
Neural Networks 128 (2020) 188–198

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Fast Haar Transforms for Graph Neural Networks
Ming Li a,c, Zheng Ma b, Yu Guang Wang c,∗, Xiaosheng Zhuang d

a Department of Educational Technology, Zhejiang Normal University, Jinhua, China
b Department of Physics, Princeton University, NJ, USA
c School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia
d Department of Mathematics, City University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Received 30 October 2019
Received in revised form 29 February 2020
Accepted 27 April 2020
Available online 4 May 2020

Keywords:
Graph Neural Networks
Haar basis
Graph convolution
Fast Haar Transforms
Geometric deep learning
Graph Laplacian

a b s t r a c t

Graph Neural Networks (GNNs) have become a topic of intense research recently due to their powerful
capability in high-dimensional classification and regression tasks for graph-structured data. However,
as GNNs typically define the graph convolution by the orthonormal basis for the graph Laplacian, they
suffer from high computational cost when the graph size is large. This paper introduces a Haar basis,
which is a sparse and localized orthonormal system for a coarse-grained chain on the graph. The
graph convolution under Haar basis, called Haar convolution, can be defined accordingly for GNNs.
The sparsity and locality of the Haar basis allow Fast Haar Transforms (FHTs) on the graph, by which
one then achieves a fast evaluation of Haar convolution between graph data and filters. We conduct
experiments on GNNs equipped with Haar convolution, which demonstrates state-of-the-art results
on graph-based regression and node classification tasks.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional neural networks (CNNs) have been very suc-
cessful machinery in many high-dimensional regression and clas-
sification tasks on Euclidean domains. Recently, its generalization
to non-Euclidean domains, known as geometric deep learning, has
attracted growing attention, due to its high potential in pattern
recognition and regression for graph-structured data (Bronstein,
Bruna, LeCun, Szlam, & Vandergheynst, 2017).

Graph neural networks (GNNs) are a typical model in geomet-
ric deep learning, which replaces the partial derivatives in CNNs
by the Laplacian operator (Bruna, Zaremba, Szlam, & Lecun, 2014;
Henaff, Bruna, & LeCun, 2015). The Laplacian, which carries the
structural features of the data, is a second-order isotropic dif-
ferential operator that admits a natural generalization to graphs
and manifolds. In GNNs, input data are convoluted with filters
under an orthonormal system for the Laplacian. However, as the
algebraic properties of regular Euclidean grids are lost in general
manifolds and graphs, FFTs (fast Fourier transforms) for the Lapla-
cian is not available. This issue leads to that the computation of
convolution for graph data is not always efficient, especially when
the graph dataset is large.

In this paper, we introduce an alternative orthonormal sys-
tem on the graph, the Haar basis. It then defines a new graph

∗ Corresponding author.
E-mail addresses: mingli@zjnu.edu.cn (M. Li), zhengm@princeton.edu

(Z. Ma), yuguang.wang@unsw.edu.au (Y.G. Wang), xzhuang7@cityu.edu.hk
(X. Zhuang).

convolution for GNNs — Haar convolution. Due to the sparsity
and locality of the Haar basis, fast Haar transforms (FHTs) can
be achieved on graph-structured data. This significantly improves
the computational efficiency of GNNs as the Haar convolution
guarantees the linear computational complexity. We apply Haar
convolution to GNNs and give a novel type of deep convolutional
neural networks on graph — HANet. Numerical tests on real graph
datasets show that HANet achieves excellent performance and
computational efficiency in classification and regression tasks. To
the best of our knowledge, our method is the first fast algo-
rithm for spectral graph convolution by appropriately selecting
an orthogonal basis on the graph, which is of great importance
in the line of building spectral-based GNN models. Overall, we
summarize the significant contributions of the paper as three
folds.

• The Haar basis is introduced for graphs. Both theoretical
analysis and real examples of the sparsity and locality are
given. With these properties, the fast algorithms for Haar
transforms (FHTs) are developed, and their complexity anal-
ysis is studied.

• The Haar convolution under Haar basis is developed. Under
FHTs, the computational cost for Haar convolution is propor-
tional to the size of the graph, which is more efficient than
Laplacian-based spectral graph convolution. Other technical
components, including weight sharing and detaching, chain
and pooling, are also presented in detail.

• GNN with Haar convolution (named HANet) is proposed.
The experiments illustrate that HANet with high efficiency

https://doi.org/10.1016/j.neunet.2020.04.028
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.04.028
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.04.028&domain=pdf
mailto:mingli@zjnu.edu.cn
mailto:zhengm@princeton.edu
mailto:yuguang.wang@unsw.edu.au
mailto:xzhuang7@cityu.edu.hk
https://doi.org/10.1016/j.neunet.2020.04.028

M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198 189

achieves good performance on a broad range of high-
dimensional regression and classification problems on
graphs.

We organize the paper as follows. In Section 2, we review
recent advances on GNNs. In Section 3, we construct the Haar
orthonormal basis using a chain on the graph. The Haar basis
will be used to define a new graph convolution, called Haar
convolution. In Section 4, we develop fast algorithms for Haar
transforms, and the fast Haar transforms allows fast computation
of Haar convolution. In Section 5, we use the Haar convolution as
the graph convolution in graph neural networks. Section 6 shows
the experimental results of GNNs with Haar convolution (HANet)
on tasks of graph-based regression and node classification.

2. Related work

Developing deep neural networks for graph-structured data
has received extensive attention in recent years (Battaglia et al.,
2018; Li, Tarlow, Brockschmidt, & Zemel, 2016; Scarselli, Gori,
Tsoi, Hagenbuchner, & Monfardini, 2009; Wang et al., 2019; Wu,
Pan, Chen, Long, Zhang, & Yu, 2020; Zhang, Cui, & Zhu, 2020; Zhou
et al., 2018). Bruna et al. (2014) first propose graph convolution,
which is defined by graph Fourier transforms under the orthog-
onal basis from the graph Laplacian. The graph convolution uses
Laplacian eigendecomposition, which is computationally expen-
sive. Defferrard, Bresson, and Vandergheynst (2016) approximate
smooth filters in the spectral domain by Chebyshev polynomi-
als. Kipf and Welling (2017) simplify the convolutional layer by
exploiting first-order Chebyshev polynomial for filters. Following
this line, several acceleration methods for graph convolutional
networks are proposed (Chen, Ma and Xiao, 2018; Chen, Zhu and
Song, 2018). Graph wavelet neural networks (GWNN) (Xu, Shen,
Cao, Qiu and Cheng, 2019) replace graph Fourier transform by
graph wavelet transform in the graph convolution, where Cheby-
shev polynomials are used to approximate the graph wavelet
basis (Hammond, Vandergheynst, & Gribonval, 2011). Although
GWNN circumvents the Laplacian eigendecomposition, the ma-
trix inner-product operations are nevertheless not avoidable in
wavelet transforms for convolution computation.

Graph convolutional networks with attention mechanisms,
e.g., Graph Attention Networks (GATs) proposed by Veličković
et al. (2018), can effectively learn the importance between nodes
and their neighbors, which is more suitable for node classification
task (than graph-based regression). Nevertheless, much compu-
tational and memory cost is required to perform the attention
mechanism in the convolutional layers. Yang, Wang, Song, Yuan,
and Tao (2019) propose the Shortest Path Graph Attention Net-
work (SPAGAN) by using a path-based attention mechanism in
node-level aggregation, which leads to superior results than GATs
concerning neighbor-based attention.

Some GNN models use multi-scale information and higher-
order adjacency matrix to define graph convolution (Abu-El-
Haija, Kapoor, Perozzi, & Lee, 2018; Liao, Zhao, Urtasun, & Zemel,
2019; Wu et al., 2019). To increase the scalability of the model
for a large-scale graph, Hamilton, Ying, and Leskovec (2017)
propose the framework Graph-SAGE with sampling and a neural
network-based aggregator over a fixed size node neighbor. At-
wood and Towsley (2016) develop diffusion convolutional neural
networks by using a diffusion operator for graph convolution.
MoNet (Monti et al., 2017) introduces a general methodology to
define spatial-based graph convolution by the weighted average
of multiple weighting functions in the neighborhood. Gilmer,
Schoenholz, Riley, Vinyals, and Dahl (2017) provide a unified
framework, the Message Passing Neural Networks (MPNNs), by
which some existing GNN models are incorporated.

Xu, Hu, Leskovec and Jegelka (2019) present a theoretical analysis
for the expressive power of GNNs and propose a simple but
powerful variation of GNN, the graph isomorphism network. By
generalizing the graph Laplacian to maximal entropy transition
matrix derived from a path integral, Ma, Li, and Wang (2019)
propose a new framework called PAN that involves every path
linking the message sender and receiver with learnable weights
depending on the path length.

3. Graph convolution with Haar basis

3.1. Graph Fourier transform

Bruna et al. (2014) first defined the graph convolution based
on spectral graph theory (Chung & Graham, 1997) and the graph
Laplacian. An un-directed weighted graph G = (V , E, w) is a
triplet with vertices V , edges E and weights w : E → R. Denote
by N := |V | the number of vertices of the graph. Let l2(G) := {f :

V → R |
∑

v∈V |f (v)|2 < ∞} be the real-valued l2 space on the
graph with inner product f · g :=

∑
v∈V f (v)g(v). A basis for l2(G)

is a set of vectors {uℓ}Nℓ=1 on G which are linearly independent and
orthogonal (i.e. uℓ · uℓ′ = 0 if ℓ ̸= ℓ′). The (normalized) eigenvec-
tors {uℓ}

|V |

ℓ=1 of the graph Laplacian L forms an orthonormal basis
for l2(G). We call the matrix U := (u1, . . . , uN) the (graph Fourier)
base matrix, whose columns form the graph Fourier basis for l2(G).
The graph convolution can then be defined by

g ⋆ f = U
(
(UTg) ⊙ (UT f)

)
, (3.1)

where UT f is regarded as the adjoint discrete graph Fourier trans-
form of f , Uc is the forward discrete graph Fourier transform of c
on G and ⊙ is the element-wise Hadamard product.

While graph convolution defined in (3.1) is conceptually es-
sential, it has some limitations in practice. For example, the base
matrix U is obtained by using the eigendecomposition of the
graph Laplacian in the sense that L = UΛUT , where Λ is the
diagonal matrix of corresponding eigenvalues. The computational
complexity is proportional to O(N3), which is impractical when
the number of vertices of the graph is quite large. Second, the
computation of the forward and inverse graph Fourier transforms
(i.e., UT f and Uc) have O(N2) computational cost due to the
multiplication by (dense) matrices U and UT . In general, there
are no fast algorithms for the graph Fourier transforms as the
graph nodes are not regular, and the matrix U is not sparse. Third,
filters in the spectral domain cannot guarantee the localization in
the spatial (vertex) domain, and O(Ndm) parameters need to be
tuned in the convolutional layer withm filters (hidden nodes) and
d features for each vertex.

To alleviate the cost of computing the graph Fourier trans-
form, Defferrard et al. (2016) used the Chebyshev polynomials
to construct localized polynomial filters for graph convolution,
which results in the graph neural network called ChebNet. Kipf
and Welling (2017) simplify ChebNet to obtain graph convolu-
tional networks (GCNs). However, such a polynomial-based ap-
proximation strategy may lose information in the spectral graph
convolutional layer, and matrix multiplication is still not avoid-
able as FFTs are not available for graph convolution. Thus, the
graph convolution in this scenario is also computationally ex-
pensive, especially for the dense graph of a large size. Here, we
propose an alternative orthonormal basis that allows fast com-
putation for the corresponding graph convolution, which then
improves the scalability and efficiency of existing graph models.
The basis we use is the Haar basis on a graph. The Haar basis
replaces the matrix of eigenvectors U in (3.1) and forms a highly
sparse matrix, which reflects the clustering information of the
graph. The sparsity of the Haar transform matrix allows fast
computation (in nearly linear computational complexity) of the
corresponding graph convolution.

190 M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198

3.2. Haar basis

Haar basis rooted in the theory of Haar wavelet basis as first
introduced by Haar (1910), is a particular case of Daubechies
wavelets (Daubechies, 1992), and later developed onto graph
by Belkin, Niyogi, and Sindhwani (2006), see also Chui, Filbir, and
Mhaskar (2015). The construction of the Haar basis exploits a
chain of the graph. For a graph G = (V , E, w), a graph Gcg

:=

(V cg, Ecg, wcg) is called a coarse-grained graph of G if |V cg
| ≤ |V |

and each vertex of G associates with exactly one (parent) vertex
in Gcg. Each vertex of Gcg is called a cluster of G. Let J0, J be two
integers such that J > J0. A coarse-grained chain for G is a set of
graphs GJ→J0 := (GJ , GJ−1, . . . , GJ0) such that GJ = G, and Gj is a
coarse-grained graph of Gj+1 for j = J0, J0 + 1, . . . , J − 1. The GJ0
is the top level or the coarsest level graph while GJ is the bottom
level or the finest level graph. If the top level GJ0 of the chain
has only one node, GJ→J0 becomes a tree. The chain GJ→J0 gives
a hierarchical partition for the graph G. For details about graphs
and chains, see examples in Chui et al. (2015), Chui, Mhaskar,
and Zhuang (2018), Chung and Graham (1997), Hammond et al.
(2011), Wang and Zhuang (2020) and Wang and Zhuang (2019).

Construction of Haar basis. With a chain of the graph, one
can generate a Haar basis for l2(G) following Chui et al. (2015),
see also Gavish, Nadler, and Coifman (2010). We show the con-
struction of Haar basis on G, as follows.

Step 1. Let Gcg
= (V cg, Ecg, wcg) be a coarse-grained graph of

G = (V , E, w) with Ncg
:= |V cg

|. Each vertex vcg ∈ V cg is a cluster
vcg = {v ∈ V | v has parent vcg} of G. Order V cg, e.g., by degrees
of vertices or weights of vertices, as V cg

= {v
cg
1 , . . . , v

cg
Ncg}. We

define Ncg vectors φcg
ℓ on Gcg by

φ
cg
1 (vcg) :=

1
√
Ncg

, vcg ∈ V cg, (3.2)

and for ℓ = 2, . . . ,Ncg,

φ
cg
ℓ :=

√
Ncg − ℓ+ 1
Ncg − ℓ+ 2

(
χ

cg
ℓ−1 −

∑Ncg

j=ℓ χ
cg
j

Ncg − ℓ+ 1

)
, (3.3)

where χ cg
j is the indicator function for the jth vertex vcgj ∈ V cg on

G given by

χ
cg
j (vcg) :=

{
1, vcg = v

cg
j ,

0, vcg ∈ V cg
\{v

cg
j }.

Then, the set of functions {φ
cg
ℓ }

Ncg

ℓ=1 forms an orthonormal basis for
l2(Gcg).

Note that each v ∈ V belongs to exactly one cluster vcg ∈ V cg.
In view of this, for each ℓ = 1, . . . ,Ncg, we extend the vector φcg

ℓ

on Gcg to a vector φℓ,1 on G by

φℓ,1(v) :=
φ

cg
ℓ (vcg)
√

|vcg|
, v ∈ vcg,

here |vcg| := kℓ is the size of the cluster vcg, i.e., the number of
vertices in G whose common parent is vcg. We order the cluster
v
cg
ℓ , e.g., by degrees of vertices, as

v
cg
ℓ = {vℓ,1, . . . , vℓ,kℓ} ⊆ V .

For k = 2, . . . , kℓ, similar to (3.3), define

φℓ,k =

√
kℓ − k + 1
kℓ − k + 2

(
χℓ,k−1 −

∑kℓ
j=k χℓ,j

kℓ − k + 1

)
,

where for j = 1, . . . , kℓ, χℓ,j is given by

χℓ,j(v) :=

{
1, v = vℓ,j,

0, v ∈ V\{vℓ,j}.

One can verify that the resulting {φℓ,k : ℓ = 1, . . . ,Ncg, k =

1, . . . , kℓ} is an orthonormal basis for l2(G).

Step 2. Let GJ→J0 be a coarse-grained chain for the graph G.
An orthonormal basis {φ

(0)
ℓ }

N0
ℓ=1 for l2(GJ0) is generated using (3.2)

and (3.3). We then repeatedly use Step 1: for j = J0 + 1, . . . , J ,
we generate an orthonormal basis {φ

(j)
ℓ }

Nj
ℓ=1 for l2(Gj) from the

orthonormal basis {φ
(j−1)
ℓ }

Nj−1
ℓ=1 for the coarse-grained graph Gj−1

that was derived in the previous steps. We call the sequence
{φℓ := φ

(J)
ℓ }

N
ℓ=1 of vectors at the finest level, the Haar global

orthonormal basis or simply the Haar basis for G associated with
the chain GJ→J0 . The orthonormal basis {φ

(j)
ℓ }

Nj
ℓ=1 for l2(Gj), j =

J − 1, J − 2, . . . , J0 is called the associated (orthonormal) basis for
the Haar basis {φℓ}

N
ℓ=1.

Proposition 3.1. For each level j = J0, . . . , J , the sequence {φ
(j)
ℓ }

Nj
ℓ=1

is an orthonormal basis for l2(Gj), and in particular, {φℓ}
N
ℓ=1 is an

orthonormal basis for l2(G); each basis {φ
(j)
ℓ }

Nj
ℓ=1 is the Haar basis for

the chain Gj→J0 .

Proposition 3.2. Let GJ→J0 be a coarse-grained chain for G. If
each parent of level Gj, j = J − 1, J − 2, . . . , J0, contains at least
two children, the number of different values of the components of
a Haar basis vector φ(j)

ℓ , ℓ = 1, . . . ,Nj, is bounded by a constant
independent of j.

The Haar basis depends on the chain for the graph. If the
clustering of the chain well reflects the topology of the graph,
the Haar basis then contains the crucial geometric information of
the graph. For example, by using k-means clustering algorithm
or METIS algorithm (Karypis & Kumar, 1998) one can generate a
chain that reveals the desired geometric properties of the graph.

Fig. 1b shows a chain G2→0 with 3 levels of a graph G. Here,
for each level, the vertices are given by

V (2)
= V = {v1, . . . , v8},

V (1)
= {v

(1)
1 , v

(1)
2 , v

(1)
3 , v

(1)
4 }

= {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}},

V (0)
= {v

(0)
1 , v

(0)
2 } = {{v

(1)
1 , v

(1)
2 }, {v

(1)
3 , v

(1)
4 }}.

Fig. 1a shows the Haar basis for the chain G2→0. There are in total
8 vectors of the Haar basis for G. From construction, the Haar basis
φℓ and the associated basis φ(j)

ℓ , j = 1, 2 are closely connected: the
φ1, φ2 can be reduced to φ(0)

1 , φ
(0)
2 and the φ1, φ2, φ3, φ4 can be

reduced to φ(1)
1 , φ

(1)
2 , φ

(1)
3 , φ

(1)
4 . This connection would allow fast

algorithms for Haar transforms as given in Algorithms 1 and 2.
In Fig. 1, the matrix ΦT of the 8 Haar basis vectors φℓ on G has
good sparsity. With the increase of the graph size, the sparsity of
the Haar transform matrix Φ becomes prominent, which we will
demonstrate in the experiments in Section 6.3.

3.3. Haar convolution

With the Haar basis constructed in Section 3.2, we can define
Haar convolution as an alternative form of spectral graph con-
volution in (3.1). Let {φℓ}

N
ℓ=1 be the Haar basis associated with a

chain GJ→J0 of a graph G. Denoted by Φ = (φ1, . . . , φN) ∈ RN×N

the Haar transform matrix. We define by

ΦT f =

(∑
v∈V

φ1(v)f (v), . . . ,
∑
v∈V

φN (v)f (v)

)
∈ RN (3.4)

the adjoint Haar transform for graph data f on G, and by

(Φc)(v) =

N∑
ℓ=1

φℓ(v)cℓ, v ∈ V , (3.5)

M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198 191

Fig. 1. (a) The 8 × 8 matrix Φ of the Haar Basis for a graph G with 8 nodes. The green entries are zero, and the matrix Φ is sparse. The Haar basis is created based
on the coarse-grained chain G2→0 := (G2,G1,G0), where G2,G1,G0 are graphs with 8, 4, 2 nodes. For j = 1, 2, each node of Gj−1 is a cluster of nodes in Gj . Each
column of Φ is a member of the Haar basis. The first two columns can be compressed as an orthonormal basis of G0 , and the first to fourth columns can be reduced
to the orthonormal basis for G1 . (b) Haar Convolution g ⋆ f using the Haar basis of (a), where the weight sharing for filter vector g is defined by the chain G2→0
and the g ⋆ f is the forward Haar transform of the point-wise product of the adjoint Haar transforms of g and f , where the Haar transforms have a fast algorithmic
implementation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the forward Haar transform for (coefficients) vector c := (c1, . . . ,
cN) ∈ RN . We call the matrix Φ Haar transform matrix.

Definition 3.3. The Haar convolution for filter g and graph data
f on G can be defined as

g ⋆ f = Φ((ΦTg) ⊙ (ΦT f)). (3.6)

Computationally, (3.6) is obtained by performing forward Haar
transform of the element-wise Hadamard product between ad-
joint Haar transform of g and f . Compared with the Laplacian
based spectral graph convolution given in (3.1), the Haar convo-
lution has the following features. (i) the Haar transform matrix
Φ is sparse and the computation of ΦT f or Φc is more efficient
than UT f or Uc; (ii) as the Haar basis is constructed based on
the chain of the graph which reflects the clustering property for
vertices, the Haar convolution can extract abstract features for
input graph data, that is, it provides a learning representation for
graph-structured data; (iii) through the sparsity of Haar basis, the
adjoint and forward Haar transforms can be implemented by fast
algorithms, which have nearly linear computational complexity
(to the size of the input graph).

We can presume the filter in the ‘‘frequency domain’’ and skip
adjoint Haar transform of filter g (i.e. ΦTg), and then write Haar
convolution as g ⋆ f = Φ(g ⊙ (ΦT f)).

3.4. Fast algorithms for Haar transforms and Haar convolution

The computation of Haar transforms can also be accelerated
by using sparse matrix multiplications due to the sparsity of
the Haar transform matrix. This acceleration allows the linear
computational complexity O(ϵN) with sparsity 1 − ϵ of the Haar
transform matrix. Moreover, a similar computational strategy to
the sparse Fourier transforms (Hassanieh, Indyk, Katabi, & Price,
2012; Indyk, Kapralov, & Price, 2014) can be applied so that
the Haar transforms achieve faster implementation with time
complexity O(k logN) for a graph with N nodes and the Haar
transform matrix with k non-zero elements. By the sparsity of
the Haar transform matrix, the fast Haar transforms (FHTs), which
includes adjoint Haar transform and forward Haar transform can
be developed to speed up the implementation of the Haar con-
volution. Theorems 4.1 and 4.2 in the following section show
that the computational cost of the adjoint and forward Haar
transforms reaches O(N) and O(N(logN)2). They are nearly linear
computational complexity and are thus called fast Haar transforms

(FHTs). The Haar convolution in (3.6) consists of two adjoint
Haar transforms and a forward Haar transform, and can then be
evaluated in O(N(logN)2) steps.

3.5. Weight sharing

We can use weight sharing in Haar convolution to reduce
the number of parameters of the filter and capture the common
feature of the nodes which belong to the same cluster. As the
resulting clusters contain information of the neighborhood, we
can use the chain GJ→J0 for weight sharing: the vertices of the
graph which have the same parent at a coarser level share a
parameter of the filter. Here, the coarser level is some fixed level
J1, J0 ≤ J1 < J . For example, the weight sharing rule for chain G2→0
in Fig. 1b is: assign the weight gi for each node v(0)i , i = 1, 2 on
the top level, the filter (or the weight vector) at the bottom level
is then g = (g1, g1, g1, g1, g2, g2, g2, g2). In this way, one has used
the filter g with two independent parameters g1, g2 to convolute
with the input vector with 8 components.

4. Fast algorithms under Haar basis

For the Haar convolution introduced in Definition 3.3, we can
develop an efficient computational strategy by the sparsity of the
Haar transform matrix. Let GJ→J0 be a coarse-grained chain of
the graph G. For convenience, we label the vertices of the level-j
graph Gj by Vj :=

{
v
(j)
1 , . . . , v

(j)
Nj

}
.

4.1. Fast computation for adjoint Haar transform ΦT f

The adjoint Haar transform in (3.4) can be computed in the
following way. For j = J0, . . . , J − 1, let c(j)k be the number of
children of v(j)k , i.e. the number of vertices of Gj+1 which belongs
to the cluster v(j)k , for k = 1, . . . ,Nj. For j = J , let c(J)k ≡ 1 for
k = 1, . . . ,N . For j = J0, . . . , J and k = 1, . . . ,Nj, we define the
weight factor for v(j)k by

w
(j)
k :=

1√
c(j)k

. (4.1)

Let WJ→J0 := {w
(j)
k | j = J0, . . . , J, k = 1, . . . ,Nj}. Then, the

weighted chain (GJ→J0 ,WJ→J0) is a filtration if each parent in the

192 M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198

chain GJ→J0 has at least two children. See e.g. Chui et al. (2015,
Definition 2.3).

Let {φℓ}
N
ℓ=1 be the Haar basis obtained in Step 2 of Section 3.2,

which we also call the Haar basis for the filtration (GJ→J0 ,WJ→J0)
of a graph G. We define the weighted sum for f ∈ l2(G) by

S(J)(f , v(J)k

)
:= f (v(J)k), v

(J)
k ∈ GJ , (4.2)

and for j = J0, . . . , J − 1 and v(j)k ∈ Gj,

S(j)(f , v(j)k) :=

∑
v
(j+1)
k′

∈v
(j)
k

w
(j+1)
k′ S(j+1)(f , v(j+1)

k′
)
. (4.3)

For each vertex v(j)k of Gj, the S(j)
(
f , v(j)k

)
is the weighted sum of

the S(j+1)
(
f , v(j+1)

k′
)
at the level j + 1 for those vertices v(j+1)

k′ of
Gj+1 whose parent is v(j)k .

The adjoint Haar transform can be evaluated by the following
theorem.

Theorem 4.1. Let {φℓ}
N
ℓ=1 be the Haar basis for the filtration

(GJ→J0 ,WJ→J0) of a graph G. Then, the adjoint Haar transform for
the vector f on the graph G can be computed by, for ℓ = 1, . . . ,N,

(ΦT f)ℓ =

Nj∑
k=1

S(j)(f , v(j)k)w(j)
k φ

(j)
ℓ (v(j)k), (4.4)

where j is the smallest possible number in {J0, . . . , J} such that
φ

(j)
ℓ is the ℓth member of the orthonormal basis {φ

(j)
ℓ }

Nj
ℓ=1 for l2(Gj)

associated with the Haar basis {φℓ}
N
ℓ=1 (see Section 3.2), v(j)k are the

vertices of Gj and weights w(j)
k are given by (4.1).

Proof. By the relation between φℓ and φ
(j)
ℓ ,

(ΦT f)ℓ =

N∑
k=1

f (v(J)k)φℓ(v
(J)
k)

=

NJ−1∑
k′=1

⎛⎜⎝ ∑
v
(J)
k ∈v

(J−1)
k′

f (v(J)k)

⎞⎟⎠w(J−1)
k′ φ

(J−1)
ℓ (v(J−1)

k′)

=

NJ−1∑
k′=1

S(J−1)(f , v(J−1)
k′)w(J−1)

k′ φ
(J−1)
ℓ (v(J−1)

k′)

=

NJ−2∑
k′′=1

⎛⎜⎝ ∑
v
(J−1)
k′

∈v
(J−2)
k′′

S(J−1)(f , v(J−1)
k′)w(J−1)

k′

⎞⎟⎠
× w

(J−2)
k′′ φ

(J−2)
ℓ (v(J−2)

k′′)

=

NJ−2∑
k′′=1

S(J−2)(f , v(J−2)
k′′)w(J−2)

k′′ φ
(J−2)
ℓ (v(J−2)

k′′)

· · ·

=

Nj∑
k=1

S(j)(f , v(j)k)w(j)
k φ

(j)
ℓ (v(j)k),

where we recursively compute the summation to obtain the last
equality, thus completing the proof. □

4.2. Fast computation for forward Haar transform Φc

The forward Haar transform in (3.5) can be computed, as
follows.

Theorem 4.2. Let {φℓ}
N
ℓ=1 be the Haar basis for a filtration (GJ→J0 ,

WJ→J0) of graph G and {φ
(j)
ℓ }

Nj
ℓ=1, j = J0, . . . , J be the associated bases

at Gj. Then, the forward Haar transform for vector c = (c1, . . . , cN) ∈

RN can be computed by, for k = 1, . . . ,N,

(Φc)k =

J∑
j=1

W (j)
k

⎛⎝ Nj∑
ℓ=Nj−1+1

cℓφ
(j)
ℓ (v(j)kj)

⎞⎠ ,
where for k = 1, . . . ,N, v(j)kj is the parent (ancestor) of v(J)k at level

j, and W (J)
k := 1 and

W (j)
k :=

j∏
n=2

w
(n)
kn for j = J0, . . . , J − 1, (4.5)

where the weight factors w(n)
kn for n = 1, . . . , J are given by (4.1).

Proof. Let Nj := |Vj| for j = J0, . . . , J and NJ0−1 := 0. For
k = 1, . . . ,NJ , let v

(J)
k the kth vertex of GJ . For i = J0, . . . , J − 1,

there exists ki = 1, . . . ,Nj such that v(i)ki the parent at level i of v(J)k .
By the property of the Haar basis, for each vector φℓ there exists
j ∈ {J0, . . . , J} such that ℓ ∈ {Nj−1 + 1, . . . ,Nj}, φℓ is a constant
for the vertices of GJ = G which have the same parent at level j.
Then,

φℓ(v
(J)
k) = w

(J−1)
kJ−1

φ
(J−1)
ℓ (v(J−1)

kJ−1
)

= w
(J−1)
kJ−1

w
(J−2)
kJ−2

φ
(J−2)
ℓ (v(J−2)

kJ−2
)

=

⎛⎝ j∏
n=J0

w
(n)
kn

⎞⎠φ(j)
ℓ (v(j)kj)

= W (j)
k φ

(j)
ℓ (v(j)kj), (4.6)

where the product of the weights in the third equality only
depends upon the level j and the vertex v(1)k , and we have let

W (j)
k :=

j∏
n=1

w
(n)
kn

in the last equality. By (4.6),

Φ(c, v(J)k) =

N∑
ℓ=1

cℓφℓ(v
(J)
k) =

J∑
j=J0

Nj∑
ℓ=Nj−1+1

cℓφℓ(v
(J)
k)

=

J∑
j=J0

Nj∑
ℓ=Nj−1+1

cℓW
(j)
k φ

(j)
ℓ (v(j)kj)

=

J∑
j=J0

W (j)
k

⎛⎝ Nj∑
ℓ=Nj−1+1

cℓφ
(j)
ℓ (v(j)kj)

⎞⎠ ,
thus completing the proof. □

4.3. Computational complexity analysis

Algorithm 1 gives the computational steps for evaluating (ΦT

f)ℓ, ℓ = 1, . . . ,N in Theorem 4.1. In the first step of Algorithm
1, the total number of summations to compute all elements of
Step 1 is no more than

∑j−1
i=0 Ni+1; In the second step, the total

number of multiplication and summation operations is at most
2
∑N

ℓ=1 C = O(N). Here C is the constant which bounds the
number of distinct values of the Haar basis (see Proposition 3.2).
Thus, the total computational cost of Algorithm 1 is O(N).

M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198 193

Algorithm 1: Fast Haar Transforms: Adjoint

Input : A real-valued vector f = (f1, . . . , fN) on the graph G;
the Haar basis {φℓ}

N
ℓ=1 for l2(G) with the chain GJ→J0

and the associated basis {φ
(j)
ℓ }

Nj
ℓ=1 for l2(Gj).

Output: The vector ΦT f by adjoint Haar transform in (3.4)
under the basis {φℓ}

N
ℓ=1.

1. Evaluate the following sums for j = J0, . . . , J − 1 in (4.2)
and (4.3).

S(j)(f , v(j)k), v
(j)
k ∈ Vj.

2. For each ℓ, let j be the integer such that Nj−1 + 1 ≤ ℓ ≤ Nj,
where NJ0−1 := 0. Evaluating

∑Nj
k=1 S

(j)(f , v(j)k)w(j)
k φ

(j)
ℓ (v(j)k)

in (4.4) by the following two steps.

(a) Compute the product for all v(j)k ∈ Vj:

Tℓ(f , v
(j)
k) = S(j)(f , v(j)k)w(j)

k φ
(j)
ℓ (v(j)k).

(b) Evaluate sum
∑Nj

k=1 Tℓ(f , v
(j)
k).

By Theorem 4.2, the evaluation of the forward Haar transform
Φc can be implemented by Algorithm 2. In the first step of Algo-
rithm 2, the number of multiplications is no more than

∑N
ℓ=1 C =

O(N); in the second step, the number of summations is no more
than

∑N
ℓ=1 C = O(N); in the third step, the computational steps

areO(N(logN)2); in the last step, the total number of summations
and multiplications is O(N logN). Thus, the total computational
cost of Algorithm 2 is O(N(logN)2).

Hence, Algorithms 1 and 2 have linear computational cost (up
to a logN term). We call these two algorithms fast Haar transforms
(FHTs) under Haar basis on the graph.

Proposition 4.3. The adjoint and forward Haar Transforms in
Algorithms 1 and 2 are invertible in that for any vector f on graph G,

f = Φ(ΦT f).

Proposition 4.3 shows that the forward Haar transform can
recover graph data f from the adjoint Haar transform ΦT f . This
means that forward and adjoint Haar transforms have zero-loss
in graph data transmission.

Haar convolution, which computational strategy given by Al-
gorithm 3, can be evaluated fast by FHTs in Algorithms 1 and
2. From the above discussion, the total computational cost of
Algorithm 3 is O(N(logN)2). That is, using FHTs, we can evaluate
Haar convolution in near-linear computational complexity.

5. Graph neural networks with Haar transforms

5.1. Models

The Haar convolution in (3.6) can be applied to any archi-
tecture of graph neural network. For graph classification and
graph-based regression tasks, we use the model with convolu-
tional layer consisting of m-hidden neutrons and a non-linear
activation function σ (e.g. ReLU): for i = 1, 2 . . . ,m,

f outi = σ

⎛⎝ d∑
j=1

Φ
(
gi,j ⊙ (ΦT f inj)

)⎞⎠
= σ

⎛⎝ d∑
j=1

ΦGi,jΦ
T f inj

⎞⎠ , (5.1)

Algorithm 2: Fast Haar Transforms: Forward

Input : A real-valued vector c = (c1, . . . , cN) on graph G; the
Haar basis {φℓ}

N
ℓ=1 for l2(G) associated with the chain

GJ→J0 and the associated orthonormal basis {φ
(j)
ℓ }

Nj
ℓ=1 for

l2(Gj).
Output: The vector Φc by forward Haar transform in (3.5)

under the basis {φℓ}
N
ℓ=1.

1. For each ℓ, let j be the integer such that
Nj−1 + 1 ≤ ℓ ≤ Nj, where NJ0−1 := 0.
For all k = 1, . . . ,Nj, compute the product

tℓ(c, v
(j)
k) := cℓφ

(j)
ℓ (v(j)k).

2. For each j = J0, . . . , J , evaluate the sums

s(c, v(j)kj) :=
∑Nj

ℓ=Nj−1+1 tℓ(c, v
(j)
kj
).

3. Compute the W (j)
k for k = 1, . . . ,N and j = J0, . . . , J − 1

by (4.5).
4. Compute the weighted sum

(Φc)k =
∑J

j=J0
W (j)

k s(c, v(j)kj), k = 1, . . . ,N.

Algorithm 3: Fast Haar Convolution

Input : Real-valued vectors g := (g1, . . . , gN) and
f := (f1, . . . , fN) on G; chain GJ0→J of graph G where
GJ := G.

Output: Haar convolution g ⋆ f of g and f as given by
Definition 3.3.

1. Compute the adjoint Haar transforms ΦTg and ΦT f by
Algorithm 1.

2. Compute the point-wise product of ΦTg and ΦT f .
3. Compute the forward Haar transform of (ΦTg) ⊙ (ΦT f) by

Algorithm 2.

for input graph data F in
= (f in1 , f

in
2 , . . . , f

in
d) ∈ RN×d with N

nodes and d input features (for each vertex). Here, the feature
f inj of the input graph data is convolved with the learnable filter
gi,j ∈ RN by Haar transforms, and then all Haar-transformed
features are fused as a new feature f outi . This gives the output
matrix F out

= (f out1 , f out2 , . . . , f outm) ∈ RN×m. If we write Gi,j ∈ RN×N

as the diagonal matrix of filter gi,j, the convolutional layer has the
compact form of the second equality in (5.1). We call the GNN
with Haar convolution in (5.1) HANet.

Weight detaching. For each layer, O(Ndm) parameters need
to be tuned. To reduce the number of parameters, we can replace
the filter matrix Gi,j by a unified diagonal filter matrix G and a
compression matrix W ∈ Rd×m (which is a detaching approach
used in conventional CNN for extracting features). This then leads
to a concise form

F out
= σ

(
Φ
(
G(ΦT F in)

)
W
)
. (5.2)

Then, it requires O(N + dm) parameters to train. Recall that
constructing the Haar basis uses a chain GJ→J0 for the graph G, one
can implement weight sharing based on the same chain structure.
Correctly, one can use k-means clustering algorithm or METIS
algorithm (Karypis & Kumar, 1998) to generate a chain, which
captures clustering feature of the graph. Suppose a coarser level
J1 (J0 ≤ J1 < J) having K clusters, then all vertices in the same
cluster share the common filter parameter. The corresponding
children vertices in level J1 − 1 share the same filter parameters

194 M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198

Fig. 2. Network architecture of HANet with multiple Haar convolutional layers and then fully connected by softmax.

Fig. 3. Weight sharing for Haar convolution and graph coarsening for graph pooling for the chain G2→0 .

as used in their parent vertices, and the bottom level corresponds
to the whole set of vertices of the input graph. Thus, the number
of parameters is reduced to O(K + dm).

The HANet uses d times fast Haar convolutions (consisting of
d-times adjoint and forward Haar transforms). The computational
cost of Haar convolution in HANet is then O(N(logN)2d). Deep
GNNs with Haar convolution are built by stacking up multiple
Haar convolutional layers of (5.2), followed by an output layer
(see Fig. 3).

HANet for graph classification and graph-based regression.
These two tasks can be formulated as the following supervised
learning: For a collection of graph-structured data, {fi}ni=1 with
labels {yi}ni=1, the classification task is to find a mapping that
can classify or regress labels. The model of HANet uses a similar
architecture of the canonical deep convolutional neural network.
It has several convolutional layers with Haar convolution and
fully connected dense layers. Fig. 2 shows the flowchart for the
architecture of HANet with multiple Haar convolutional layers:
the chain GJ→J0 and the Haar basis φℓ and the associated basis
φ

(j)
ℓ , j = J0, . . . , J are pre-computed; graph-structured input f is

Haar-convoluted with filter g which is of length NJ but with NJ−1
independent parameters, where g is expanded from level J−1 to J
by weight sharing, and the output f out of the first layer is the ReLU
of the Haar convolution of g and f ; the graph pooling reduces f out
of size NJ to f̃ in of size NJ−1; and in the second Haar convolutional

layer, the input is f̃ in and the Haar basis is φ(J−1)
ℓ ; the following

layers continue this process; the final Haar convolutional layer is
fully connected by one or multiple dense layers. For classification,
an additional dense layer with softmax function is used.

HANet for node classification. In node classification, the
whole graph is the only single input data, where a fractional
proportion of nodes are labeled. The output is the whole graph
with all unknown labels predicted. Here we use the following
GNN with two layers.

HANet(f in) := softmax
(
HC(2)(ReLU(HC(1)(f in)))) (5.3)

where HC(1) and HC(2) are the Haar convolutional layers

HC(i)(f) := Â(w(i)
1 ⋆ f)w

(i)
2 , i = 1, 2,

where we use the modified Haar convolution w(i)
1 ⋆ f = Φ

(
w

(i)
1 ⊙

(ΦT f)
)
. For a graph with N nodes and M features, in the first Haar

convolutional layer, the filter w(1)
1 contains N0 × M parameters

and is extended to a matrix N × M by weight sharing, where N0

is the number of nodes at the coarsest level. The w(1)
2 plays the

role of weight compression and feature extraction. The rectifier
activates the first layer, and the second layer is fully connected
with softmax. The Â, as defined in Kipf and Welling (2017), is
the square matrix of size N determined by the adjacency matrix
of the input graph. This smoothing operation compensates for

M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198 195

the information loss in coarsening by taking a weighted average
of features of each vertex and its neighbors. For vertices that
are densely connected, it makes their features more similar and
significantly improves the ease of node classification task (Li, Han,
& Wu, 2018).

5.2. Technical components

Fast computation for HANet. Complexity analysis of FHTs
above shows that HANet is more efficient than GNNs with a
graph Fourier basis. The graph convolution of the latter incurs
O(N3) computational cost. Researchers have proposed different
methods to improve the computational performance for graph
convolution. For example, ChebNet (Defferrard et al., 2016) and
GCN (Kipf & Welling, 2017) use a localized polynomial approx-
imation for the spectral filters; GWNN (Xu, Shen et al., 2019)
constructs sparse and localized graph wavelet basis matrix for
graph convolution. These methods implement the multiplication
between a sparse matrix (e.g., the refined adjacency matrix Â in
GCN or the wavelet basis matrix ψs in GWNN and input matrix
F in the convolutional layer. However, to compute either ÂF or
ψsF , the computational complexity, which is roughly proportional
to O(εN2d), to a great extent relies on the sparse degree of Â or
ψs, where ε, ε ∈ [0, 1], represents the percentage of non-zero
elements in a square matrix. The O(εN2d) may be significantly
higher than O(N(logN)2d) as long as ε is not extremely small,
indicating that our FHTs outperform these methods especially
when N is quite large and ε ≈ 1. Also, the fast computation for
sparse matrix multiplication (Golub & Van Loan, 2012) can further
speed up the evaluation of Haar convolution. One can develop
a strategy of sparse FHTs using the method in Hassanieh et al.
(2012) and Indyk et al. (2014).

Chain. In HANet, the chain and the Haar basis can be pre-
computed since the graph structure is already known. In partic-
ular, the chain is computed by a modified version of the METIS
algorithm, which fast generates a chain for the weight matrix of
a graph. In many cases, the parents of a chain from METIS have at
least two children, which means the weighted chain is a filtration,
and thus Proposition 3.2 applies.

Weight sharing for the filter. In the HANet, one can use
weight sharing given in Section 3.3 for filters. By doing this,
we utilize the local topological property of the graph-structured
data to extract the co-feature of neighbor nodes and meanwhile
reduce the independent parameters of the filter. One can add
weight sharing in each convolutional layer of the HANet. For
chain GJ→J0 with which the Haar basis is associated, weight shar-
ing can act from the coarsest level J0 to the finest level J or from
any level coarser than J to J . For a given filtration, the weight
sharing shrinks the number of parameters by at least rate 2−(J−J0),
see Fig. 3.

Graph pooling. We use max graph pooling between two con-
volutional layers of the HANet. Each pooled input is the maximum
over children nodes of each node of the current layer of the chain.
The pooling applies the same chain as the Haar basis at the same
layer. For example, after pooling, the second layer uses the chain
G(J−1)→J0 , as illustrated in Fig. 2. By the construction of Haar basis
in Section 3.2, the new Haar basis associated with G(J−1)→J0 is
exactly the pre-computed basis {φ

(J−1)
ℓ }

NJ−1
ℓ=1 .

Table 1
Test mean absolute error (MAE) comparison on QM7.
Method Test MAE

RF (Breiman, 2001) 122.7 ± 4.2
Multitask (Ramsundar et al.,
2015)

123.7 ± 15.6

KRR (Cortes & Vapnik, 1995) 110.3 ± 4.7
GC (Altae-Tran, Ramsundar,
Pappu, & Pande, 2017)

77.9 ± 2.1

Multitask(CM) (Wu et al.,
2018)

10.8 ± 1.3

KRR(CM) (Wu et al., 2018) 10.2 ± 0.3
DTNN (Schütt, Arbabzadah,
Chmiela, Müller, & Tkatchenko,
2017)

8.8 ± 3.5

ANI-1 (Smith, Isayev, &
Roitberg, 2017)

2.86 ± 0.25

HANet 9.50 ± 0.71

6. Experiments

In this section, we test the proposed HANet on Quantum
Chemistry (graph-based regression) and Citation Networks (node
classification). The experiments for graph classification were car-
ried out under the Google Colab environment with Tesla K80 GPU,
while for node classification were under the UNIX environment
with a 3.3 GHz Intel Core i7 CPU and 16 GB RAM. We implement
all the methods in TensorFlow and use SGD+Momentum and
Adam optimization methods in the experiments.

6.1. Quantum chemistry for graph-based regression

We test HANet on QM7 (Blum & Reymond, 2009;
Rupp, Tkatchenko, Müller, & von Lilienfeld, 2012), which contains
7165 molecules. Each molecule is represented by the Coulomb
(energy) matrix and its atomization energy. We treat each
molecule as a weighted graph where the nodes are the atoms,
and the adjacency matrix is the 23 × 23-Coulomb matrix of the
molecule, where the exact number of atoms may be less than
23. The atomization energy of the molecule is the label. As in
most cases, the adjacency matrix is not fully ranked; we take
the average of the Coulomb matrices of all molecules as the
common adjacency matrix, for which we generate the Haar basis.
To avoid exploding gradients in parameter optimization, we take
the standard score of each entry over all Coulomb matrices as
input (see Table 1).

The network architecture of HANet contains 2 layers of Haar
convolution with 8 and 2 filters and then 2 fully connected
layers with 400 and 100 neurons. As the graph is not big, we
do not use graph pooling or weight sharing. Following Gilmer
et al. (2017), we use mean squared error (MSE) plus ℓ2 reg-
ularization as the loss function in training and mean absolute
error (MAE) as the test metric. We repeat the experiment over 5
splits with the same proportion of training and test data but with
different random seeds. In Table 1, we report the average perfor-
mance and standard deviation for the HANet compared against
other public results (Wu et al., 2018) by methods Random Forest
(RF) (Breiman, 2001), Multitask Networks (Multitask) (Ramsun-
dar et al., 2015), Kernel Ridge Regression (KRR) (Cortes & Vapnik,
1995), Graph Convolutional models (GC) (Altae-Tran et al., 2017),
Deep Tensor Neural Network (DTNN) (Schütt et al., 2017), ANI-
1 (Smith et al., 2017), KRR and Multitask with Coulomb Matrix
featurization (KRR(CM)/Multitask(CM)) (Wu et al., 2018). It shows
that HANet ranks third in the list with average test MAE 9.50
and average relative MAE 4.31 × 10−6, which offers a good
approximator for QM7 regression.

196 M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198

Table 2
Sparsity of Haar basis and CPU time for basis generating, adjoint FHT (AFHT)
and forward FHT (FFHT) on citation networks data set.
Dataset Basis size Sparsity Generating

time (s)
AFHT time (s) FFHT time (s)

Citeseer 3327 99.58% 1.93509 0.05276 0.05450
Cora 2708 98.84% 0.86429 0.06908 0.05515
Pubmed 19717 99.84% 62.67185 1.08775 1.55694

Table 3
Test accuracy comparison on citation networks (%).
Method Citeseer Cora Pubmed

MLP (Kipf & Welling, 2017) 55.1 46.5 71.4
ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston, Ratle, Mobahi, & Collobert, 2012) 59.6 59.0 71.1
LP (Zhu, Ghahramani, & Lafferty, 2003) 45.3 68.0 63.0
DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014) 43.2 67.2 65.3
ICA (Lu & Getoor, 2003) 69.1 75.1 73.9
Planetoid (Yang, Cohen, & Salakhutdinov, 2016) 64.7 75.7 77.2
ChebNet (Defferrard et al., 2016) 69.8 81.2 74.4
GCN (Kipf & Welling, 2017) 70.3 81.5 79.0

HANet 70.1 81.9 79.3

Fig. 4. Main figure: Mean and standard deviation of validation accuracies of
HANet and GCN on Cora with epoch ≤ 200. Figure in the lower right corner:
Validation loss function of HANet and GCN.

6.2. Citation networks for node classification

We test the model in (5.3) on citation networks Citeseer,
Cora and Pubmed, following the experimental setup of Kipf and
Welling (2017) and Yang et al. (2016). The Citeseer, Cora and
Pubmed are 6, 7 and 3 classification problems with nodes 3327,
2708 and 19 717, edges 4732, 5429 and 44 338, features 3703,

1433 and 500, and label rates 0.036, 0.052 and 0.003, respectively.
In Table 3, we compare the performance of the model (5.3)
of HANet with methods Multilayer Perceptron (MLP), Manifold
Regularization (ManiReg) (Belkin et al., 2006), Semi-supervised
Embedding (SemiEmb) (Weston et al., 2012), Traditional Label
Propagation (LP) (Zhu et al., 2003), DeepWalk (Perozzi et al.,
2014), Link-based Classification (ICA) (Lu & Getoor, 2003), Plan-
etoid (Yang et al., 2016), ChebNet (Defferrard et al., 2016) and
GCN (Kipf & Welling, 2017). We repeat the experiment 10 times
with different random seeds and report the average test accuracy
of HANet. As shown in Table 3, HANet has the top test accuracies
on Cora and Pubmed and ranks second on Citeseer.

Fig. 4 shows the mean and standard deviation of validation
accuracies and the validation loss with up to epoch 200 of HANet
and GCN. HANet achieves slightly higher max accuracy as well
as smaller standard deviation, and the loss also converges faster
than GCN.

6.3. Haar basis and FHTs

In Fig. 5a, we show the matrix of the Haar basis vectors for
Cora, which has sparsity (i.e., the proportion of zero entries)
98.84%. The associated chain G10→0 has 2708, 928, 352, 172,
83, 41, 20, 10, 5, 2, 1 nodes from level 10 to 0. Fig. 5b shows
the comparison of time for FHTs with direct matrix products.
It illustrates that FHTs have nearly linear computational cost
while the cost of matrix product grows at O(N3) for a graph of
size N . Fig. 5c shows the comparison of time for generating the
Haar basis and the basis for graph Laplacian: Haar basis needs
significantly less time than that for graph Laplacian. Table 2 gives
the sparsity (i.e., the proportion of zero entries) and the CPU time
for generating Haar basis and FHTs on three datasets. All sparsity
values for three datasets are very high (around 99%), and the
computational cost of FHTs is proportional to N .

7. Conclusion

We introduce a Haar basis, and the Haar transforms on a
coarse-grained chain on the graph. From Haar transforms, we
define the Haar convolution for GNNs, which has a fast imple-
mentation because of the sparsity of the Haar transform matrix.
Haar convolution gives a sparse representation of graph data
and captures the geometric property of the graph data, and thus
provides a useful graph convolution for any architecture of GNN.
Overall, as a spectral-based method for graph convolution, our
proposed HANet can effectively bypass the inherent drawbacks of
the spectral graph convolution based on graph Laplacian, i.e., the
vast computational load caused by eigendecomposition of the
graph Laplacian to obtain the graph Fourier base matrix, and the

Fig. 5. (a) Haar basis Φ for Cora with a chain of 11 levels (by METIS). Each column is a vector of the Haar basis. The sparsity of the Haar transform matrix is 98.84%
(i.e. the proportion of zero entries). (b) Comparison of CPU time for FHTs and Direct Matrix Product for the Haar basis for graphs with nodes ≤ 5000. (c) Comparison
of CPU time for generating the orthonormal bases for Haar and graph Laplacian on graphs with nodes ≤ 2000.

M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198 197

dense matrix multiplication computed in performing the graph
Fourier transform.

There are many new problems for future probing. We are
making efforts to extend our current framework with careful
consideration of local receptive fields (as typically concerned in
the traditional CNN), aiming to fill the gap between the spectral-
based method (for example, our proposed HANet) and the spatial
method. It is also of practical significance to improve the HANet,
so it is capable of dealing with large-scale and heterogeneous
graphs in various applications. Furthermore, one would expect
the theory for the expressive power and generalization capability
of the HANet.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors thank the associated editor and reviewers for
their constructive comments and suggestions. Ming Li acknowl-
edges support by the National Natural Science Foundation of
China under Grant 61802132 and Grant 61877020, and the China
Post-Doctoral Science Foundation under Grant 2019T120737. Yu
Guang Wang acknowledges support from the Australian Research
Council under Discovery Project DP180100506. This work is sup-
ported by the National Science Foundation, USA under Grant
No. DMS-1439786 while Zheng Ma and Yu Guang Wang were
in residence at the Institute for Computational and Experimen-
tal Research in Mathematics in Providence, RI, during Collab-
orate@ICERM 2019. Xiaosheng Zhuang acknowledges support
by Research Grants Council of Hong Kong (Project No. CityU
11301419).

References

Abu-El-Haija, S., Kapoor, A., Perozzi, B., & Lee, J. (2018). N-GCN: Multi-scale
graph convolution for semi-supervised node classification. ArXiv preprint
arXiv:1802.08888.

Altae-Tran, H., Ramsundar, B., Pappu, A. S., & Pande, V. (2017). Low data drug
discovery with one-shot learning. ACS Central Science, 3(4), 283–293.

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In
NIPS (pp. 1993–2001).

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., et al. (2018). Relational inductive biases, deep learning, and
graph networks. ArXiv preprint arXiv:1806.01261.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples.
Journal of Machine Learning Research (JMLR), 7(Nov), 2399–2434.

Blum, L. C., & Reymond, J.-L. (2009). 970 million druglike small molecules for
virtual screening in the chemical universe database GDB-13. Journal of the
American Chemical Society, 131, 8732.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017).

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine, 34(4), 18–42.

Bruna, J., Zaremba, W., Szlam, A., & Lecun, Y. (2014). Spectral networks and
locally connected networks on graphs. In ICLR.

Chen, J., Ma, T., & Xiao, C. (2018). FastGCN: fast learning with graph convolutional
networks via importance sampling. In ICLR.

Chen, J., Zhu, J., & Song, L. (2018). Stochastic training of graph convolutional
networks with variance reduction. In ICML (pp. 941–949).

Chui, C., Filbir, F., & Mhaskar, H. (2015). Representation of functions on big
data: graphs and trees. Applied and Computational Harmonic Analysis, 38(3),
489–509.

Chui, C. K., Mhaskar, H., & Zhuang, X. (2018). Representation of functions on big
data associated with directed graphs. Applied and Computational Harmonic
Analysis, 44(1), 165–188.

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory. American
Mathematical Society.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

Daubechies, I. (1992). Ten lectures on wavelets. SIAM.
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. In NIPS (pp.
3844–3852).

Gavish, M., Nadler, B., & Coifman, R. R. (2010). Multiscale wavelets on
trees, graphs and high dimensional data: theory and applications to semi
supervised learning. In ICML (pp. 367–374).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In ICML (pp. 1263–1272).

Golub, G. H., & Van Loan, C. F. (2012). Matrix computations. JHU Press.
Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische

Annalen, 69(3), 331–371.
Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning

on large graphs. In NIPS (pp. 1024–1034).
Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs

via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2),
129–150.

Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012). Simple and practical
algorithm for sparse Fourier transform. In Proceedings of the 23rd annual
ACM-SIAM symposium on discrete algorithms (pp. 1183–1194).

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on
graph-structured data. ArXiv preprint arXiv:1506.05163.

Indyk, P., Kapralov, M., & Price, E. (2014). (Nearly) sample-optimal sparse Fourier
transform. In Proceedings of the 25th annual ACM-SIAM symposium on discrete
algorithms (pp. 480–499).

Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1),
359–392.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In ICLR.

Li, Q., Han, Z., & Wu, X.-M. (2018). Deeper insights into graph convolutional
networks for semi-supervised learning. In AAAI (pp. 3538–3545).

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2016). Gated graph sequence
neural networks. In ICLR.

Liao, R., Zhao, Z., Urtasun, R., & Zemel, R. S. (2019). LanczosNet: Multi-scale deep
graph convolutional networks. In ICLR.

Lu, Q., & Getoor, L. (2003). Link-based classification. In ICML (pp. 496–503).
Ma, Z., Li, M., & Wang, Y. G. (2019). PAN: Path integral based convolution for

deep graph neural networks. In ICML workshop on learning and reasoning
with graph-structured representations.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M.
(2017). Geometric deep learning on graphs and manifolds using mixture
model CNNs. In CVPR (pp. 5425–5434).

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social
representations. In KDD (pp. 701–710).

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., & Pande, V.
(2015). Massively multitask networks for drug discovery. ArXiv preprint
arXiv:1502.02072.

Rupp, M., Tkatchenko, A., Müller, K.-R., & von Lilienfeld, O. A. (2012). Fast and
accurate modeling of molecular atomization energies with machine learning.
Physical Review Letters, 108, 058301.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1),
61–80.

Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., & Tkatchenko, A.
(2017). Quantum-chemical insights from deep tensor neural networks.
Nature Communications, 8, 13890.

Smith, J. S., Isayev, O., & Roitberg, A. E. (2017). ANI-1: An extensible neural
network potential with DFT accuracy at force field computational cost.
Chemical Science, 8(4), 3192–3203.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018).
Graph attention networks. In ICLR.

Wang, Y. G., Li, M., Ma, Z., Montufar, G., Zhuang, X., & Fan, Y. (2019). Haar graph
pooling. ArXiv preprint arXiv:1909.11580.

Wang, Y. G., & Zhuang, X. (2019). Tight framelets on graphs for multiscale data
analysis. In Proceedings of wavelets and sparsity XVIII, Vol. 11138 (p. 111380B).
International Society for Optics and Photonics.

Wang, Y. G., & Zhuang, X. (2020). Tight framelets and fast framelet filter bank
transforms on manifolds. Applied and Computational Harmonic Analysis, 48(1),
64–95.

Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep learning via
semi-supervised embedding. In Neural networks: Tricks of the trade (pp.
639–655).

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, [ISSN: 2162-2388] 1–21. http://dx.doi.org/10.1109/TNNLS.
2020.2978386.

http://arxiv.org/abs/1802.08888
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb2
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb2
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb2
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb3
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb3
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb3
http://arxiv.org/abs/1806.01261
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb5
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb5
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb5
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb5
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb5
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb6
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb6
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb6
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb6
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb6
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb7
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb8
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb8
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb8
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb8
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb8
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb9
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb9
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb9
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb10
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb10
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb10
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb11
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb11
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb11
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb12
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb12
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb12
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb12
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb12
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb13
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb13
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb13
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb13
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb13
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb14
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb14
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb14
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb15
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb15
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb15
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb16
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb17
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb17
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb17
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb17
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb17
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb18
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb18
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb18
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb18
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb18
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb19
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb19
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb19
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb20
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb21
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb21
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb21
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb22
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb22
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb22
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb23
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb23
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb23
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb23
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb23
http://arxiv.org/abs/1506.05163
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb27
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb27
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb27
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb27
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb27
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb28
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb28
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb28
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb29
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb29
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb29
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb30
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb30
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb30
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb31
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb31
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb31
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb32
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb33
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb33
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb33
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb33
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb33
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb34
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb34
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb34
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb34
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb34
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb35
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb35
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb35
http://arxiv.org/abs/1502.02072
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb37
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb37
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb37
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb37
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb37
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb38
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb38
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb38
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb38
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb38
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb39
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb39
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb39
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb39
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb39
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb40
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb40
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb40
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb40
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb40
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb41
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb41
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb41
http://arxiv.org/abs/1909.11580
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb43
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb43
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb43
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb43
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb43
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb44
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb44
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb44
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb44
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb44
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb45
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb45
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb45
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb45
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb45
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386

198 M. Li, Z. Ma, Y.G. Wang et al. / Neural Networks 128 (2020) 188–198

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). MoleculeNet: A benchmark for molecular machine learning. Chemical
Science, 9(2), 513–530.

Wu, F., Zhang, T., Souza Jr, A. H. d., Fifty, C., Yu, T., & Weinberger, K. Q. (2019).
Simplifying graph convolutional networks. In ICML.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks?. In ICLR

Xu, B., Shen, H., Cao, Q., Qiu, Y., & Cheng, X. (2019). Graph wavelet neural
network. In ICLR.

Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting semi-supervised
learning with graph embeddings. In ICML (pp. 40–48).

Yang, Y., Wang, X., Song, M., Yuan, J., & Tao, D. (2019). SPAGAN: Shortest path
graph attention network. In IJCAI.

Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: a survey. IEEE
Transactions on Knowledge and Data Engineering, [ISSN: 1558-2191] http:
//dx.doi.org/10.1109/TKDE.2020.2981333, 1-1.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., & Sun, M. (2018). Graph neural
networks: A review of methods and applications. ArXiv preprint arXiv:
1812.08434.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using
Gaussian fields and harmonic functions. In ICML (pp. 912–919).

http://refhub.elsevier.com/S0893-6080(20)30156-8/sb47
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb47
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb47
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb47
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb47
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb48
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb48
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb48
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb49
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb49
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb49
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb50
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb50
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb50
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb51
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb51
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb51
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb52
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb52
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb52
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb55
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb55
http://refhub.elsevier.com/S0893-6080(20)30156-8/sb55

	Fast Haar Transforms for Graph Neural Networks
	Introduction
	Related work
	Graph convolution with Haar basis
	Graph Fourier transform
	Haar basis
	Haar convolution
	Fast algorithms for Haar transforms and Haar convolution
	Weight sharing

	Fast algorithms under Haar basis
	Fast computation for adjoint Haar transform Tf
	Fast computation for forward Haar transform c
	Computational complexity analysis

	Graph neural networks with Haar transforms
	Models
	Technical components

	Experiments
	Quantum chemistry for graph-based regression
	Citation networks for node classification
	Haar basis and FHTs

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

