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Variational regularization models are one of the popular and efficient approaches 
for image restoration. The regularization functional in the model carries prior 
knowledge about the image to be restored. The prior knowledge, in particular for 
natural images, are the first-order (i.e. variance in luminance) and second-order 
(i.e. contrast and texture) information. In this paper, we propose a model for image 
restoration, using a multilevel non-stationary tight framelet system that can capture 
the image’s first-order and second-order information. We develop an algorithm to 
solve the proposed model and the numerical experiments show that the model is 
effective and efficient as compared to other higher-order models.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The restoration of a degraded image may be modeled as

z = Ku + ε, (1)
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where u denotes the unknown image to be recovered, K a blurring matrix, z an observed blurred image, and 
ε the noise. In general, K is a singular or near-singular matrix and hence the problem of finding the solution u
from model (1) is ill-posed. To overcome the difficulties caused by the ill-posedness, regularization techniques 
such as total-variation regularization and multiscale regularization are often adopted, see [4,6,12,14,29] and 
the references therein. The resulting regularized image models have the following generic form

min
u

{F(u) + αG(u)}, α > 0 (2)

where α is the regularization parameter, F represents the data fidelity term and G the regularization 
term. The fidelity term measures the closeness of the estimate obtained from (2) to the data z while 
the regularization term is used to arrive at a sensible solution. Generally speaking, model (2) integrates 
knowledge about how data is generated in the fidelity term F with the regularization functional G that 
carries prior knowledge about the image to be restored.

Our main focus of this paper is to choose a proper regularization G in (2) for image restoration. Here, 
a proper regularization means a regularization functional that encodes prior knowledge about the image 
to be restored. Prior knowledge about images, in particular for natural images, includes first-order (i.e. 
variance in luminance) and second-order (i.e. contrast and texture) information [19]. One commonly used 
regularization term that exploits the first-order information is the bounded variation semi-norm [29]

G(u) :=
∫
Ω

|∇u|, (3)

where the image u is defined on the bounded set Ω ⊂ Rd. The corresponding model (2), referred as the 
total variation (TV) based image restoration model, performs incredibly well especially if the image to be 
reconstructed is piecewise constant. The total variation functional does not penalize discontinuities in images 
and thus allows us to recover the edges of the original image. However, it does not distinguish between jumps 
and smooth transitions, therefore it tends to give piecewise constant images with staircase artifacts. Due 
to this notably staircase phenomenon, the TV-based model is not suited for reconstructing images that are 
not nearly piecewise constant. It was pointed out in [13] that whereas the reconstruction generated with 
the first-order model will display jumps, the basic geometric structure of the original intensity surfaces 
is missing, even if it appears in the data. It was further mentioned that using higher order models, these 
artifacts from the first-order model can be eliminated and some of the fine geometric structures, particularly 
planar and quadric patches, of the original image can be recovered.

One of the earliest models using higher derivatives was proposed in [5] where the infimal convolution of 
the first and second order derivatives was proposed as regularizer

G(u) := inf
v

∫
Ω

|∇u−∇v| + α|∇(∇v)|. (4)

It approximates locally the gradient of the function u by ∇v, that itself has a low total variation. Different 
second-order functionals for staircase reduction have been considered in other papers, for example, see 
[8,26]. Based on tensor algebra, the regularizer with derivatives of arbitrary order was introduced in [2]. 
The corresponding regularizer was called total generalized variation (TGV). In particular, the TGV of 
second-order is

G(u) := min
v

∫
Ω

(α1|∇u− v| + α2|E(v)|), (5)

where the parameters α1, α2 are positive, and
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E(v) =
[

∂1v1
1
2 (∂1v2 + ∂2v1)

1
2 (∂1v2 + ∂2v1) ∂2v2

]
with v1 and v2 being the components of v. Note that for twice differentiable u, E(∇u) is the Hessian of u. 
We note that the TGV of second-order (5) is similar to, but structural different from, the regularizer (4). 
The use of TGV and its variants in a plethora of applications has been reported in [1,30] and the references 
therein.

Motivated from the fact that an image/signal naturally has a hierarchical structure and allows to be 
represented in a multiscale structure, we exploit this structure to formulate a regularization term G in (2)
that is different from the aforementioned ones. To this end, we first construct a two-level non-stationary tight 
framelet system that is suitable for representing images to be restored. More specifically, the tight framelet 
system in the first level is the directional Haar framelet (DHF) system introduced in our recent work [21]
while the one in the second level is constructed from the discrete cosine transform (DCT). We then use the 
framelet coefficients of an image under this two-level non-stationary tight framelet system to formulate the 
regularization term G. More precisely, the framelet coefficients of the image with the DHF consist of the first-
order information of the image in the vertical, horizontal, and ±45° directions. As a result, the regularization 
term G contains not only the TV term but also ameliorates it by including the diagonal information. The 
coarse approximation to this image resulting from the low-pass filter of the DHF, considered as a smooth 
version of this image, will facilitate the extraction of the second-order information of the image. As shown 
in our previous work [24], the second-order information of the image can be reliably extracted from the 
DCT-based tight framelet coefficients of this smoothed image. Our proposed regularization term G also 
includes these second-order information. We remark that the success of tight framelets have been proven to 
be useful in image processing, see, e.g., [3,7,22–24,31] and the references therein. However, despite that our 
two-level non-stationary tight framelet system is new, the proposed regularization is also different from the 
existing ones in the following perspectives:

• Due to the DHF, our regularization assimilates the advantages of both the total variation regularization 
and other framelet regularizations, and remedies their drawbacks. On the one hand, the filters associated 
with DHF have the shortest support among all tight framelet systems, therefore, it can suppress ringing 
artifacts arising from other framelet regularizations. In comparison, the filters associated with the 2-
dimensional orthogonal Haar wavelet have the shortest support only among all compactly supported 
orthogonal wavelets. On the other hand, the diagonal first-order information provided by the DHF can 
reduce the staircase artifacts (or block effect) arising from the classical TV regularization. In comparison, 
the 2-dimensional orthogonal Haar wavelet only provides first-order information in the vertical and 
horizontal directions.

• We exploit the second-order information of the underlying image from its smoothed version rather than 
from the image itself. The main idea behind it is that the high frequency spatial information of the 
image will be suppressed in its smoothed one and therefore the second-order information of the image 
will be faithfully computed, in particularly, for images with high degree of noise.

• Finally, the properties of the tight framelet can be easily exploited to develop algorithms with compu-
tational efficiency and to analyze the convergence of the resulting algorithms.

To summarize, the proposed regularizer G contains the first and second order information of the image 
to be constructed for (2). The resulting optimization problem (2) can be efficiently solved and the efficiency 
and accuracy of this regularizer will be confirmed for image restoration.

The rest of this paper is organized as follows. In Section 2 we first briefly review the tight framelet systems, 
we then propose an image restoration model regularized by a two-level non-stationary tight framelet system 
and develop an algorithm to solve this model. The performance of the proposed model for image restoration 
is presented in Section 3.
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2. Model and algorithm with multi-level non-stationary tight framelets

This section consists of three parts. In the first part, we briefly review the multi-level non-stationary 
tight framelet systems. In the second part, we propose our image restoration model using a two-level non-
stationary tight framelet system. In the last part, we propose an algorithm to solve the resulting optimization 
problem.

2.1. Multi-level non-stationary tight framelets

Tight framelets are closely related to filter banks. A tight framelet filter bank can be used to (sparsely) 
represent data sequences through its associated discrete framelet transforms as well as its underlying discrete 
affine system [17]. Before proceeding to their connections, let us recall some definitions and notation first.

By l(Zd) we denote the set of all sequences and l0(Zd) the set of all finitely supported sequences. A filter
or mask h = {h(k)}k∈Zd : Zd → C on Zd is a sequence in l0(Zd). For a filter h ∈ l0(Zd), its Fourier series
is defined to be ĥ(ξ) :=

∑
k∈Zd h(k)e−ik·ξ for ξ ∈ Rd, which is a 2πZd-periodic trigonometric polynomial. 

In particular, by δ we denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}. 
Throughout the paper, we assume the tight framelets are dyadic dilated, that is, the dilation matrix is 2Id
with Id the d × d identity matrix.

For filters τ0, τ1, . . . , τs ∈ l0(Zd), we say that a filter bank {τ0; τ1, . . . , τs} is a (d-dimension dyadic) tight 
framelet filter bank if

s∑
�=0

τ̂�(ξ)τ̂�(ξ + πω) = δ(ω), ∀ ξ ∈ Rd, ω ∈ {0, 1}d, (6)

where for a number x ∈ C, x̄ denotes its complex conjugate. Equation (6) is equivalent to the perfect 
reconstruction property of the discrete framelet transforms associated with the filter bank {τ0; τ1, . . . , τs}
([18, Theorems 1.1.1 and 1.1.4]). The filter τ0 is usually a low-pass filter satisfying τ̂0(0) = 1 while τ�’s are 
the high-pass filters satisfying τ̂�(0) = 0 for 	 � 1.

In practice, multi-level decomposition and reconstruction of data using discrete framelet transform as-
sociated with tight framelet filter banks are commonly used in order to exploit the sparse property of the 
data. Moreover, in signal/image processing, translation invariance property of a discrete framelet transform 
is desirable especially in the scenario of signal denoising/inpainting. To preserve the translation invariance 
property, one usually considers the redundant version of discrete framelet transform, that is, the undecimated 
discrete framelet transform (UDFmT). More precisely, denote a filter bank at level j as ηj := {τ j0 ; τ j1 , . . . , τ jsj}
and consider a sequence {ηj : j = 1, . . . , J} = ∪J

j=1{τ
j
0 ; τ j1 , . . . , τ jsj} of J filter banks with j = J � 1 be-

ing the finest level and j = 1 being the coarsest level. Let the convolution operation * be defined by 
[h ∗ v](γ) :=

∑
k∈Zd h(γ − k)v(k), for v ∈ l(Zd), h ∈ l0(Zd), γ ∈ Zd, and the upsampling operator ↑ m with 

m ∈ N be given by

[v ↑ m](γ) :=
{
v(m−1γ), if m−1γ ∈ Zd;
0, otherwise.

For a filter h, let h� be a filter defined by h�(k) = h(−k), k ∈ Zd. Then, for a given input data sequence 
v = vJ , the UDFmT includes (i) Decomposition:

vj−1 = vj ∗ ((τ j0 )� ↑ 2J−j), wj−1;� = vj ∗ ((τ j� )� ↑ 2J−j), 	 = 1, . . . , sj , j = J, . . . , 1, (7)

and (ii) Reconstruction:
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vj = vj−1 ∗ (τ j0 ↑ 2J−j) +
s∑

�=1

wj−1;� ∗ (τ j� ↑ 2J−j), j = 1, . . . , J. (8)

One can show that if each filter bank {τ j0 ; τ j1 , . . . , τ jsj} satisfies the partition of unity condition: 
∑sj

�=0 |τ̂
j
� (ξ)|2 =

1, ξ ∈ Rd, then any input data sequence v ∈ l(Zd) can be perfectly reconstructed via (8) from its framelet 
coefficient sequences {v0} ∪ {wj;� : 	 = 1, . . . , sj}Jj=1 decomposed from (7). The framelet system associated 
with such a sequence {ηj : j = 1, . . . , J} is then called a multi-level non-stationary tight framelet system.

In this paper, we consider J = 2, that is, two-level non-stationary tight framelet system. One can of 
course consider J > 2. However, in terms of efficiency and simplicity, J = 2 is the best choice for the 
development of this paper.

2.2. Regularization with a two-level non-stationary tight framelet system

In this subsection, we integrate two different tight framelet systems as a two-level non-stationary tight 
framelet system which will be exploited for the optimization problem (2).

The tight framelets in the first level is the directional Haar framelet (DHF) system proposed in [21]. The 
filters associated with this DHF are

τ0 = 1
4

[
1 1
1 1

]
, τ1 = 1

4

[
1 0
0 −1

]
, τ2 = 1

4

[
0 −1
1 0

]
, τ3 = 1

4

[
1 −1
0 0

]
,

τ4 = 1
4

[
1 0
−1 0

]
, τ5 = 1

4

[
0 0
1 −1

]
, τ6 = 1

4

[
0 1
0 −1

]
.

As two-dimensional filters, the indices of the entries (top-left, top-right, bottom-left, and bottom-right) in 
each filter are (0, 0), (0, 1), (1, 0), and (1, 1), respectively. The first filter τ0 is a low-pass filter and the rest 
are high-pass filters that have the ability to provide directional information of an image when these filters 
are applied to the image. More precisely, the filters τ1 and τ2 act as the first-order difference operators 
in the 45° and 135° directions, respectively. The results of these two filters convolving with an image will 
highlight changes in intensity of the image in these two diagonal directions. The filters τ3 and τ5 are the 
first-order difference operators in the horizontal direction while the filters τ4 and τ6 are the first-order 
difference operators in the vertical direction. The convolutions of these filters with the underlying image are 
the coefficients of the image under the corresponding filters, which are the multiplications of some associated 
transformation matrices with the image.

Now, we propose a generic regularization term based on DHF. Let u ∈ Rn be the vector representing the 
column-stacked version of an image. We denote by Mκ the associated matrix representation of the filters 
τκ, κ = 0, 1, . . . , 6, under a proper boundary condition. We further denote

B1� := M0 and B1h := [M�
1 , . . . ,M�

6 ]�. (9)

By the tight frame property of {τ0; τ1, . . . , τs}, these two matrices satisfy the following perfect reconstruction 
condition

B�
1�B1� + B�

1hB1h = I.

Let Φ1Λ : R6n → R be defined through a function ϕ1 : R6 → R and a non-negative parameter vector 
Λ = [λ1, λ2, . . . , λn ] as follows

Φ1Λ(v) :=
n∑

λiϕ1(vi, vi+n, . . . , vi+5n). (10)

i=1
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With this function Φ1Λ, we propose a functional based on DHF in the following form

G1(u) := Φ1Λ(B1hu), (11)

from which the TV regularization and its variants can be derived by properly chosen ϕ1 in (10). For 
example, if we choose ϕ1(x1, x2, x3, x4, x5, x6) = |x3| + |x4|, the regularization in (11) is reduced to the 
so-called anisotropic TV; If we choose ϕ1(x1, x2, x3, x4, x5, x6) =

√
|x3|2 + |x4|2, the regularization in (11)

is reduced to the so-called isotropic TV.
We choose, in this paper,

ϕ1(x1, x2, x3, x4, x5, x6) =
√

|x1|2 + |x2|2 +
√

|x3|2 + |x4|2. (12)

One of the advantages of the regularization G1 with ϕ1 given in (12) is that it assimilates the advantages 
of both total variation and wavelet regularizations and remedies their drawbacks. The way of avoiding 
or suppressing ringing artifacts arising from wavelet regularizations is to choose a wavelet system whose 
filters have small supports. The filters associated with the 2-dimensional orthogonal Haar wavelet have the 
shortest support among all compactly supported orthogonal wavelets, but the staircase artifacts (or blocky 
effect) will appear in the neighborhoods of edges in the directions about ±45°. Since ϕ1 in (12) includes the 
diagonal first-order information from the filters τ1 and τ2, the staircase artifacts can be reduced.

The tight framelet in the second level is generated from the standard 3 × 3 DCT-II orthogonal matrix 
whose three rows are c0 =

√
3

3 [1, 1, 1], c1 =
√

2
2 [1, 0, −1], and c2 =

√
6

6 [1, −2, 1]. In the sequel, this system is 
referred to as the DCT-based tight framelet system. The filters of the DCT-based tight framelet system are 
τ3i+j = 1

3c
�
i cj with i, j ∈ {0, 1, 2}, where τ0 is the low-pass filter and the others are high-pass filters. Here, 

for simplicity of notation, we use τκ to denote the filters associated with both the DHF or DCT-based tight 
framelet. The expansions of these filters are

τ0 = 1
9

[1 1 1
1 1 1
1 1 1

]
, τ1 =

√
6

18

[1 0 −1
1 0 −1
1 0 −1

]
, τ2 =

√
2

18

[1 −2 1
1 −2 1
1 −2 1

]
,

τ3 =
√

6
18

[ 1 1 1
0 0 0
−1 −1 −1

]
, τ4 = 1

6

[ 1 0 −1
0 0 0
−1 0 1

]
, τ5 =

√
3

18

[ 1 −2 1
0 0 0
−1 2 −1

]
,

τ6 =
√

2
18

[ 1 1 1
−2 −2 −2
1 1 1

]
, τ7 =

√
3

18

[ 1 0 −1
−2 0 2
1 0 −1

]
, τ8 = 1

18

[ 1 −2 1
−2 4 −2
1 −2 1

]
.

The filters τ1 and τ3, known as the Prewitt operator in image processing, are used to compute an approx-
imation of the gradient (i.e., the first-order information) of the image intensity function. The convolution 
of τ1 (resp. τ3) with an image gives the horizontal (resp. vertical) changes of the image intensity and they 
compute changes of intensity with smoothing due to τ1 = 1

3c
�
0 c1 and τ3 = 1

3c
�
1 c0. The filter τ2 (resp. τ6) 

computes the discrete second-order difference in vertical (resp. horizontal) direction with smoothing due to 
τ2 = 1

3c
�
0 c2 and τ6 = 1

3c
�
2 c0. The other filters τ4, τ5, τ7, and τ8 perform like discrete high-order difference 

operators.
We should note that the first-order derivative operators exaggerate the effects of noise while the second-

order derivatives will be exaggerated noise twice as much [15]. Therefore, the applicability of the second-order 
derivatives is limited to images with low noise level. Motivated from the Laplacian of a Gaussian (LOG) and 
difference of Gaussian (DOG) operators in computer vision, see, for example, [25,27], we propose to take 
the second-order derivatives on the blurred or smoothed images in order to reduce the effect of the presence 
of noise in an image. To this end, we denote by Pκ the matrix representation of the filters τκ, κ = 0, 1, . . . 8, 
under a proper boundary condition. Let us define
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B2� := P0 and B2h := [P�
1 , . . . , P�

8 ]�. (13)

We have that

B�
2�B2� + B�

2hB2h = I.

Let Φ2Θ : R8n → R be defined through a nonnegative parameter sequence Θ = {θi = (θi1, θi2, . . . , θi8) ∈
R8 : 1 � i � n} with non-negative elements as follows

Φ2Θ(v) :=
n∑

i=1
‖[θi1vi, θi2vi+n, . . . , θi8vi+7n]‖1, (14)

where ‖ · ‖1 denotes the 	1 norm. With this function Φ2Θ, we propose a functional based on the DCT-based 
tight framelet system in the following form

G2(u) := Φ2Θ(B2hB1�u), (15)

where B1�u is viewed as the smooth version of u.
All together, our proposed image restoration model is

min
u

{F(u) + G1(u) + G2(u)}. (16)

The efficiency of the regularization functional G1(u) +G2(u) in (16) will be presented in Section 3 when it is 
compared with several possible regularization functionals formulated from the DHF and DCT-based tight 
framelet, and with other existing higher-order regularization functionals.

2.3. Algorithm

In this subsection, we specify the data fidelity F in (16). For Gaussian noise, the natural choice for F is 
F(u) = 1

2‖Ku −z‖2 where ‖ ·‖ denotes either the vector 2-norm or matrix 2-norm. That is, the optimization 
problem we consider here is

min
u∈[0,1]n

1
2‖Ku− z‖2 + Φ1Λ(B1hu) + Φ2Θ(B2hB1�u), (17)

where Φ1Λ is given in (10) and Φ2Θ is given in (14). Here, we assume that all pixel values of an image are 
in [0, 1].

We next introduce our notation and recall some necessary background from convex analysis. The class 
of all lower semicontinuous convex functions f : Rd → (−∞, +∞] such that dom f := {x ∈ Rd : f(x) <
+∞} �= ∅ is denoted by Γ0(Rd). The indicator function of a closed convex set C in Rd is defined, at u ∈ Rd, 
as

ιC(u) :=
{

0, if u ∈ C,

+∞, otherwise.

Clearly, the indicator function ιC is in Γ0(Rd) for any closed nonempty convex set C.
For a function f ∈ Γ0(Rd), the proximity operator of f with parameter λ, denoted by proxλf , is a 

mapping from Rd to itself, defined for a given point x ∈ Rd by
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proxλf (x) := argmin
{

1
2‖u− x‖2 + λf(u) : u ∈ Rd

}
.

We also need the notation of conjugate. The conjugate of f ∈ Γ0(Rd) is the function f∗ ∈ Γ0(Rd) defined 
at x ∈ Rd by f∗(x) := sup{〈u, x〉 − f(u) : u ∈ Rd}. A key property of the proximity operators of f and its 
conjugate is

proxλf (x) + λproxλ−1f∗(x/λ) = x, (18)

which holds for all x ∈ Rn and any λ > 0.
Now, we turn to the optimization problem (17). Define

f(u) = 1
2‖Ku− z‖2, g(u) = ι[0,1]n , p(s) = Φ1Λ(s1) + Φ2Θ(s2), and A =

[
B1h

B2hB1�

]
, (19)

where u ∈ Rn and s = (s1, s2) with s1 ∈ R6n and s2 ∈ R8n. Then, our optimization problem (17) can be 
viewed as a special case of the optimization problem whose objective function is the sum of three lower 
semicontinuous convex functions in the form of

min
u∈Rn

f(u) + g(u) + p(Au), (20)

where A is a d × n matrix, f ∈ Γ0(Rn) is differentiable, g ∈ Γ0(Rn), and p ∈ Γ0(Rd).
Several algorithms have been developed for the optimization problem (20), see, for example, [10,11,20,33]. 

We adopt the algorithm given in [33] for problem (20) since it converges under a much weaker condition 
and can choose a larger step-size, yielding a faster convergence. This algorithm, named as Primal-Dual 
Three-Operator splitting (PD3O), has the following iteration:

uk = proxγg(vk) (21a)

sk+1 = proxδp∗
(
(I − γδAA�)sk + δA(2uk − vk − γ∇f(uk))

)
(21b)

vk+1 = uk − γ∇f(uk) − γA�sk+1 (21c)

One PD3O iteration can be viewed as an operator TPD3O such that (vk+1, sk+1) = TPD3O(vk, sk). The 
convergence analysis of PD3O is given in the following lemma.

Lemma 1 (Sublinear convergence rate [33]). Let f ∈ Γ0(Rn) and its gradient be Lipschitz continuous with 
constant L, let g ∈ Γ0(Rn), and p ∈ Γ0(Rd). Choose γ and δ such that γ < 2/L and M = γ

δ (I − γδAA�)
is positive definite. Let (v∗, s∗) be any fixed point of TPD3O, and {(vk, sk)}k�0 be the sequence generated by 
PD3O. Define ‖(v, s)‖M :=

√
‖v‖2 + 〈s,Ms〉. Then, the following statements hold.

(i) The sequence {(‖(vk, sk) − (v∗, s∗)‖M )}k�0 is monotonically nonincreasing.
(ii) The sequence {(‖(vk+1, sk+1) −(vk, sk)‖M )}k�0 is monotonically nonincreasing. Moreover, ‖(vk+1, sk+1) −

(vk, sk)‖2
M = o 

(
1

k+1

)
.

To adapt PD3O for our optimization problem (17) with f , g and p, and the matrix A given in (19), some 
preparations are provided in the following lemmas.

Lemma 2. Let δ > 0 and Φ1Λ be given in (10). For any v ∈ R6n, if y = proxδ−1Φ1Λ
(v), then

y(i) = proxδ−1λ ϕ (v(i)), (22)

i 1
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where y(i) = [yi yi+n · · · yi+5n ]� and v(i) = [vi vi+n · · · vi+5n ]�. Furthermore, let y(ij) and v(ij)
be yi+(j−1)n and vi+(j−1)n, respectively, for i = 1, . . . , n and j = 1, . . . , 6, then

[
y(i1)
y(i2)

]
=

(
1 − λiδ

−1

max{‖ [v(i1) v(i2) ] ‖, λiδ−1}

)[
v(i1)
v(i2)

]
,

where the pair (y(i3), y(i4)) is obtained by simply replacing (v(i1), v(i2)) in the right hand side of the above 
formula by (v(i3), v(i4)), and y(i5) = v(i5), y(i6) = v(i6).

Proof. The proof is based on the block separable property of Φ1Λ in (10). By the definition of proximity 
operator and equations (10) and (12),

proxδ−1Φ1Λ
(v) = argmin

{
1
2‖u− v‖2 + δ−1Φ1Λ(u) : u ∈ R6n

}

= argmin
{

n∑
i=1

1
2‖u(i) − v(i)‖2 + δ−1λiϕ1(u(i)) : u(i) ∈ R6, i = 1, . . . , n

}
.

Hence, equation (22) holds. Notice that ϕ1 is also a block separable function. By using the definition of 
proximity again and the proximity operator of the 	2 norm (see, for example, [9,28]), we obtain the explicit 
expression for y(i) as given above. �
Lemma 3. Let δ > 0 and Φ2Θ be given in (14). For any v ∈ R8n, if y = proxδ−1Φ2Θ

(v), then

y(i) = proxδ−1‖·‖1◦diag(θi)(diag(v(i)), (23)

where y(i) = [yi yi+n · · · yi+7n ]� and v(i) = [vi vi+n · · · vi+7n ]�. Furthermore, let y(ij) and v(ij)
be yi+(j−1)n and vi+(j−1)n, respectively, for i = 1, . . . n and j = 1, . . . , 8, then

y(ij) = max{|v(ij)| − δ−1θij , 0}sgn(v(ij)).

Proof. The proof is based on the block separable property of Φ2Θ in (14). By the definition of proximity 
operator,

proxδ−1Φ2Θ
(v) = argmin

{
1
2‖u− v‖2

2 + δ−1Φ2Θ(u) : u ∈ R8n
}

= argmin
{

n∑
i=1

1
2‖u(i) − v(i)‖2

2 + δ−1‖diag(θi)u(i)‖1 : u(i) ∈ R8, i = 1, . . . , n
}
.

Hence, equation (23) holds. Furthermore, notice that proxδ−1‖·‖1◦diag(θi) is the well-known soft thresholding 
operator, the rest of result holds. �
Lemma 4. Let Φ1Λ be given in (10) and Φ2Θ be given in (14). For any v ∈ R14n, write v = (v1, v2) with 
v1 ∈ R6n and v2 ∈ R8n, and define p(v) = Φ1Λ(v1) + Φ2Θ(v2). Then, for any δ > 0,

proxδ−1p(v) = proxδ−1Φ1Λ
(v1) × proxδ−1Φ2Θ

(v2).

The result in the above lemma comes from the block separability of the function p. Therefore, we omit its 
proof here.
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To apply Lemma 1 to problem (17), we verify all the requirements listed in Lemma 1. First, for the 
function f in (19), we have that ∇f(u) = K�(Ku − z), the gradient of f is ‖K‖2-Lipschitz continuous. 
Next, we discuss the positive definiteness of the matrix I − γδAA�.

Lemma 5. Let A be given in (19). Then, for positive numbers γ and δ, the matrix I − γδAA� is positive 
semidefinite (or definite) if and only if γδ � 1 (or γδ < 1).

Proof. First, we show that ‖A‖ = 1. For any u ∈ Rn, we have that

u�A�Au = u�B�
1hB1hu + u�B�

1�B
�
2hB2hB1�u.

Since B�
2hB2h + B�

2�B2� = I and B�
1hB1h + B�

1�B1� = I, from the above we have that

u�A�Au � u�B�
1hB1hu + u�B�

1�B1�u = u�u.

Hence ‖A‖ � 1. Further, since the null space of B1h is non-empty, therefore, ‖A‖ = 1.
Next, since AA� is positive semi-definite and its largest eigenvalue is 1, hence, I − γδAA� is positive 

semidefinite (or definite) if and only if γδ � 1 (or γδ < 1). �
The explicit form of proxδ−1p is given in Lemma 4 with the help of Lemmas 2 and 3. Therefore, the 

proximity operator proxδp∗ can be computed via (18). With the above preparation, the complete procedure 
for solving (17) based on (21a)-(21c) is described in Algorithm 1. This algorithm is refereed to as TNTF 
(two-level non-stationary tight framelet) algorithm.

Algorithm 1 Two-level Non-stationary Tight Framelet (TNTF) Algorithm.
1: Set parameters γ < 2

‖K‖2 , γδ < 1; pre-given parameters Λ and Θ.
2: Initialize v0 = 0 and s0 = 0
3: Auxiliary variable xk and write sk = (sk1 , sk2)
4: for k = 1, 2, . . . do
5:

u
k = Proj[0,1](v

k) (24a)

x
k = γ(B�

1hs
k
1 + B

�
1�B

�
2hs

k
2) − (2uk − v

k) + γK
�(Ku

k − z) (24b)

s
k+1
1 = (sk1 − δB1hx

k) − δ · proxδ−1Φ1Λ
(δ−1(sk1 − δB1hx

k)) (24c)

s
k+2
1 = (sk2 − δB2hB1�x

k) − δ · proxδ−1Φ2Θ
(δ−1(sk2 − δB2hB1�x

k)) (24d)

v
k+1 = u

k − γK
�(Ku

k − z) − γ(B�
1hs

k+1
1 + B

�
1�B

�
2hs

k+2
2 ) (24e)

6: end for

The convergence analysis for Algorithm 1 is as follows.

Theorem 1. Let (v∗, s∗) be any fixed point of TPD3O with f , g, p and A given in (19). Let {(vk, sk)}k�0
be the sequence generated by Algorithm 1, where sk = (sk1 , sk2). Choose γ and δ such that γ < 2/‖K‖2 and 
γδ < 1. Define M = γ

δ (I − γδAA�). Then, the following statements hold.

(i) The sequence {(‖(vk, sk) − (v∗, s∗)‖M )}k�0 is monotonically nonincreasing.
(ii) The sequence {(‖(vk+1, sk+1) −(vk, sk)‖M )}k�0 is monotonically nonincreasing. Moreover, ‖(vk+1, sk+1) −

(vk, sk)‖2
M = o 

(
1

)
.
k+1
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Proof. We know that the gradient of f in (19) is ‖K‖2-Lipschitz continuous. By Lemma 5, the matrix M
is positive definite if γδ < 1, the result of this theorem follows immediately from Lemma 1. �

Remark: the computational cost of Algorithm 1 depends on mainly two factors: the UDFmT used in steps 
(24b-e) and the total number of iterations for k. The UDFmT decompositions include B1hx

k, B2hB1�x
k in 

(24c-d) while the UDFmT reconstructions include B�
1hs

k
1 , BT

1�B
�
2hs

k
2 in (24b) and B�

1hs
k+1
1 and B�

1�B
�
2hs

k+2
2

in (24e). Since UDFmT in Algorithm 1 uses convolutions with 7 DHF filters in the first level and 9 DCT-
based filters in the second level, the UDFmT can be implemented with computational cost O(n), where 
n is the number of pixels in u. For the total number of iterations k in Algorithm 1, it depends on when 
the algorithm converges and the maximum number K of iterations set manually. Consequently, the total 
computational cost for Algorithm 1 is O(Kn).

Finally, we discuss how to choose the parameters in the algorithm. In our tests below we choose γ =
1.99, δ = 0.5 to ensure γδ < 1. Recall from (12) that we only use the first four subband coefficients of DHF 
in the first level. The corresponding regularization parameters λi (defined in (10)) are chosen to adaptively 
adjust to local variations. Let I(i) be the set containing all indices in the neighborhood at the ith pixel. 
Then λi is set as

λi = λ× |I(i)|
max{

∑
p∈I(i) ‖wp‖, 10−10} , (25)

where wp = [v(p1), v(p2)]� or wp = [v(p3), v(p4)]� are defined as in (22). In our tests, we choose the neighbor-
hood of window size 3 × 3 and the parameter λ is set by hand.

For the regularization parameters θi associated with the DCT-based tight framelet coefficients (see (14)), 
they are all automatically estimated and updated using the approach in our previous work [24]. More 
precisely, for the regularization parameters θiκ, κ = 1, . . . , 8, used in (14), they are automatically estimated 
according to the local variations of framelet coefficients and noise level. Suppose the ε in model (1) is the 
Gaussian noise with the standard deviation σ. As it was done in our previous work [24], σ2

κ the noise 
variance of the framelet coefficients coming from the filter τκ at the second decomposed level is estimated as 
σ2
κ = σ2

4 ‖τκ‖2
F , where ‖τκ‖F is the Frobenius norm of τκ; (σκ

i )2, the local signal variance of the ith framelet 
coefficients coming from the filter κth, is computed as (σκ

i )2 = max{(
∑

p∈Iκ(i) |vp|/|Iκ(i)|)2 − σ2
κ, 10−10}, 

where Iκ(i) is the set containing all indices in the neighborhood at the ith framelet coefficients from the 
filter κ. With them, the regularization parameters are estimated as

θiκ =
√

2σ2
κ

σκ
i

, κ = 1, . . . , 8. (26)

To save computational cost of estimating parameters λi in (25) and θiκ in (26), we only update these 
parameters when the iteration k is a multiple of 30 and fix them after the 200th iteration in our numerical 
experiments.

3. Experiments

In this section, we present numerical experiments to illustrate the effectiveness and efficiency of our pro-
posed model (17) for image restoration. We use the images “Square Circle”, “Cameraman”, and “Montage” 
of size 256 × 256 as the original images u in our experiments, see Fig. 1. The pixel values of these images 
are normalized to the interval [0, 1]. The quality of the restored image, say ũ, is evaluated in terms of the 
peak-signal-to-noise ratio (PSNR) that is defined by

PSNR := 10 log10
2552n

2 ,
‖ũ− u‖
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Fig. 1. Original image: (a) Square Circle; (b) Cameraman; (c) Montage.

Fig. 2. (a) A region of the image of “Square Circle”; (b) The blurred image by the kernel fspecial(‘average’, [5:5]) with Gaussian 
noise of mean zero and variance σ = 0.04; The restored images with regularization (c) TV with α = 0.04 (see (2) and (3)); (d) 
GDCT; (e) GDHF+DCT; and (f) the proposed regularization functional (16) with λ = 0.00035 (see (25)) in the first level, respectively.

where n is the number of pixels in u. To incorporate structural information in image comparisons, the metric 
of structural similarity (SSIM) [32] of ũ to u is reported as well. The higher the PSNR and SSIM, the better 
the quality of the restored image.

Two sets of comparisons for image restoration will be conducted in this section. The first set is to compare 
with other tight frame regularizers. The second set is to compare with some derivative-based models.

3.1. Comparison with tight frame regularizers

Here we compare the proposed regularization functional (16) with two other tight frame regularization 
functionals GDCT and GDHF+DCT while using the classical TV regularizer GTV (see (3)) as a benchmark. 
The GDCT is defined as GDCT(u) = Φ2Θ(B2hu) which only uses the DCT-based tight framelet and takes the 
first- and second-order information on the image u, where Φ2Θ is given in (14). The GDHF+DCT is defined as 
GDHF+DCT(u) = Φ1Λ(B1hu) + Φ2Θ(B2hu), where Φ1Λ is given in (11) with ϕ1 in (12). The main difference 
between our proposed regularization functional (16) and GDHF+DCT is that the action B2h takes on the 
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Table 1
The PSNR (dB) and SSIM for the restored results of each algorithm with blurred images contaminated by Gaussian noise. The 
test images are blurred by the blurring kernel fspecial(‘average’,[5:5]).

Algorithm “Square Circle” “Cameraman” “Montage” Case
PSNR SSIM PSNR SSIM PSNR SSIM

TV 35.40 dB 0.980 26.43 dB 0.815 28.21 dB 0.907
TGV 35.58 dB 0.976 26.27 dB 0.811 28.84 dB 0.910 STD σ = 0.02
TNTF 38.19 dB 0.992 27.06 dB 0.821 30.19 dB 0.924

TV 34.51 dB 0.969 25.64 dB 0.791 26.92 dB 0.886
TGV 34.33 dB 0.967 25.58 dB 0.788 26.93 dB 0.884 STD σ = 0.03
TNTF 36.14 dB 0.985 26.01 dB 0.800 28.91 dB 0.910

TV 33.66 dB 0.962 25.10 dB 0.774 25.94 dB 0.867
TGV 33.41 dB 0.955 24.94 dB 0.770 26.17 dB 0.875 STD σ = 0.04
TNTF 35.00 dB 0.980 25.31 dB 0.784 27.88 dB 0.898

Fig. 3. (a) Image blurred by kernel fspecial(‘average’, [5:5]) and added Gaussian noise with σ = 0.03; Images reconstructed by (b) 
TV with α = 0.02 (see (2) and (3)), (c) TGV with (α1, α2) = (0.0105, 0.026) (see (5)), and (d) TNTF with λ = 0.0002 (see (25)), 
respectively.

smoothed image B1�u for our regularization functional while the action B2h takes directly on the image u
for GDHF+DCT.

In our experiment, the image of “Square Circle” in Fig. 1(a) (which is the same as Fig. 2(a)) is blurred 
by a 5 × 5 average kernel (using the Matlab command fspecial(‘average’, [5:5]), followed by adding 
Gaussian noise of mean zero and standard deviation σ = 0.04. The values of the pair of (PSNR, SSIM) 
of these restored images by GTV, GDCT, GDHF+DCT, and the proposed regularization functional (16) are 
(33.66 dB, 0.962), (32.54 dB, 0.970), (33.14 dB, 0.980), and (35.00 dB, 0.980), respectively. To view the 
visual quality of the restored images, the square portion marked in the image 1(a) is displayed in Fig. 2. 
For the regions pointed by two arrows, we can conclude that the proposed regularization functional (16)
leads to the restored images having better visual quality than the others. The results clearly show that our 
combined tight frame model is better than other intuitive tight frame models.
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Fig. 4. Two zoom-in parts of Fig. 3: (a) Original image; images reconstructed by (b) TV, (c) TGV, and (d) TNTF, respectively.

Fig. 5. (a) Image blurred by kernel fspecial(‘average’, [5:5]) and added Gaussian noise with σ = 0.02; images reconstructed by (b) 
TV with α = 0.006; (c) TGV with (α1, α2) = (0.0035, 0.0095), and (d) TNTF with λ = 0.0004, respectively.

3.2. Comparison with derivative-based regularizers

Now we give a comprehensive comparison between our model (17) and the TV and TGV models. The TV 
model uses G(u) in (3) as its regularization term while the TGV model uses G(u) in (5) as its regularization 
term. The software of TGV model was provided by the authors in [16]. All algorithms are carried out until 
the stopping condition ‖u(k+1) − u(k)‖2/‖u(k)‖2 < 10−9 is satisfied or the maximal iterations is 400.

In our experiments, the test images in Fig. 1 are blurred by a 5 × 5 average kernel (using the Matlab 
command fspecial(‘average’, [5:5]), followed by adding Gaussian noise of mean zero and standard 
deviation σ. For different values of σ, the PSNR and SSIM values of the restored images by TV, TGV, and 
our TNTF are reported in Table 1. The highest values of PSNR and SSIM for each σ in each test image are 
highlighted. It clearly shows that our proposed TNTF performs the best in terms of both PSNR and SSIM 
values. We remark that the regularization parameters in the second level for our TNTF are automatically 
estimated based on the approach in our work [24].
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Fig. 6. Zoom-in parts of Fig. 5: (a) Original image; images reconstructed by (b) TV, (c) TGV, and (d) TNTF.

Fig. 7. (a) Image blurred by kernel fspecial(‘average’, [5:5]) and added Gaussian noise with σ = 0.04; images reconstructed by (b) 
TV with α = 0.019, (c) TGV with (α1, α2) = (0.0035, 0.0095), and (d) TNTF with λ = 0.00015.

In the rest of this section, we provide qualitative results of the restored images from the above three 
algorithms. We first show the case for the blurred image of “Square Circle” with Gaussian noise of STD 
σ = 0.03 in Fig. 3. The noisy and blurry image is shown in Fig. 3(a). The regularization parameter α = 
0.02 (see (2) and (3)) is used for the TV model and (α1, α2) = (0.0105, 0.026) (see (5)) is used for the TGV 
model based on the best achievable PSNR values. The regularization parameter λ = 0.0002 in the first level 
(see (25)) is used in our proposed model. We can observe that Fig. 3(b) produced by the TV has lots of 
staircase artifacts even without zooming in. As we can see from Fig. 3(c) and (d), this kind of staircase 
artifacts is significantly reduced by the TGV and TNTF. To have a closer look at the visual quality of the 
restored images by various algorithms, two parts of Fig. 3 are zoomed in and displayed in the first column 
of Fig. 4. The corresponding parts in the restored images by TV, TGV, and TNTF are shown in Fig. 4(b), 
(c), and (d), respectively. We can conclude that the horizontal line in the image is well preserved by the 
TNTF.

Fig. 5(a) is the blurred image of “Cameraman” corrupted by Gaussian noise of STD σ = 0.02. The 
restored images by TV, TGV, and TNTF are displayed in Fig. 5(b), (c), and (d), respectively. The regular-
ization parameters for TV, TGV, and TNGV are α = 0.006, (α1, α2) = (0.0035, 0.0095), and λ = 0.0004, 
respectively. The structures of the building as well as the man are well preserved in the restored image by 
our TNTF. Block artifacts are clearly observed in the sky of the restored images by TV and TGV (see 
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Fig. 8. Two zoom-in parts of Fig. 7: (a) Original image; images reconstructed by (b) TV, (c) TGV, and (d) TNTF.

Fig. 5(b), (c)), but not in Fig. 5(d). The zoom-in part of Fig. 5 is displayed in Fig. 6. The shape of the 
camera lens in the restored image by TNTF is closer to the original one than that by TV and TGV.

Fig. 7(a) is the blurred image of “Montage” corrupted by Gaussian noise of STD σ = 0.04. The restored 
images by TV, TGV, and TNTF are displayed in Fig. 7(b), (c), and (d), respectively. The regularization 
parameters for TV, TGV, and TNGV are α = 0.019, (α1, α2) = (0.0085, 0.0155), and λ = 0.00015, respec-
tively. Severe artifacts appeared in Fig. 7(b) by TV, are significantly suppressed in Fig. 7(c) and (d) by 
TGV and TNTF. Two zoom-in parts of the results are shown in Fig. 8. It is evident that the lines are well 
preserved in Fig. 8(d) by TNTF.

4. Conclusion

In this paper, we have designed a two-level non-stationary tight framelet system and utilized it in a 
regularization model for image restoration. This framelet system has the ability to capture the first and 
second order information of the image to be reconstructed. We developed an algorithm to solve the resulting 
optimization problem. The numerical experiments show the effectiveness of the proposed image restoration 
model and the corresponding algorithm.
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