as the
low-pass filters for our purpose. Though aI2m filters have symmetry, the filter support of aI2m
is twice as long as that of aDm and, consequently, the high-pass filters derived from aI2m tend
to have very long support.

We say that a ∈ l0(Z) is an orthogonal wavelet low-pass filter if |â(ξ)|2 + |â(ξ + π)|2 = 1.
For an orthogonal wavelet low-pass filter a, by [23, Theorem 2], we have A(ξ) = min(|â(ξ)|2,
|â(ξ+π)|2), where A is defined in (2.7). Therefore, we can verify that fslbhp(a) = fslblp(a) and
‖a‖2l2(Z) = 1/2. From Table 1, we see that the family of Daubechies orthogonal wavelet filters

aDm has reasonably small variance Var(aDm) with very short support len(aDm) = m. However,
the frequency separation quantity fslbhp(a

D
m) is not that small and decreases slowly at the

expense of longer filter supports. In addition, since A(ξ) = min(|âDm(ξ)|2, |âDm(ξ + π)|2) and

|âDm(ξ)|2 + |âDm(ξ + π)|2 = 1, we see that

A(π/2) = |âDm(π/2)|2 = 1/2,

which is independent of the choice of m. This creates a fixed peak point for the function
A and forces that the frequency separation of all its derived high-pass filters cannot be that
good.

By sacrificing symmetry of a low-pass filter to achieve short support, we now construct
a particular family of low-pass filters by combining the advantages of both interpolatory and
orthogonal wavelet filters for directional compactly supported TPc-CTFn.

To construct one-dimensional tight framelet filter banks CTFn, we have to first construct a
real-valued low-pass filter a ∈ l0(Z) satisfying â(0) = 1 and the following necessary condition

(3.10) |â(ξ)|2 + |â(ξ + π)|2 6 1 ∀ ξ ∈ R.

Then there exist a nonnegative integer m and a polynomial P with real coefficients such that

(3.11) |â(ξ)|2 = cos2m(ξ)P(sin2(ξ/2)),

and P satisfies

(3.12) P(0) = 1, P(x) > 0, and (1− x)mP(x) + xmP(1− x) 6 1 ∀x ∈ [0, 1].

Conversely, if a polynomial P has real coefficients and satisfies (3.12), by the Fejér–Riesz
lemma, we can construct a filter a ∈ l0(Z) such that â(0) = 1 and (3.11) holds.

The following theorem (see section 7 for its proof) provides a family of polynomials P for
(3.11) so that one can choose appropriate parameters to balance the requirement among sum
rules, linear-phase moments, frequency separation, short supports, etc.
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Theorem 3.3. Let `,m ∈ N with 1 6 ` 6 m and 1
2 < c 6 1. Define a polynomial

(3.13) P(x) := Pm,`(x) + x` (c0 − (c1 + 2c0)x) ,

where c0, c1 ∈ R and Pm,` is defined in (3.9). If one chooses

(3.14) c0 =
cP′m,`(c)− (`+ 1)Pm,`(c)

c`
and c1 =

(1− 2c)P′m,`(c) + (2 + 2`− `/c)Pm,`(c)
c`

,

then c0 < 0, c1 > 0, and (3.12) holds. Therefore, there is a finitely supported low-pass filter
a ∈ l0(Z) satisfying (3.11) with â(0) = 1, sr(a) = m, and lpm(a ∗ a?) = 2`.

The parameters c0 and c1 are used to add a double root at the point c for the polynomial
P defined in (3.13) so that the frequency response of â derived from P is dumped near the
point 2 arcsin

√
c ∈ [0, π] with small frequency separation quantities fslbhp(a) and fslblp(a). In

applications, we often choose c = 1 and ` ∈ {m− 1,m}.

4. Construction of directional compactly supported tensor product complex tight
framelets. In this section we provide algorithms for the construction of directional compactly
supported TPc-CTFn with n = 3, 4, 5, 6, and present several concrete examples to illustrate
our proposed algorithms.

4.1. Algorithms for compactly supported complex tight framelets CTFn. We first dis-
cuss how to construct directional compactly supported TPc-CTF3 and TPc-CTF4 by con-
structing compactly supported one-dimensional filter banks CTF3 and CTF4. We observe that
the key and only difference between CTF3 and CTF4 lies in that we have to split the low-pass
filter a into two auxiliary filters a+ and a− with frequency separation for CTF4. By modifying
[23, Algorithm 2], we present in Algorithm 4.1 the construction of CTF3 = {a; b+, b−} and
CTF4 = {a+, a−; b+, b−} which we summarize here:

(S1) Split a suitable low-pass filter a to two auxiliary filters a+, a− using Algorithm 3.1.
(S2) Construct a tight framelet filter bank {a; b1, b2} from a (see, e.g., [20, 21, 23]).
(S3) Parameterize v1, v2 through u1, u2, u3, u4 as in (3.6). Note that |v̂1(ξ)|2 + |v̂2(ξ)|2 = 1.
(S4) The filters b+, b− are linked to b1, b2 through (4.1). One can easily show that such

b+, b− preserve the perfect reconstruction property of {a; b+, b−}.
(S5) This optimization step gives compactly supported CTF3 and CTF4 with small fre-

quency separation quantities fsp(a+) and fsp(b+).
Similarly to TPc-CTF3 and TPc-CTF4, we construct one-dimensional compactly sup-

ported filter banks CTF5 and CTF6 for TPc-CTF5 and TPc-CTF6, respectively. The only
difference between CTF5 and CTF6 again lies in that we have to split the low-pass filter a
into two auxiliary filters a+ and a− for CTF6 by Algorithm 3.1. Instead of parameterizing
2π-periodic trigonometric polynomials, we directly employ optimization techniques to mini-
mize the frequency separation quantities. We present in Algorithm 4.2 the construction of
CTF5 = {a; b+1 , b

+
2 , b
−
1 , b
−
2 } and CTF6 = {a+, a−; b+1 , b

+
2 , b
−
1 , b
−
2 } which we summarize here:

(S1) Construct two auxiliary filters a+, a− from a using Algorithm 3.1.
(S2) Directly parameterize b+1 , b

−
1 , b

+
2 , b
−
2 through (4.2).

(S3) This optimization step gives compactly supported CTF5 and CTF6 with desired fre-
quency separation quantities fsp(a+), fsp(b+1 ), and fsp(b+2 ).
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Algorithm 4.1 Construction of compactly supported CTF3 and CTF4.

Input: A real-valued filter a ∈ l0(Z) satisfying |â(ξ)|2 + |â(ξ + π)|2 6 1 for all ξ ∈ R.
(S1) Construct two filters a+ and a− with a− = a+ from the filter a by Algorithm 3.1

with small fsp(a+).
(S2) Construct a finitely supported real-valued tight framelet filter bank {a; b1, b2} from

the filter a by [21, Algorithm 4].
(S3) Choose a suitable integer N ∈ N ∪ {0} and define 2π-periodic trigonometric poly-

nomials u1, u2, u3, u4 as in (3.6), where t0, . . . , tN ∈ [−π, π] are real numbers to be
determined later.

(S4) Define two high-pass filters b+ and b− by

(4.1) b̂+(ξ) := b̂1(ξ)v̂1(2ξ) + b̂2(ξ)v̂2(2ξ), b− := b+,

with
v̂1(ξ) := [u1(ξ) + iu2(ξ)]/

√
2, v̂2(ξ) := [u3(ξ) + iu4(ξ)]/

√
2.

(S5) Find a solution {t0, . . . , tN} to the following optimization problem:

min
t0,...,tN

∫ π

0
|b̂+(ξ + π)|2dξ,

which is equivalent to the optimization problem: mint0,...,tN fsp(b+).
Ouput: Tight framelet filter banks CTF3 := {a; b+, b−} and CTF4 := {a+, a−; b+, b−}.

We make some remarks here about Algorithms 4.1 and 4.2.
(1) The simple splitting technique in Algorithm 4.1 is generally not that easy to generalize

to construct CTF5 and CTF6. This is largely due to the lack of a similar result as
in [23, Theorem 3.1] for linking all tight framelet filter banks with four high-pass
filters, and the parameterization of all 4× 4 paraunitary matrices is unknown without
involving complicated structures.

(2) At the cost of losing simplicity and completeness, the direct method using optimization
in Algorithm 4.2 appears to work well in general. To achieve directionality for CTF5

and CTF6, the filter b̂+1 should largely concentrate on the middle frequency band of

[0, π] and b̂+2 should largely concentrate on the high frequency band of [0, π]. This goal
is roughly achieved in Algorithm 4.2 through minimizing the quantity in (4.3) with
the heuristically chosen intervals and regularization parameters λ1, . . . , λ4 in step (S3)

of Algorithm 4.2. Heuristically, Algorithm 4.2 forces that b̂+1 mostly concentrates on

the middle frequency band/interval [π4 ,
7π
12 ] and almost vanishes on [−π

2 , 0], while b̂+2
mostly concentrates on the high frequency band/interval [π2 ,

5π
6 ] and almost vanishes

on [−3π
4 ,−

5π
12 ].

(3) The optimization problem in Algorithm 4.2 for directionality of the two high-pass
filters is much more complicated than Algorithm 3.1 or 4.1 for just one high-pass filter.
The minimization problems in Algorithms 3.1 and 4.1 are both quadratic program
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Algorithm 4.2 Construction of compactly supported CTF5 and CTF6.

Input: A real-valued filter a ∈ l0(Z) satisfying |â(ξ)|2 + |â(ξ + π)|2 6 1 for all ξ ∈ R.
(S1) Construct two filters a+ and a− with a− = a+ from the filter a by Algorithm 3.1

with small fsp(a+).
(S2) Choose a suitable integer N ∈ N∪{0} and parameterize high-pass filters b+1 , b

−
1 and

b+2 , b
−
2 with b−1 := b+1 and b−2 := b+2 by

(4.2) b̂+1 (ξ) := t0 + t1e
−iξ + · · ·+ tNe

−iNξ, b̂+2 (ξ) := c0 + c1e
−iξ + · · ·+ cNe

−iNξ,

where t0, . . . , tN , c0, . . . , cN are complex numbers to be determined later.
(S3) Find a solution {t0, . . . , tN , c0, . . . , cN} of complex numbers to the following con-

strained optimization problem:
(4.3)

min
tk,ck,

k=0,...,N

−λ1E1

([
π
4 ,

7π
12

])
− λ2E2

([
π
2 ,

5π
6

])
+ λ3E1

([
−π

2
, 0
])

+ λ4E2

([
−3π

4 ,−
5π
12

])
,

where λ1, . . . , λ4 are real positive regularization parameters and

Ej([α, β]) :=

∫ β

α
|b̂+j (ξ)|2dξ, −π 6 α < β 6 π, j = 1, 2,

under the constraints for a tight framelet filter bank {a; b+1 , b
+
2 , b
−
1 , b
−
2 } :

|b̂+1 (ξ)|2 + |b̂+2 (ξ)|2 + |b̂−1 (ξ)|2 + |b̂−2 (ξ)|2 = 1− |â(ξ)|2,

∑2
`=1

(
b̂+` (ξ)b̂+` (ξ + π) + b̂−` (ξ)b̂−` (ξ + π)

)
= −â(ξ)â(ξ + π),

for all ξ ∈ R (such constraints on b+1 , b+2 , b−1 , and b−2 can be rewritten as equations
in terms of t0, . . . , tN , c0, . . . , cN ).

Ouput: Filter banks CTF5 := {a; b+1 , b
+
2 , b
−
1 , b
−
2 } and CTF6 := {a+, a−; b+1 , b

+
2 , b
−
1 , b
−
2 }.

problems without any constraint, which can be solved using an iterative active-set
method (we use the numerical routine Minimize in the numerical algebra software
MAPLE). The optimization problem in Algorithm 4.2 minimizes a quadratic objec-
tive function with quadratic constraints, which is a nonlinear optimization problem
(MAPLE routine NLPSolve is used) and one can only expect local minimal solutions.

4.2. Examples of compactly supported CTFn with n = 3, 4, 5, 6. To illustrate Al-
gorithms 4.1 and 4.2, we now present several concrete examples. In all these examples, op-
timization routines in MAPLE are used as discussed above and we set the regularization
parameters λ1 = 2.2, λ2 = 1, λ3 = 0, and λ4 = 2.5 for Algorithm 4.2. We remark that all
filters in these examples are available in the MATLAB package cptTPCTF that can be found
in http://staffweb1.cityu.edu.hk/xzhuang7.

http://staffweb1.cityu.edu.hk/xzhuang7
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Example 1. Taking m = 2 from the family of interpolatory filters aI2m as the low-pass
filter a,

a = aI4 =
{
− 1

32 , 0,
9
32 ,

1
2 ,

9
32 , 0,−

1
32

}
[−3,3]

.

Then by calculation we have sr(a) = 4, lpm(a ∗ a?) = 4, and

‖a‖l2(Z) =
√

105
16 , fslbhp(a) ≈ 0.02007, and fslblp(a) ≈ 0.09459.

Applying Algorithm 3.1 with N = 2 to split the low-pass filter a, we obtain two auxiliary
filters a+ and a− with a− = a+ and

a+ = {(−1.575E−2), (0), (1.428E−1) + (1.542E−2) i, (2.519E−1), (1.316E−1)− (1.377E−1) i,

(−1.790E−2)− (2.467E−1) i, (−2.581E−2)− (1.491E−1) i,−(1.828E−2) i,

(1.119E−3) + (5.140E−3) i, (0), (1.142E−3) i}[−3,7].

Then fsp(a+) = fsp(a−) ≈ 0.3727, ‖a+‖l2(Z) = ‖a−‖l2(Z) ≈ 0.4529.
This low-pass filter a has already been used to construct compactly supported CTF3 in

[23, Example 3]. By [21, Algorithm 4], we have a real-valued initial tight framelet filter bank
{a; b1, b2} with

b1 = {−3.6038E−3, 0, 5.6537E−2, 5.7661E−2, 4.0675E−3,−3.8564E−1, 2.7098E−1}[−3,3],
b2 = {4.5667E−3, 0,−1.2476E−1,−7.3067E−2, 4.9759E−1,−3.0433E−1}[−3,2].

Applying Algorithm 4.1 with N = 2, we obtain high-pass filters b+ and b− with b− = b+ and

b+ = {(1.278E−4) + (4.686E−4) i, (0), (−3.068E−3)− (1.570E−2) i, (−2.045E−3)− (7.497E−3) i,

(−3.741E−2) + (4.811E−2) i, (−6.660E−2)− (1.729E−1) i, (3.502E−1) + (1.316E−1) i,

(−2.453E−1) + (1.696E−1) i, (−1.514E−2)− (1.484E−1) i, (−3.957E−2) + (1.079E−2) i,

(5.882E−2)− (1.604E−2) i}[−5,5],

which is the same as [23, Example 3]. Then CTF3 = {a; b+, b−} and CTF4 = {a+, a−; b+, b−}
are tight framelet filter banks with

fsp(b+) = fsp(b−) ≈ 0.1658, vm(b+) = vm(b−) = 2, ‖b+‖l2(Z) = ‖b−‖l2(Z) ≈ 0.5431.

Applying Algorithm 4.2 with N = 4, we obtain filters b+1 , b+2 , b−1 , and b−2 with b−1 := b+1 and

b−2 := b+2 , where

b+1 = {(−2.721E−2) + (1.542E−2) i, (4.983E−2)− (8.944E−3) i, (−2.428E−2)− (3.058E−2) i,

(−3.974E−2) + (6.901E−2) i, (7.138E−2) + (5.304E−2) i, (9.093E−2)− (1.299E−1) i,

(−7.919E−2)− (7.760E−2) i, (−1.433E−1) + (5.829E−2) i, (5.164E−2) + (9.175E−2) i,

(5.313E−2)− (3.479E−2) i, (0), (−3.228E−3)− (5.735E−3) i}[−4,7],
b+2 = {(7.401E−2)− (3.103E−2) i, (−1.736E−1) + (1.766E−2) i, (1.818E−1) + (1.158E−1) i,

(−9.568E−2)− (2.261E−1) i, (−3.653E−2) + (1.838E−1) i, (9.591E−2)− (7.370E−2) i,

(−4.408E−2)− (6.413E−3) i, (−2.975E−2) + (2.109E−2) i, (1.338E−2) + (3.223E−2) i,

(1.539E−2)− (3.142E−2) i, (0), (−8.361E−4)− (2.014E−3) i}[−4,7].
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Figure 4. The frequency separation properties of filters in Example 1 on the basic interval [−π, π]: (a) |â|
(solid line) and |â+| (dashed line). (b) |b̂+|. (c) |b̂+1 | (solid line) and |b̂+2 | (dashed line).

Then CTF5 = {a; b+1 , b
+
2 , b
−
1 , b
−
2 } and CTF6 = {a+, a−; b+1 , b

+
2 , b
−
1 , b
−
2 } are tight framelet filter

banks with

fsp(b+1 ) = fsp(b−1 ) ≈ 0.09119, vm(b+1 ) = vm(b−1 ) = 2, ‖b+1 ‖l2(Z) = ‖b−1 ‖l2(Z) ≈ 0.3096,

fsp(b+2 ) = fsp(b−2 ) ≈ 0.1610, vm(b+2 ) = vm(b−2 ) = 2, ‖b+2 ‖l2(Z) = ‖b−2 ‖l2(Z) ≈ 0.4462.

See Figure 4 for the graphs of the frequency separation properties of a+, b+, b+1 , and b+2 .

Example 2. Taking ` = m = 3 and c = 1 in Theorem 3.3, we obtain a low-pass filter a as
follows:

a =
{
−
√

7+2
√
21

128 + 1+
√
21

128 ,− 5
√

7+2
√
21

128 + 3
√
21+7
128 ,− 9

√
7+2
√
21

128 + 21+
√
21

128 , 35−5
√
21

128 − 5
√

7+2
√
21

128 ,

35−5
√
21

128 + 5
√

7+2
√
21

128 , 21+
√
21

128 + 9
√

7+2
√
21

128 , 5
√

7+2
√
21

128 + 7+3
√
21

128 ,

√
7+2
√
21

128 +
√
21+1
128

}
[−3,4]

.

Then by calculation we have sr(a) = 3, lpm(a ∗ a?) = 6, and

‖a‖l2(Z) =
√

1698
64 , fslbhp(a) ≈ 0.01424, and fslblp(a) ≈ 0.07230.

Applying Algorithm 3.1 with N = 2 to split the low-pass filter a, we obtain two auxiliary
filters a+ and a− with a− = a+, and

a+ = {(6.139E−3), (2.534E−3), (−4.206E−2)− (6.039E−3) i, (−3.166E−2)− (2.493E−3) i,

(1.292E−1) + (4.059E−2) i, (2.448E−1) + (3.083E−2) i, (1.525E−1)− (1.218E−1) i,

(2.236E−2)− (2.368E−1) i, (−1.017E−2)− (1.661E−1) i, (−2.392E−3)− (5.277E−2) i,

− (2.432E−3) i,−(1.034E−2) i}[−3,8].

Then fsp(a+) = fsp(a−) ≈ 0.3553, ‖a+‖l2(Z) = ‖a−‖l2(Z) ≈ 0.4553. By [21, Algorithm 4], we
have a real-valued initial tight framelet filter bank {a; b1, b2} with

b1 = {−6.2398E−2,−1.0400E−1, 4.0495E−1,−1.1420E−1,−1.5319E−1,−3.9504E−2,

3.6552E−2, 2.6655E−2, 5.1353E−3}[−4,4],
b2 = {−2.2407E−1, 5.1730E−1,−2.5498E−1,−1.0398E−1, 2.9831E−2, 3.0095E−2,

5.7981E−3}[−2,4].
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Applying Algorithm 4.1 with N = 3, we obtain high-pass filters b+ and b− with b− = b+ and

b+ = {(1.167E−3) + (1.246E−3) i, (4.818E−4) + (5.144E−4) i, (−1.328E−2)− (1.455E−2) i,

(−8.200E−3)− (8.910E−3) i, (−2.118E−2) + (3.697E−2) i, (4.607E−3) + (3.039E−2) i,

(2.069E−1) + (5.519E−2) i, (−1.092E−1)− (3.182E−1) i, (−1.746E−1) + (2.915E−1) i,

(1.024E−1)− (6.285E−2) i, (1.424E−2)− (1.423E−2) i, (−7.223E−3) + (6.555E−3) i,

(3.181E−3)− (2.979E−3) i, (7.477E−4)− (7.002E−4) i}[−3,8].

Then CTF3 = {a; b+, b−} and CTF4 = {a+, a−; b+, b−} are tight framelet filter banks with

fsp(b+) = fsp(b−) ≈ 0.2525, vm(b+) = vm(b−) = 3, ‖b+‖l2(Z) = ‖b−‖l2(Z) ≈ 0.5410.

Applying Algorithm 4.2 with N = 3 (but −5π
12 in the last interval is replaced by −π

4 in (4.3)),

we obtain filters b+1 , b+2 , b−1 , and b−2 with b−1 := b+1 and b−2 := b+2 , where

b+1 = {(1.410E−2) + (7.916E−3) i, (−3.633E−2)− (2.041E−2) i, (−2.447E−2) + (5.990E−2) i,

(1.102E−1) + (1.399E−2) i, (2.200E−2)− (1.600E−1) i, (−1.271E−1)− (1.500E−2) i,

(−3.723E−2) + (1.731E−1) i, (6.911E−2)− (1.453E−2) i, (2.012E−2)− (3.907E−2) i,

(2.494E−3)− (7.748E−3) i, (−4.307E−3) + (1.195E−3) i, (−4.923E−3) + (4.482E−4) i,

(−2.947E−3) + (1.260E−4) i, (−6.929E−4) + (2.963E−5) i}[−5,8],
b+2 = {(6.146E−3)− (2.318E−2) i, (−1.584E−2) + (5.974E−2) i, (7.252E−2)− (7.894E−2) i,

(−2.079E−1) + (3.651E−2) i, (2.496E−1) + (1.007E−1) i, (−1.121E−1)− (1.787E−1) i,

(−8.903E−3) + (1.154E−1) i, (5.883E−3)− (1.417E−2) i, (2.794E−2)− (3.424E−2) i,

(−1.093E−2) + (6.816E−3) i, (−1.080E−2) + (1.028E−2) i, (1.011E−3) + (1.036E−3) i,

(2.676E−3)− (1.040E−3) i, (6.291E−4)− (2.445E−4) i}[−5,8].

Then CTF5 = {a; b+1 , b
+
2 , b
−
1 , b
−
2 } and CTF6 = {a+, a−; b+1 , b

+
2 , b
−
1 , b
−
2 } are tight framelet filter

banks with

fsp(b+1 ) = fsp(b−1 ) ≈ 0.08907, vm(b+1 ) = vm(b−1 ) = 3, ‖b+1 ‖l2(Z) = ‖b−1 ‖l2(Z) ≈ 0.3152,

fsp(b+2 ) = fsp(b−2 ) ≈ 0.2371, vm(b+2 ) = vm(b−2 ) = 3, ‖b+2 ‖l2(Z) = ‖b−2 ‖l2(Z) ≈ 0.4397.

See Figure 5 for the graphs of the frequency separation properties of a+, b+, b+1 , and b+2 .

Example 3. Taking ` = 3, m = 4, and c = 1 in Theorem 3.3, we construct a low-pass
filter a as follows:

a =
{

1+
√
28

256 −
√

8+2
√
28

256 , 1+
√
7

32 − 3
√

8+2
√
28

128 , 7+
√
28

64 − 7
√

8+2
√
28

128 , 7−
√
7

32 − 7
√

8+2
√
28

128 , 35−5
√
28

128 ,

7−
√
7

32 + 7
√

8+2
√
28

128 , 7+
√
28

64 + 7
√

8+2
√
28

128 , 1+
√
7

32 + 3
√

8+2
√
28

128 , 1+
√
28

256 +

√
8+2
√
28

256

}
[−4,4]

.

Then by calculation we have sr(a) = 4, lpm(a ∗ a?) = 6, and

‖a‖l2(Z) =
√

25278
256 , fslbhp(a) ≈ 0.004522, and fslblp(a) ≈ 0.04163.
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Figure 5. The frequency separation properties of filters in Example 2 on the basic interval [−π, π]: (a) |â|
(solid line) and |â+| (dashed line). (b) |b̂+|. (c) |b̂+1 | (solid line) and |b̂+2 | (dashed line).

Applying Algorithm 3.1 with N = 2 to split the low-pass filter a, we obtain two auxiliary
filters a+ and a− with a− = a+, and

a+ = {(3.902E−3), (6.504E−3), (−2.233E−2)− (3.812E−3) i, (−5.076E−2)− (6.353E−3) i,

(3.532E−2) + (2.122E−2) i, (1.913E−1) + (4.860E−2) i, (2.132E−1)− (3.118E−2) i,

(9.429E−2)− (1.793E−1) i, (4.639E−3)− (2.133E−1) i, (−8.165E−3)− (1.204E−1) i,

(−1.573)3− (3.704E−2) i,−(8.359E−3) i,−(1.610E−3) i}[−4,8].

Then fsp(a+) = fsp(a−) ≈ 0.3321 and ‖a+‖l2(Z) = ‖a−‖l2(Z) ≈ 0.4392. By [21, Algorithm 4],
we have a real-valued initial tight framelet filter bank {a; b1, b2} with

b1 = {(−2.2407E−1), (5.1730E−1), (−2.5498E−1), (−1.0398E−1), (2.9831E−2), (3.0095E−2),

(5.7981E−3)}[−2,4],
b2 = {(−6.2398E−2), (−1.0400E−1), (4.0495E−1), (−1.1420E−1), (−1.5319E−1),

(−3.9504E−2), (3.6552E−2), (2.6655E−2), (5.1353E−3)}[−4,4].

Applying Algorithm 4.1 with N = 3, we obtain high-pass filters b+ and b− with b− = b+ and

b+ = {(−1.878E−2)− (2.707E−2) i, (4.053E−3) + (5.841E−3) i, (4.060E−2)− (7.186E−2) i,

(1.588E−1) + (2.570E−1) i, (−3.738E−1)− (6.193E−2) i, (1.643E−1)− (1.824E−1) i,

(2.408E−2) + (4.820E−2) i, (1.778E−2) + (2.721E−2) i, (−4.391E−3) + (2.222E−3) i,

(−6.987E−3)− (2.480E−4) i, (−3.872E−3) + (1.705E−3) i, (−1.525E−3) + (1.058E−3) i,

(−2.938E−4) + (2.038E−4) i}[−6,6].

Then CTF3 = {a; b+, b−} and CTF4 = {a+, a−; b+, b−} are tight framelet filter banks with

fsp(b+) = fsp(b−) ≈ 0.1715, vm(b+) = vm(b−) = 3, ‖b+‖l2(Z) = ‖b−‖l2(Z) ≈ 0.5542.

Applying Algorithm 4.2 with N = 4, we obtain finitely supported filters b+1 , b+2 , b−1 , and b−2
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Figure 6. The frequency separation properties of filters in Example 3 on the basic interval [−π, π]: (a) |â|
(solid line) and |â+| (dashed line). (b) |b̂+|. (c) |b̂+1 | (solid line) and |b̂+2 | (dashed line).

with b−1 := b+1 and b−2 := b+2 , where

b+1 = {(−1.745E−2) + (9.693E−3) i, (6.491E−2) + (5.688E−2) i, (3.833E−2)− (1.242E−1) i,

(−1.287E−1)− (6.067E−2) i, (−7.018E−2) + (1.205E−1) i, (6.844E−2) + (1.123E−1) i,

(1.050E−1)− (8.187E−2) i, (−5.598E−2)− (7.211E−2) i, (−5.993E−3) + (3.987E−2) i,

(1.544E−2)− (7.127E−3) i, (−6.767E−3) + (3.341E−3) i, (−5.880E−3) + (2.845E−3) i,

(−1.133E−3) + (5.481E−4) i, }[−4,8],
b+2 = {(−3.576E−2)− (6.860E−3) i, (9.263E−2) + (7.157E−2) i, (−4.133E−2)− (1.877E−1) i,

(−1.050E−1) + (2.156E−1) i, (1.890E−1)− (1.173E−1) i, (−1.623E−1)− (8.414E−3) i,

(6.404E−2) + (6.341E−2) i, (8.514E−3)− (7.802E−3) i, (7.322E−3)− (4.871E−2) i,

(−2.410E−2) + (2.722E−2) i, (2.080E−3) + (1.630E−3) i, (4.058E−3)− (2.181E−3) i,

(7.818E−4)− (4.203E−4) i}[−4,8].

Then CTF5 = {a; b+1 , b
+
2 , b
−
1 , b
−
2 } and CTF6 = {a+, a−; b+1 , b

+
2 , b
−
1 , b
−
2 } are tight framelet filter

banks with

fsp(b+1 ) = fsp(b−1 ) ≈ 0.0233, vm(b+1 ) = vm(b−1 ) = 3, ‖b+1 ‖l2(Z) = ‖b−1 ‖l2(Z) ≈ 0.3313,

fsp(b+2 ) = fsp(b−2 ) ≈ 0.1584, vm(b+2 ) = vm(b−2 ) = 3, ‖b+2 ‖l2(Z) = ‖b−2 ‖l2(Z) ≈ 0.4442.

See Figure 6 for the graphs of the frequency separation properties of a+, b+, b+1 , and b+2 .

5. Numerical experiments on image denoising and inpainting. In this section, we test
the performance of our directional compactly supported TPc-CTFn constructed in section 4
for the image denoising and inpainting problems. We deal with the model problems with only
standard Gaussian noise. We compare their performance with their band-limited counterparts
as well as several other transform-based methods such as curvelets and shearlets. See [7, 10, 11,
16, 18, 19, 21, 36] on tight wavelet frames and see [3, 12, 13, 14, 29, 31, 34, 35, 41] for curvelets
and shearlets as well as their applications. See [24, 25, 26, 39] for detailed comparison results
on the performance of directional band-limited TPb-CTFn with several other transform-based
methods.
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(a) Barbara (b) Flintstones (c) Fingerprint (d) Boat (e) Pentagon

(f) Text 1 (g) Text 2 (h) 50% Random (i) 80% Random

Figure 7. (a)–(e) are the five 512× 512 gray-scale testing images: Barbara, Flintstones, Fingerprint, Boat,
and Pentagon. (f)–(i) are the four 512 × 512 inpainting masks: Text 1, Text 2, 50% Random Pixel Lost, and
80% Random Pixel Lost.

The directional compactly supported TPc-CTF4 and TPc-CTF6 which will be used in
this section for comparison are from Examples 1–3. The testing images Barbara, Flintstones
(cartoon image), Fingerprint, Boat, and Pentagon (cartoonlike image) are given in Figure 7,
and all of them are 512 × 512 gray-scale images. The masks (Text 1, Text 2, 50% Ran-
dom Pixel Lost, and 80% Random Pixel Lost) for the inpainting problem are also given in
Figure 7. As usual, we use PSNR to measure the quality of image restoration, which is
defined to be PSNR(I, I̊) = 10 log10

2552

MSE(I−I̊)
, where I is the original/true image, I̊ is a

denoised/reconstructed image, and MSE(·) is the mean squared error.
The implementation of directional compactly supported TPc-CTFn with n = 3, 4, 5, 6

in this paper and the numerical experiments in this section have been made available as a
MATLAB package cptTPCTF that can be found in: http://staffweb1.cityu.edu.hk/xzhuang7.

5.1. Image denoising. In all denoising experiments with DT-CWT, TPc-CTFn, and
TPb-CTFn, bivariate shrinkage in [38] with window size 7 × 7 is applied to the framelet
coefficients. The level of decomposition is set to be J = 5 for all the directional tensor
product complex tight framelets, while the level of decomposition is set to be J = 6 for the
DT-CWT in [28, 37]. We use mirror symmetry extension for all the test images to handle the
boundary effect.

We compare the performance of image denoising in three groups according to different
number of directions in the system. The first group (Group I) with 4 directions employs
directional band-limited TPb-CTF3 in [24, 25] and directional compactly supported TPc-CTF3

constructed in Example 1 (same as Example 3 in [23]). The second group (Group II) with
6 directions employs directional band-limited TPb-CTF4 in [24, 25], directional compactly
supported TPc-CTF4 constructed in Example 3, and DT-CWT in [28, 37]. The third group

http://staffweb1.cityu.edu.hk/xzhuang7
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(Group III) with more directions employs directional band-limited TPb-CTF6 in [24, 25],
directional compactly supported TPc-CTF6 constructed in Examples 2 and 3, and two other
nontensor product based approaches including curvelets in [3] and shearlets in [34, 35]. We
download both software for curvelets and compactly supported shearlets packages from the
corresponding authors’ homepages and run denoising code for test images. We choose the
frequency wrapping package from CurveLab (v2.1.3) at http://www.curvelet.org for curvelet
comparison, and the DNST (4 scales, redundancy 49) in ShearLab3D (v1.01) [30] at http:
//www.shearlab.org for shearlet comparison. We remark that other related packages exists,
such as the local shearlet toolbox [13], ShearLab based on pseudopolar coordinates [12, 31],
fast finite shearlet transform [27], steerable pyramids [40], and ridgelets[4].

See Table 2 for image denoising comparison for independent identically distributed (i.i.d.)
white Gaussian noise with standard deviation σ = 5, 10, 25, 40, 50, 80, 100, 120, 150, 180, 200.
As usual, the standard deviation for Gaussian noise is assumed to be known in advance.
Moreover, a reference column using BM3D [8] is included. Note that BM3D is a patch-based
method and uses more sophisticated techniques [32].

Table 2 indicates that image denoising results by directional compactly supported tensor
product complex tight framelets are comparable to those by directional band-limited tensor
product complex tight framelets for both TPb-CTF4 and TPb-CTF6. In particular, the per-
formance of directional compactly supported TPc-CTF4 is comparable to DT-CWT and hence
the directional compactly supported TPc-CTF4 constructed in this paper offers an alternative
to the popular DT-CWT in [37]. The performance of BM3D is superior when the noise level
is low while it does not perform well when the noise level is high.

5.2. Image inpainting. Directional band-limited TPb-CTF6 has been applied to image
inpainting in [39] with impressive performance compared with many other image inpainting
algorithms. Here we simply apply the same inpainting algorithm in [39] while replacing the di-
rectional band-limited TPb-CTF6 transform with directional compactly supported TPc-CTF6

constructed in section 4. Similarly to most other transform-based image inpainting algorithms,
the algorithm in [39] applies iterative thresholding with decreasing threshold values. See [39]
for the detail of this image inpainting algorithm. We only report in Table 3 the performance
for image inpainting using directional compactly supported TPc-CTF6 in Example 3 and
directional band-limited TPb-CTF6 in [39]. For comparisons among TPb-CTF6 and other
transform-based algorithms (e.g., DCT-Haar [33]), we refer to the detailed experimental re-
ports in [25, 39].

The algorithm developed in [39] not only has impressive performance in image inpaint-
ing without noise but also works well and stably for image inpainting with additive white
Gaussian noise. Similarly to the image denoising problem, we assume that the noise standard
deviation σ is known in advance for image inpainting with noise. Table 3 demonstrates that
the performance of compactly supported TPc-CTF6 is comparable to that of band-limited
TPb-CTF6 in the image inpainting problem.

In conclusion, the proposed directional compactly supported TPc-CTFn are comparable
to their band-limited counterparts, leading to efficient computational algorithms and good
space/frequency localization property. The directional compactly supported TPc-CTF4 with 6
directions in two dimensions offers an alternative to the popular DT-CWT, and the directional

http://www.curvelet.org
http://www.shearlab.org
http://www.shearlab.org


1762 BIN HAN, QUN MO, ZHENPENG ZHAO, AND XIAOSHENG ZHUANG

Table 2
Image denoising comparison results in terms of PSNR. σ in Column #0 is the standard deviation of the

i.i.d. Gaussian noise. We put results of BM 3D in Column #1 as a reference column. Column #2 uses the
directional compactly supported TPc-CTF3. Column #3 uses the directional band-limited TPb-CTF3 construc-
ted in Example 1. Column #4 uses the directional compactly supported TPc-CTF4 constructed in Example 3.
Column #5 uses the directional band-limited TPb-CTF4. Column #6 uses the DT-CWT in [37]. Columns #7
and #8 use the directional compactly supported TPc-CTF6 constructed in Examples 2 and 3. Column #9 uses
the directional band-limited TPb-CTF6. Column #10 uses the curvelet (the warping package), and Column#11
uses shearlets (DNST).

0 1 2 3 4 5 6 7 8 9 10 11
Group I Group II Group III

σ BM3D TPc-CTF3 TPb -CTF3 TPc-CTF4 TPb -CTF4 DT-CWT TPc-CTF6 TPc-CTF6 TPb -CTF6 CurveLab DNST
[8] Ex. 1 [24, 25] Ex. 3 [24, 25] [37] Ex. 2 Ex. 3 [24, 25] [3] [35]

512× 512 Flintstones
5 36.17 35.47 35.40 35.50 35.48 35.58 35.52 35.61 35.61 32.15 34.50
10 32.45 31.10 30.97 31.20 31.17 31.29 31.38 31.43 31.46 28.84 31.19
25 28.63 26.49 26.44 26.73 26.75 26.76 26.96 27.04 27.16 25.16 27.29
40 26.11 24.26 24.29 24.51 24.55 24.55 24.66 24.76 24.95 23.07 25.12
50 25.11 23.19 23.26 23.43 23.49 23.48 23.53 23.62 23.85 22.04 24.02
80 22.56 20.91 21.07 21.14 21.24 21.22 21.12 21.20 21.46 19.86 21.61
100 21.32 19.84 20.04 20.06 20.18 20.13 20.01 20.09 20.34 18.86 20.44
120 20.29 18.97 19.22 19.20 19.33 19.27 19.14 19.21 19.44 18.11 19.49
150 18.48 17.97 18.22 18.19 18.32 18.26 18.13 18.19 18.39 17.27 18.33
180 17.37 17.21 17.44 17.42 17.53 17.48 17.37 17.42 17.57 16.44 17.43
200 16.90 16.81 17.02 17.00 17.10 17.05 16.95 16.99 17.13 16.08 16.91

512× 512 Barbara
5 38.31 37.02 37.16 37.23 37.42 37.37 37.53 37.72 37.84 33.81 37.17
10 34.98 32.98 33.19 33.36 33.65 33.54 33.80 34.04 34.18 29.17 33.62
25 30.72 27.84 28.04 28.41 28.77 28.74 28.98 29.25 29.35 24.84 28.93
40 27.99 25.33 25.53 25.94 26.29 26.34 26.49 26.75 26.86 23.86 26.48
50 27.23 24.29 24.48 24.89 25.21 25.25 25.37 25.61 25.71 23.41 25.31
80 24.79 22.67 22.82 23.03 23.21 23.20 23.26 23.44 23.53 22.29 22.96
100 23.62 22.11 22.25 22.34 22.45 22.39 22.44 22.56 22.64 21.61 22.06
120 22.66 21.68 21.82 21.86 21.91 21.80 21.87 21.94 22.00 21.07 21.35
150 20.71 21.15 21.30 21.29 21.30 21.15 21.22 21.27 21.31 20.44 20.47
180 19.32 20.69 20.84 20.82 20.79 20.63 20.70 20.73 20.75 19.79 19.69
200 18.69 20.42 20.57 20.53 20.50 20.31 20.40 20.41 20.42 19.45 19.21

512× 512 Boat
5 37.28 36.52 36.45 36.56 36.53 36.78 36.82 36.86 36.92 33.57 36.04
10 33.92 33.03 32.97 33.13 33.10 33.22 33.30 33.35 33.41 30.59 33.15
25 29.91 28.94 28.98 29.09 29.06 29.02 29.08 29.12 29.26 27.51 29.23
40 27.74 26.87 26.98 27.03 27.03 26.97 26.99 27.02 27.19 25.91 27.20
50 26.78 25.95 26.07 26.11 26.12 26.06 26.05 26.08 26.25 25.16 26.23
80 24.86 24.15 24.29 24.33 24.33 24.26 24.26 24.28 24.41 23.51 24.17
100 23.97 23.36 23.50 23.55 23.53 23.45 23.46 23.48 23.58 22.88 23.17
120 23.25 22.76 22.88 22.93 22.90 22.80 22.83 22.85 22.91 22.07 22.33
150 21.64 22.05 22.17 22.21 22.16 22.02 22.09 22.10 22.12 21.41 21.26
180 20.19 21.51 21.62 21.64 21.56 21.39 21.49 21.50 21.48 20.69 20.34
200 19.52 21.20 21.31 21.32 21.21 21.03 21.15 21.15 21.12 20.31 19.79

512× 512 Fingerprint
5 36.51 35.51 35.29 35.56 35.56 35.93 36.19 36.26 36.27 33.36 35.28
10 32.46 31.18 30.97 31.40 31.42 31.88 32.21 32.23 32.10 30.62 31.76
25 27.70 26.69 26.56 27.01 27.00 27.34 27.35 27.34 26.98 26.07 27.10
40 25.30 24.63 24.75 24.96 24.93 25.00 25.07 25.07 24.68 23.97 24.82
50 24.53 23.57 23.84 23.95 23.95 23.96 24.04 24.05 23.67 23.00 23.78
80 22.56 21.27 21.73 21.79 21.92 21.91 21.93 21.99 21.66 21.23 21.63
100 21.61 20.21 20.69 20.77 21.01 21.01 20.96 21.03 20.75 20.48 20.56
120 20.77 19.39 19.87 19.98 20.30 20.29 20.17 20.26 20.01 19.73 19.66
150 18.34 18.43 18.92 19.04 19.47 19.40 19.23 19.35 19.10 18.81 18.54
180 17.24 17.70 18.22 18.31 18.80 18.67 18.48 18.62 18.37 18.11 17.63
200 16.83 17.31 17.85 17.90 18.41 18.24 18.06 18.22 17.96 17.67 17.12

512× 512 Pentagon
5 35.63 35.20 35.14 35.22 35.21 35.22 35.23 35.24 35.24 31.64 33.68
10 31.36 30.70 30.63 30.77 30.72 30.85 30.78 30.79 30.82 27.90 29.78
25 26.81 26.08 26.15 26.24 26.25 26.44 26.26 26.32 26.43 25.01 26.18
40 25.12 24.43 24.53 24.59 24.66 24.76 24.63 24.69 24.79 24.07 24.79
50 24.40 23.84 23.95 24.00 24.07 24.13 24.03 24.08 24.17 23.56 24.17
80 23.15 22.78 22.88 22.93 23.02 23.00 22.96 22.99 23.03 22.56 22.84
100 22.57 22.29 22.40 22.46 22.53 22.49 22.46 22.47 22.51 22.01 22.15
120 22.10 21.90 22.00 22.06 22.13 22.06 22.05 22.05 22.07 21.59 21.55
150 21.01 21.43 21.53 21.57 21.61 21.51 21.52 21.51 21.53 21.06 20.75
180 20.02 21.04 21.15 21.16 21.17 21.04 21.08 21.07 21.07 20.64 20.01
200 19.49 20.81 20.92 20.93 20.91 20.75 20.83 20.81 20.79 20.39 19.54
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Table 3
Performance in terms of PSNR values for image inpainting with Gaussian noise at standard deviation

level σ = 0 (no noise), 10, 20, 30, 40, 50. All the results are obtained from the same inpainting algorithm in
[39], where columns of TPb-CTF6 apply band-limited TPb-CTF6 in [39] while columns of TPc-CTF6 apply
TPc-CTF6 constructed in Example 3.

Text 1 Text 2 50% random lost 80% random lost

σ TPc-CTF6 TPb -CTF6 TPc-CTF6 TPb -CTF6 TPc-CTF6 TPb -CTF6 TPc-CTF6 TPb -CTF6
Ex. 3 [39] Ex. 3 [39] Ex. 3 [39] Ex. 3 [39]

512× 512 Barbara
0 35.22 36.59 31.97 32.68 34.90 35.73 27.12 28.16
10 31.37 31.81 29.56 29.85 30.81 31.11 25.95 26.70
20 28.76 28.99 27.55 27.71 27.68 28.00 24.17 24.70
30 27.00 27.18 26.08 26.24 25.63 25.95 22.92 23.34
40 25.73 25.88 24.99 25.14 24.27 24.56 22.21 22.45
50 24.77 24.91 24.16 24.30 23.36 23.60 21.73 21.90

512× 512 Flintstones
0 29.22 29.59 24.96 25.35 30.52 30.64 24.15 24.40
10 27.14 27.42 24.07 24.40 27.99 28.05 23.32 23.49
20 25.40 25.64 22.99 23.26 25.72 25.89 21.93 22.16
30 24.12 24.35 22.08 22.34 24.01 24.27 20.70 20.99
40 23.08 23.31 21.29 21.55 22.65 22.99 19.69 20.01
50 22.20 22.45 20.61 20.87 21.53 21.92 18.90 19.20

512× 512 Fingerprint
0 31.88 31.35 28.15 27.78 34.14 34.12 26.93 26.00
10 28.82 28.46 26.60 26.24 29.25 28.88 25.22 24.12
20 26.53 26.20 25.06 24.72 26.27 25.76 23.33 22.49
30 25.03 24.70 23.93 23.59 24.53 24.07 22.05 21.51
40 23.95 23.61 23.05 22.72 23.32 22.91 21.05 20.68
50 23.10 22.76 22.32 22.00 22.38 22.01 20.23 19.96

512× 512 Boat
0 34.68 34.96 30.56 30.80 34.15 34.42 28.42 28.58
10 30.89 31.04 28.65 28.80 30.51 30.65 26.99 27.08
20 28.69 28.84 27.17 27.32 28.00 28.20 25.39 25.56
30 27.24 27.41 26.09 26.24 26.41 26.66 24.21 24.46
40 26.20 26.38 25.27 25.43 25.33 25.56 23.42 23.60
50 25.41 25.57 24.61 24.80 24.51 24.75 22.80 22.96

512× 512 Pentagon
0 32.65 32.81 29.93 30.08 28.69 28.69 25.12 25.10
10 28.71 28.81 27.53 27.62 26.88 26.91 24.39 24.41
20 26.26 26.37 25.63 25.74 25.21 25.35 23.67 23.85
30 24.97 25.09 24.53 24.67 24.21 24.34 23.06 23.20
40 24.20 24.31 23.84 23.96 23.57 23.70 22.53 22.65
50 23.67 23.77 23.36 23.46 23.09 23.21 22.07 22.21

compactly supported TPc-CTF6 often outperforms several other transform-based methods in
image denoising and inpainting.

6. Conclusions and further remarks. In this paper, for a given eligible low-pass filter,
we provide general algorithms for the construction of directional compactly supported tensor
product complex tight framelets TPc-CTFn with n = 3, 4, 5, 6. We employ our proposed
algorithms to find several concrete examples of directional compactly supported TPc-CTFn
with n = 3, 4, 5, 6 such that they have good performance in image denoising and inpainting.

Despite the fact that we are applying optimization techniques in our algorithms for con-
structing TPc-CTFn with n = 3, 4, 5, 6, we do not claim in this paper that we are able to
find the “optimal” directional compactly supported TPc-CTFn with the “best” possible per-
formance for image processing. Instead, we are trying to find reasonably good examples of
directional compactly supported TPc-CTFn with n = 3, 4, 5, 6 such that they perform compa-
rably to their band-limited counterparts in [24, 25, 39]. Tables 2 and 3 confirm the effectiveness
of our approach in this paper. Moreover, to compare the bandlimited TPb-CTF6 in [24, 25, 39]
and the compactly supported TPc-CTF6 in Example 3, Figure 8 shows a similar pattern of the
frequency responses between these two complex tight framelets, which more or less explains
the comparable performance of these two types of complex tight framelets. Table 4 further
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Figure 8. Frequency responses of the filters a+, b+1 , b
+
2 in the compactly supported CTF6 of Example 3 (red)

and their corresponding filters in the band-limited CTF6 of [24, 25] (blue).

Table 4
Comparison of compactly supported CTF6 = {a+, a−; b+1 , b

−
1 , b

+
2 , b
−
2 } in Example 3 and band-limited CTF6

in [24, 25]. The quantities E(u),Var(u), fsp(u), ‖u‖l2(Z) are the expectation, the variance, the frequency separa-
tion quantity, and the l2-norm of a filter u, respectively.

TPc-CTF6 in Example 3 TPb -CTF6 in [24, 25]
u E(u) Var(u) fsp(u) ‖u‖l2(Z) E(u) Var(u) fsp(u) ‖u‖l2(Z)
a+ 2.6692 1.9223 0.3321 0.4392 0 3.4741 0.1069 0.3847

b+1 0.0764 3.2903 0.0233 0.3313 0 2.1231 0 0.4195

b+2 −0.599 2.0891 0.1584 0.4442 0 2.4819 0.1476 0.4195

compares several quantities of these two complex tight framelets. In terms of expectation,
the low-pass filter in TPb-CTF6 has zero mean while the low-pass filter in TPc-CTF6 doesn’t.
Though band-limited TPb-CTFn have infinite vanishing moments, they have infinite support,
which could lead to high variance of their filters. Table 4 shows that filters in TPc-CTF6 have
smaller variances in general compared to those in TPb-CTF6. For the frequency separation
property, being band-limited, TPb-CTF6 has better frequency separation between low pass
and high pass filters and, as expected, band-limited TPb-CTF6 has better frequency sepa-
ration quantities than compactly supported TPc-CTF6. Using further refinement of these
quantities and advanced optimization techniques could lead to further improved compactly
supported TPc-CTFn.

In comparison with band-limited TPb-CTFn in [24, 25, 39], our constructed spatially
compactly supported TPc-CTFn lead to more computationally efficient algorithms for their
applications in multidimensional problems. In view of their tensor product nature, our com-
pactly supported CTFn could be easily applied to higher-dimensional problems such as video
processing, seismic data processing, etc., through a simple tensor product process. One can
also build CTFn with n > 6 following an approach similar to Algorithm 4.2. However, the
performance improvement could be limited.

Mirror symmetry extension of an image is often adopted for transform-based methods to
handle the boundary effect. Consequently, the boundary wavelets or framelets can have no
more than one vanishing moment and hence lose effectiveness and sparsity near the boundaries
of an image. To remedy this shortcoming of boundary effect suffered by most transform-based
methods for image processing, our constructed one-dimensional compactly supported CTFn
are particularly appealing to be adapted to the interval [0, 1] with high vanishing moments.



COMPACTLY SUPPORTED TENSOR PRODUCT FRAMELETS 1765

Then simply employing the tensor product, we can obtain directional tensor product complex
tight framelets in [0, 1]d with boundary framelets having high vanishing moments, which are
much desired to reduce/eliminate the boundary effects for improving performance in image
processing. Due to the complexity of adapting tight framelets to bounded intervals, we shall
address such an issue elsewhere.

7. Proofs of theorems in section 3. This section provides detailed proofs for theorems
(Theorems 3.1, 3.2, and 3.3) in section 3.

Proof of Theorem 3.1. Since â is 2π-periodic, it is trivial to observe that the conditions in
(3.1) are equivalent to

|â+(ξ)|2 + |â−(ξ)|2 = |â(ξ)|2,(7.1)

|â+(ξ + π)|2 + |â−(ξ + π)|2 = |â(ξ + π)|2,(7.2)

â+(ξ)â+(ξ + π) + â−(ξ)â−(ξ + π) = â(ξ)â(ξ + π)(7.3)

for almost every ξ ∈ [0, π]. In the rest of this proof, we assume ξ ∈ [0, π]. Then (7.1) and
(7.2) imply

|â+(ξ)|2 = |â(ξ)|2 − |â−(ξ)|2, |â−(ξ + π)|2 = |â(ξ + π)|2 − |â+(ξ + π)|2.

Thus, by (7.3) and the above identities, applying the Cauchy–Schwarz inequality, for ξ ∈ [0, π],
we have

|â(ξ)â(ξ + π)|2 =

∣∣∣∣â+(ξ + π)â+(ξ) + â−(ξ)â−(ξ + π)

∣∣∣∣2
6
(
|â+(ξ + π)|2 + |â−(ξ)|2

)(
|â+(ξ)|2 + |â−(ξ + π)|2

)
=
(
|â+(ξ + π)|2 + |â−(ξ)|2

)(
|â(ξ)|2 − |â−(ξ)|2 + |â(ξ + π)|2 − |â+(ξ + π)|2

)
.

Let F (ξ) := |â+(ξ + π)|2 + |â−(ξ)|2. Then the above inequality can be rewritten as

|â(ξ)â(ξ + π)|2 6 F (ξ)
(
|â(ξ)|2 + |â(ξ + π)|2 − F (ξ)

)
.

Solving the above inequality for F (ξ) and noting F (ξ) > 0, we conclude that

F (ξ) >
|â(ξ)|2 + |â(ξ + π)|2 −

√
(|â(ξ)|2 + |â(ξ + π)|2)2 − 4|â(ξ)â(ξ + π)|2

2

=
|â(ξ)|2 + |â(ξ + π)|2 −

∣∣∣|â(ξ)|2 − |â(ξ + π)|2
∣∣∣

2
= min(|â(ξ)|2, |â(ξ + π)|2).

This proves (3.2).
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We now concretely construct filters a+, a− ∈ l2(Z) satisfying (3.3) and (7.1)–(7.3). For
ξ ∈ [0, π], we define
(7.4)

â+(ξ+π) :=


|â(ξ)|/

√
2 if |â(ξ)| = |â(ξ + π)|,

|â(ξ + π)| if |â(ξ)| > |â(ξ + π)|,
0 if |â(ξ)| < |â(ξ + π)|,

â−(ξ) :=


|â(ξ)|/

√
2 if |â(ξ)| = |â(ξ + π)|,

0 if |â(ξ)| > |â(ξ + π)|,
|â(ξ)| if |â(ξ)| < |â(ξ + π)|,

and

(7.5) â+(ξ) := eiβ(ξ)

√
|â(ξ)|2 − |â−(ξ)|2, â−(ξ + π) := e−iβ(ξ)

√
|â(ξ + π)|2 − |â+(ξ + π)|2,

where β(ξ) denotes the phase of â(ξ)â(ξ + π), that is, β is a real-valued measurable function
on [0, π] such that

(7.6) â(ξ)â(ξ + π) = eiβ(ξ)|â(ξ)â(ξ + π)|, ξ ∈ [0, π].

If â(ξ)â(ξ + π) = 0, then we simply define β(ξ) = 0.

We now prove that â+(ξ) and â−(ξ+ π) in (7.5) are well defined and all the conditions in
(3.3) and (7.1)–(7.3) are satisfied. Let ξ ∈ [0, π] be arbitrarily fixed. We now consider three
cases.

Case 1: |â(ξ)| = |â(ξ + π)|. By (7.4), we have

â+(ξ + π) = |â(ξ)|/
√

2 = |â(ξ + π)|/
√

2, â−(ξ) = |â(ξ)|/
√

2.

The above identities imply that â+(ξ) and â−(ξ+π) in (7.5) are well defined. More explicitly,

â+(ξ) = eiβ(ξ)

√
|â(ξ)|2 − |â−(ξ)|2 = eiβ(ξ)|â(ξ)|/

√
2

and

â−(ξ + π) = e−iβ(ξ)

√
|â(ξ + π)|2 − |â+(ξ + π)|2 = e−iβ(ξ)|â(ξ + π)|/

√
2.

Using the definition of β in (7.6), we can directly check that all of (3.3) and (7.1)–(7.3) are
satisfied.

Case 2: |â(ξ)| > |â(ξ + π)|. By (7.4), we have

â+(ξ + π) = |â(ξ + π)|, â−(ξ) = 0.

The above identities imply that â+(ξ) and â−(ξ+π) in (7.5) are well defined. More explicitly,

â+(ξ) = eiβ(ξ)

√
|â(ξ)|2 − |â−(ξ)|2 = eiβ(ξ)|â(ξ)|,

â−(ξ + π) = e−iβ(ξ)

√
|â(ξ + π)|2 − |â+(ξ + π)|2 = 0.

By (7.6), we can directly check that all of (3.3) and (7.1)–(7.3) are satisfied.
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Case 3: |â(ξ)| < |â(ξ + π)|. This case is similar to Case 2. By (7.4), we have

â+(ξ + π) = 0, â−(ξ) = |â(ξ)|.

The above identities imply that â+(ξ) and â−(ξ+π) in (7.5) are well defined. More explicitly,

â+(ξ) = eiβ(ξ)

√
|â(ξ)|2 − |â−(ξ)|2 = 0,

â−(ξ + π) = e−iβ(ξ)

√
|â(ξ + π)|2 − |â+(ξ + π)|2 = e−iβ(ξ)|â(ξ + π)|.

By (7.6), we can directly check that all of (3.3) and (7.1)–(7.3) are satisfied.
Suppose that in addition a is real valued. Then â(−ξ) = â(ξ) and consequently |â(−ξ)| =

|â(ξ)|. Proving â−(ξ) = â+(−ξ) defined in (7.4) and (7.5) is equivalent to showing that

(7.7) â+(−ξ) = â−(ξ) and â+(π − ξ) = â−(ξ − π), a.e. ξ ∈ [0, π].

By the definition of a+ in (7.4), for ξ ∈ [0, π], we deduce that π − ξ ∈ [0, π] and

â+(−ξ) = â+((π − ξ) + π) =


|â(π − ξ)|/

√
2 = |â(−ξ)|/

√
2 if |â(π − ξ)| = |â(−ξ)|,

|â(−ξ)| if |â(π − ξ)| > |â(−ξ)|,
0 if |â(π − ξ)| < |â(−ξ)|,

which agrees with â−(ξ) defined in (7.4) by |â(−ξ)| = |â(ξ)| and |â(π − ξ)| = |â(ξ + π)|. This
proves the first identity in (7.7).

For ξ ∈ [0, π], we have π − ξ ∈ [0, π] and by the definition of a+ in (7.5),

(7.8)
â+(π − ξ) = e−iβ(π−ξ)

√
|â(π − ξ)|2 − |â−(π − ξ)|2

= e−iβ(π−ξ)
√
|â(ξ + π)|2 − |â+(ξ + π)|2,

where we used |â(π−ξ)| = |â(ξ+π)| and the first proved identity in (7.7) with ξ being replaced
by π − ξ. Replacing ξ by π − ξ in the definition of β(ξ) in (7.6) and using â(ξ) = â(−ξ), we
have

eiβ(π−ξ)|â(ξ)â(ξ + π)| = eiβ(π−ξ)|â(π − ξ)â(2π − ξ)| = â(π − ξ)â(2π − ξ)
= â(ξ − π) â(−ξ) = â(ξ + π)â(ξ) = â(ξ)â(ξ + π) = eiβ(ξ)|â(ξ)â(ξ + π)|.

Therefore, we must have eiβ(π−ξ) = eiβ(ξ) for ξ ∈ [0, π] such that â(ξ)â(ξ + π) 6= 0. Since we
defined β(ξ) = 0 when â(ξ)â(ξ + π) = 0, we conclude that eiβ(π−ξ) = eiβ(ξ) for all ξ ∈ [0, π].
Now it follows from (7.8) and (7.4) that the second identity in (7.7) must hold. This proves
that the particularly constructed filters a+ and a− in (7.4) and (7.5) indeed satisfy a− = a+

when a is a real-valued filter.

For a finitely supported sequence u = {u(k)}k∈Z ∈ l0(Z) and γ ∈ Z, we define its coset
sequence u[γ] to be u[γ](k) := u(γ + 2k), k ∈ Z, and define the Laurent polynomial u(z) :=∑

k∈Z u(k)zk and u?(z) = (u(z))? :=
∑

k∈Z u(k)
T
z−k for z ∈ C\{0}.
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Proof of Theorem 3.2. Sufficiency. (3.5) implies

|â+(ξ)|2 + |â−(ξ)|2 = |â(ξ)|2(|û+(2ξ)|2 + |û−(2ξ)|2) = |â(ξ)|2

and

â+(ξ)â+(ξ + π) + â−(ξ)â−(ξ + π) = â(ξ)â(ξ + π)
(
|û+(2ξ)|2 + |û−(2ξ)|2

)
= â(ξ)â(ξ + π).

Hence, (3.1) holds. If in addition a is real valued and u− = u+, then â(−ξ) = â(ξ) and

û+(−ξ) = û−(ξ). Thus we can see that a+ = a−, since â+(−ξ) = â(−ξ)û+(−2ξ) =

â(ξ)û−(2ξ) = â−(ξ).
Necessity. Rewriting (3.1) in terms of matrices, we have

(7.9)

[
â+(ξ) â−(ξ)

â+(ξ + π) â−(ξ + π)

][
â+(ξ) â+(ξ + π)

â−(ξ) â−(ξ + π)

]
=

[
|â(ξ)|2 â(ξ)â(ξ + π)

â(ξ)â(ξ + π) |â(ξ + π)|2

]
.

Since a is a finitely supported filter, using coset sequences and Laurent polynomials, we have
a(z) = a[0](z2) + za[1](z2) and a(−z) = a[0](z2)− za[1](z2). Therefore, we observe that[

a+(z) a−(z)
a+(−z) a−(−z)

]
= W(z)V(z2),

[
a(z) 0
a(−z) 0

]
= W(z)V̊(z2),

where

W(z) =

[
1 z
1 −z

]
, V(z) :=

[
a+,[0](z) a−,[0](z)

a+,[1](z) a−,[1](z)

]
, V̊(z) :=

[
a[0](z) 0

a[1](z) 0

]
.

Hence, in terms of Laurent polynomials, we conclude that (7.9) can be rewritten as

W(z)V(z2)V?(z2)W?(z) = W(z)V̊(z2)V̊?(z2)W?(z).

Since det(W(z)) = −2z 6= 0 for all z ∈ C\{0}, we deduce from the above identity that

V(z)V?(z) = V̊(z)V̊?(z) =:

[
p1(z) p2(z)
p3(z) p4(z)

]
with p1(z) := a[0](z)(a[0](z))?, p2(z) := a[0](z)(a[1](z))?, p3(z) := a[1](z)(a[0](z))?, and p4(z) :=
a[1](z)(a[1](z))?. Since a(z) and a(−z) have no common zeros in C\{0}, by a(z) = a[0](z2) +
za[1](z2), we see that a[0](z) and a[1](z) have no common zeros in C\{0}. Consequently, by the
definition of p1, p2, p3, and p4, there does not exist z0 ∈ C\{0} such that p1(z0) = p2(z0) =
p3(z0) = p4(z0). That is, all the Laurent polynomials p1, p2, p3, and p4 have no common
zeros in C\{0}. It is obvious that det(V̊(z)) = 0. Consequently, we have det(V(z)) = 0 since
det(V(z))(det(V(z)))? = det(V̊(z))(det(V̊(z)))? = 0. Now by [23, Theorem 3.6], there exists a
2× 2 matrix U of Laurent polynomials such that

(7.10) U(z)U?(z) = I2 and V(z) = V̊(z)U(z) with U(z) =

[
u+(z) u−(z)
u1(z) u2(z)

]
.
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The second identity in (7.10) can be rewritten as

a+,[0](z) = a[0](z)u+(z), a+,[1](z) = a[1](z)u+(z),

a−,[0](z) = a[0](z)u−(z), a−,[1](z) = a[1](z)u−(z).

Therefore, by a(z) = a[0](z2) + za[1](z2), we have

a+(z) = a+,[0](z2) + za+,[1](z2) = a[0](z2)u+(z2) + za[1](z2)u+(z2) = a(z)u+(z2)

and similarly a−(z) = a−,[0](z2) + za−,[1](z2) = a(z)u−(z2). That is, the first two identities in
(3.5) hold. The first identity in (7.10) implies u+(z)(u+(z))? + u−(z)(u−(z))? = 1, which is
the third identity in (3.5). This proves the necessity part.

If in addition a is real valued and a− = a+, we have â(−ξ) = â(ξ) and we deduce from
(3.5) that

â(ξ)û−(2ξ) = â−(ξ) = â+(−ξ) = â(−ξ) û+(−2ξ) = â(ξ)û+(−2ξ),

from which we must have û−(ξ) = û+(−ξ), since â is not identically zero (otherwise, all
z ∈ C\{0} will be common zeros of a(z) and a(−z)). This proves u− = u+. Conversely, since
a is real valued, it follows directly from u− = u+ and (3.5) that a− = a+.

Proof of Theorem 3.3. By the definition of Pm,` in (3.9) and c > 0, we have

`Pm,`(c)− cP′m,`(c) = `

`−1∑
j=0

(
m+ j − 1

j

)
cj − c

`−1∑
j=1

(
m+ j − 1

j

)
jcj−1

= `+

`−1∑
j=1

(
m+ j − 1

j

)
(`− j)cj > ` > 0.

Now we can deduce that c0 < 0. By the above inequality and 2− 1/c > 0, we have

(2+2`−`/c)Pm,`(c)+(1−2c)P′m,`(c) = 2Pm,`(c)+(2−1/c)(`Pm,`(c)−cP′m,`(c)) > 2Pm,`(c) > 0.

This proves c1 > 0.
Note that the parameters c0 and c1 in (3.14) are chosen so that both P(c) = 0 and P′(c) = 0.

Since P is a polynomial of degree `+1 and P(c) = P′(c) = 0, we can write P(x) = (1− x
c )2Q(x)

for some unique polynomial Q of degree `− 1. Note that Pm,` in (3.9) is the (`− 1)th-degree
Taylor polynomial of 1

(1−x)m at the point x = 0. By the definition of P in (3.13), we deduce that

Q(z) = (1− x
c )−2Pm,`(x) +x`(c0− (c1 + 2c0)x)(1− x

c )−2, from which we conclude that Q must
be the (`− 1)th-degree Taylor polynomial of 1

(1−x)m(1−x
c

)2
at the point x = 0. Consequently,

all the coefficients of Q are nonnegative. Therefore, P(x) = (1− x
c )2Q(x) > 0 for all x > 0. In

particular, P(x) > 0 for all x ∈ [0, 1].
By the definition of P in (3.13), we have

(7.11) 1− (1− x)mP(x)− xmP(1− x) = 1− (1− x)mPm,`(x)− xmPm,`(1− x) + R(x)
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with R(x) := c0(xm(1− x)` − (1− x)mx`)(1− 2x) + c1((1− x)mx`+1 + xm(1− x)`+1). Since
1 6 ` 6 m, we have

(xm(1− x)` − (1− x)mx`)(1− 2x) = x`(1− x)`(xm−` − (1− x)m−`)(1− 2x) 6 0 ∀x ∈ [0, 1].

Since c0 < 0 and c1 > 0, we conclude from (7.11) that R(x) > 0 for all x ∈ [0, 1] and

1− (1− x)mP(x)− xmP(1− x) > 1− (1− x)mPm,`(x)− xmPm,`(1− x)

> 1− (1− x)mPm,m(x)− xmPm,m(1− x) = 0,

where we used (1−x)mPm,m(x)+xmPm,m(1−x) = 1 (see [9]) and it is obvious that Pm,`(x) 6
Pm,m(x) for all x > 0. This proves (3.12).
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