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a b s t r a c t 

We consider the problem of segmenting an image into superpixels in the context of k -means cluster- 

ing, in which we wish to decompose an image into local, homogeneous regions corresponding to the 

underlying objects. Our novel approach builds upon the widely used Simple Linear Iterative Clustering 

(SLIC), and incorporate a measure of objects’ structure based on the spectral residual of an image. Based 

on this combination, we propose a modified initialisation scheme and search metric, which keeps fine- 

details. This combination leads to better adherence to object boundaries, while preventing unnecessary 

segmentation of large, uniform areas, and remaining computationally tractable in comparison to other 

methods. We demonstrate through numerical and visual experiments that our approach outperforms the 

state-of-the-art techniques. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Image segmentation has been a widely explored task in com- 

uter vision yet a still open problem. In particular, superpixels seg- 

entation has become a pre-processing tool for several applica- 

ions including classification [1,2] , optical flow [3,4] , colour trans- 

er [5] , depth estimation [6] and tracking [7] . The central idea of

uperpixels is to split a given image in multiple clusters, which re- 

ect semantically meaningful regions. 

There are several advantages of using superpixel representa- 

ion instead of working at pixel-wise level. Firstly, an application 

ecomes computationally and representationally efficient as the 

umber of primitives are significantly reduced. Secondly, the nat- 

ral redundancy in an image is exploited, and therefore, features 

an be extracted on representative regions whilst reducing noise 

nd increasing discriminative information [8–10] . 

Since the pioneering work of Ren and Malik [8] , the commu- 

ity has devoted to develop different algorithmic approaches to 

mprove over [8] . These approaches can be roughly divided into 

raph-based methods e.g. [8,11] , path-based approaches e.g. [12] , 
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ensity-based models e.g. [13] , contour models e.g. [14] and clus- 

ering methods e.g. [9,15] . 

Out of all of the approaches reported in the literature, the Sim- 

le Linear Iterative Clustering (SLIC) [9] is perhaps the most popu- 

ar method that offers a good performance whilst demanding low 

omputational cost, by building on Lloyd’s algorithm [16] for k - 

eans. The central idea of SLIC is to perform the superpixels par- 

ition based on an iterative scheme that searches for similarities 

etween points, ensuring that at each step we assign points to the 

earest cluster from the previous step. 

The ability of SLIC to obtain a good segmentation with low 

omputational cost comes from the observation that, by using a 

imilarity metric, one can greatly reduce the number of distance 

alculations required. However, SLIC is also limited by its own con- 

truction, and in particular, by its search range, and one can thus 

bserve two major limitations. Firstly, SLIC tends to segment large 

niform regions in an image with more superpixels than are in- 

uitively necessary, which limits resolution in other parts of the 

mage. Secondly, in structure-rich parts of the image, the final su- 

erpixel size is much smaller than the search radius of SLIC, which 

eads to many unnecessary distance computation. Finally, since we 

xpect structure-rich parts of the image to have a higher density 

f superpixels, it may be efficient to perform the initial seeding of 

luster centres in anticipation of this inhomogeneity. 

In this work, motivated by the drawbacks discussed above, we 

ropose a new algorithmic approach, exhibited in Fig. 1 , that im- 

roves upon the SLIC approach. We show that our approach out- 
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Fig. 1. Input-Output examples of our proposed approach for three images with different characteristics such as diverse structure and colours. Our approach seeks to adhere 

better to the boundaries through a structure measurement whilst connecting meaningful regions, for example see the eyes and mouth at the three outputs. 

Fig. 2. Illustration output of our approach against SLIC. SLIC tends to over-segment uniform areas with more superpixels than necessary, such as the sky in the first image, 

and fails to preserve fine-structures, such as the owl’s eyes and the roller coaster at the zoom-in views. The numerical results in parenthesis denote (Undersegmentation 

Error, Boundary Recall). The lower the undersegmentation error the better whilst the higher the boundary recall the better. 
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erforms SLIC and several works on the body of literature. Our 

ain contributions are as follows. 

• We propose a new superpixel approach, which incorporates the 

saliency function S(x ) of Hou et al. [17] as a proxy for object

density. This leads to the following advantages. 

– By incorporating the saliency S(x ) into the distance com- 

putation, we can prevent unnecessary over-segmentation of 

large, uniform regions, such as the sky in the first example 

of Fig. 2 , and allowing greater focus on structure-rich parts 

of the image. 

– We propose a new seeding strategy, based on the inho- 

mogenity described by S . This allows for greater resolution 

changes at fewer iterations by focusing on relevant struc- 

tures, and hence keeping fine-details of the structures in the 

final segmentation. 
• We extensively evaluate our approach with a large range of nu- 

merical and visual experiments. 
• We demonstrate that our two major contributions mitigate the 

major drawbacks of the state-of-the-art techniques, by report- 

ing the lowest undersegmentation error and highest boundary 

recall. 

. Related work 

In this section, we review the body of literature in turn. We 

hen highlight the advantages of clustering based methods, and 
2 
heir current drawbacks that motivate our new algorithmic ap- 

roach. 

There have been different attempts in the literature to improve 

uperpixels segmentation. A set of approaches tackle the problem 

sing graph representation of the image. Within this umbrella, let 

s mention the normalised cuts technique [8,18] , and some works 

elating to graph random walks [19,20] . Other techniques reported 

n the literature include a greedy-type algorithm [21] which forms 

lusters by seeking ‘evidence of boundaries’, and the technique of 

22] which forces a segmentation with the topology of a square 

attice. However, although promising results are reported, the com- 

utational time is often very high. Another perspective has been 

ollowed by local mode-seeking algorithms including the well- 

nown Quick Shift, which partition is based on an approximation 

f kernelised mean-shift [13] . However, there is no control on the 

umber of superpixels or compactness. 

Another set of approaches addressed the superpixel parti- 

ion problem as the task of finding the shortest path between 

eeds, for instance using the well-known Dijkstra algorithm, as 

eported in Tang et al. [12] , Fu et al. [23] , Condori et al. [24] .

owever, this type of approach is usually unable to control the 

ompactness. We briefly mention other methods for superpix- 

ls segmentation. A body of work has proposed algorithms for 

mage segmentation based on geometric methods such as mean 

hift [25] , watershed methods [26,27] , and gradient flows [14,28] . 

or an extensive review of the literature, we refer the reader 

o [10] . 
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In particular, in this work we focus on what is probably the 

ost popular superpixel category, which is clustering based ap- 

roaches. The basis of this perspective builds on Lloyd’s algo- 

ithm [16] for k -means clustering. The main idea of this algorithm 

s to partition a set of observations into k clusters, in which each 

bservation is assigned to the cluster with the nearest mean, and 

roduces excellent results at the cost of high computational inten- 

ity. Within this category, one can find a top reference approach 

alled Simple Linear Iterative Clustering (SLIC). SLIC was proposed 

y Achanta et al. [9] , in which authors propose a local version 

f the Lloyd’s algorithm, which is computationally much simpler 

hile keeping excellent segmentation quality. 

Following this philosophy, different algorithmic approaches 

ave been proposed including [29–32] . Most recently, in Achanta 

nd Susstrunk [33] authors proposed an improved version of 

LIC, in which they proposed to compute a polygonal partition to 

dapt better to the geometry of the objects in the image. Maier- 

ofer et al. [15] proposed a dynamic refinement of this method, 

alled dSLIC, which seeds the initial cluster points inhomoge- 

ously and allows the search radius to vary across clusters, both 

ccording to a measure of local object density. This allows bet- 

er capturing of fine details in structure-rich regions, and fur- 

her reduces computational complexity by eliminating unnecessary 

earches. 

As with many other problems in image analysis, machine 

earning techniques have enjoyed considerable success in im- 

ge segmentation since the emergence of Deep Neural Net- 

orks. We highlight the particular success of Deeplab , a 

eep-convolutional network [34] ; a later work by Marmanis 

35] seeks to improve boundary adherance by incorporating ex- 

licit edge-detection. A review of such methods can be found 

n [36] . 

Let us also mention the closely related problem of salient ob- 

ect detection . In this problem, one has the simpler goal of identify- 

ng which regions in an image contain salient or novel information, 

nd which contain only patterns and structures repeated through- 

ut the image. This problem shares some similarities with the 

roblem of image segmentation; for instance, one might hope that 

he salient objects are identified as superpixel regions. A hugely 

uccessful method in this problem, based on Fourier analysis, was 

roposed by Hou et al. [17] , which inspires our current approach. 

ore recent works include techniques based on graphs [37] or 

achine-learning [38,39] . 

. Proposed approach 

In this section, we describe in detail our superpixel approach. 

irstly, we formalise the definition of superpixels in terms of a 

lustering task. We then introduce the details of both our new 

easure of structure function and our initialisation strategy. 

We view an input image, of width A and height B, as a map I :

 → �, where X = [ A ] × [ B] is a rectangular domain, and � ⊂ R 

3 is 

he image domain with an appropriate colour domain. We also de- 

ne a metric don X × �, representing the similarity of points in 

pace and with different colour values, and a feature map F , which 

akes a subset S ⊂ X and returns a pair in X × �.k -means cluster- 

ng now seeks a partition of X into path-connected sets { S i } n i =1 
such

hat, for each i,S i is exactly the set of points where the infimum 

nf j d((x, I(x )) , F(S j )) is attained at j = i. 

We first give a very brief explanation on SLIC as our ap- 

roach builds upon it. SLIC uses Lab colour space as this is 

 representation of the visible colours which simulates human 

ision. 

efinition 1 (Lab colour space) . The Lab colour space L ab describes 

athematically all perceivable colours in the three dimensions lfor 
3 
ightness and a and bfor the colour opponents green-red and blue- 

ellow. The range of coordinates for lare 0 to 100 and bounded 

ntervals for a and brespectively, the bounds on which depend on 

he convention used. 

Given this particular choice of coordinates for our colour space, 

LIC chooses the following distance measure: For p 1 , p 2 ∈ X ×
, p i = [ x i , l i ] 

T , x i ∈ X , l i ∈ �define: 

d(p 1 , p 2 ) = 

√ 

d 2 s + 

(
d c 

S 

)2 

m 

2 where 

 s (p 1 , p 2 ) = ‖ x 1 − x 2 ‖ 2 and d c (p 1 , p 2 ) = ‖ l 1 − l 2 ‖ 2 , 

nd m is a parameter which tunes the importance of spatial as 

ompared to Lab-distance. At the practical level, the value of 

 strongly impacts the shape of the superpixels found. 

.1. Object density measure via spectral residual 

The key strength of dSLIC [15] over SLIC is the recognition that 

bjects in an image are not distributed uniformly, and that im- 

ge segmentation can exploit this to improve segmentation re- 

ults and computational efficiency. Our approach is to exploit this 

ame principle further, and use the strength of the Spectral Resid- 

al approach proposed by [17] as a better measure of object 

etection. 

We briefly review the Fourier analysis leading to the defini- 

ion of the spectral residual in Hou and Zhang [17] . For an image

, we write F Ifor the Fourier transform, which is a matrix of the 

ame dimensions as I, and whose arguments we will write as two- 

imensional frequencies f . The log-spectrum of an image Iis then 

iven by 

 ( f ) = log (R (F I)( f )) (1) 

here R denotes the real part; we also write P( f ) = I (F I)( f ) for

he imaginary part, or phase spectrum. The key insight of [17] is 

hat much of the information contained within L is redundant, 

ecause L is, to a good approximation, locally linear. These fea- 

ures are then encapsulated in the local average A ( f ) = (h n � 

 )( f ) , where h n is the matrix consisting entirely of 1 
|X | , and the

esidual log-spectrum, corresponding to the salient features, is 

iven by the following expression: 

 ( f ) = L ( f ) − A ( f ) = L ( f ) − (h n � L )( f ) . (2)

The final saliency map, which we take as our measure of object 

ensity, is then given by recombining with the phase spectrum, in- 

erting the Fourier transform and adjusting the resulting function. 

herefore, our proposed function reads: 

R (x ) = g σ � 
(
F −1 

{
e R ( f )+ P( f ) 

})2 
(x ) , (3) 

here the squaring ensures that the quantity considered is non- 

egative, and the convolution with a Gaussian kernel g σ ensures 

hat the final result is smooth. We found that, for our algo- 

ithm, σ = 20 works well on a range of images. We then set 

 rescaling step for the search radius using (3) as G(x ) := 

xp ( SR (x ) − SR ) , where SR denotes the mean of the struc- 

ure function on the image grid. We then propose to have 

he distance computations depending on our function, which 

eads: 
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By incorporating our proposed function, which we use as a 

easure of object density, into the distance computation we hope 

o address the two drawbacks mentioned in the introduction. 

irstly, by doing a dynamic adjustment of the search range based 

n our function G, one can connect uniform regions, and so avoid 

egmenting large, homogeneous regions into unnecessarily small 

uperpixels. This effect is illustrated in Fig. 2 ; for example, in the 

econd column where our approach was able to keep the sky in 

 same region, and the yellow car. Secondly, our approach focuses 

n segmenting fine details by capturing relevant structures; this is 

isible in the owl’s eyes and head in Fig. 2 . Furthermore, we re-

ark that our approach does not introduce additional parameters 

o fine-tuning. 

We now turn to explain our second major modification, which 

oncerns the seeding initialisation. 

.2. Seeding initialisation: a new strategy 

In this section, we describe our new seeding initialisation. Our 

ain motivation is that we can use the object density measure 

defined above to help seed clusters in object-rich parts of the im- 

ge, which we expect to contain more distinct regions. In this way, 

e obtain greater resolution at fewer iterations, and improve the 

ocus on relevant and interesting regions. 

We remark to the reader that SLIC initialisation is based on 

ampling pixels at the image grid. For comparison purposes, we 

tart by defining the SLIC initilisation, which reads as follows. 

Our proposed approach, which incorporates Ginto this seeding, 

an be described informally as follows. We first set as an initial 

oint the pixel with the lowest value in G, and then we increase 

he values near to the initial point such that its neighbours are un- 

ikely to be selected as another initial point. In this way, we guar- 

ntee that the distance between seed points is comparable to the 

earch range, which will help reduce redundant searches. This pro- 

ess is illustrated in Fig. 3 for two initial seeds. 
4 
The hedging described above is carried out in two stages as fol- 

ows. 

• Points adjacent to the initial point are made unselectable, by 

setting the value of Gat these points excessively large. 
• Points in the proximity of the initial point are made less likely, 

but not impossible, to select, again by altering G. The influence 

range and to what extent are under consideration. 

The advantage of these changes is that the density of area is 

imited twice compared with original method. The overall proce- 

ure of our method, which suitably sets the initialisation points 

ccording to our structure measure G, is described formally as fol- 

ows. 

An output example is displayed in Fig. 4 . Subfigure (a) shows 

n initialisation comparison between our approach and SLIC, and 

e see that our approach gives more importance to the ostrich 

han the background. In subfigure (b), we evaluate possible choices 

or τ, and display outputs for τ = 4 , 6 , 8 . In practice, we found that 

= 13 / 2 works for a range of images. Finally, subfigure (c) shows a

isual illustration of the advantage of our technique. By integrating 

ur density function into the distance computation one can avoid 

nnecessary over-segmentation of large uniform regions (i.e. the 

ackground) and aim the attention at structure-rich parts (i.e. the 

strich). A closer look at the zoom-in regions one can see that our 

echnique was able to preserve fine details in the face whilst SLIC 

ost relevant areas such as the left eye. 

. Experimental results 

In this section, we describe in detail the experiments that we 

an to evaluate our approach. 

.1. Evaluation protocol 

Dataset description We evaluate our proposed approach on a 

ublicly available dataset, the Berkeley Segmentation Dataset [40] , 

hich provides ground truth of the images for quantitative analy- 

is. Moreover, to further support our technique, we included two 

nteresting cases to study where fine-details are particularly diffi- 

ult to retrieve: (1) out-of-the-focus images using the dataset of 

hat [41] and (2) wide angle images using the dataset from [42] . 

ll the measurements and comparisons in this section are taken 

rom these datasets. 

Comparison methodology We compare our approach to the SOTA 

ethods on superpixels. For this, we design a two-part evalua- 

ion scheme. For the first part, we compared our approach against 

LIC [9] ; this comparison therefore demonstrate that our care- 

ully design solution achieves better performance than the top 

eference in clustering-based methods. For the second part, we 
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Fig. 3. Illustration of our initialisation strategy, which incorporates the object density measure G, for two initial seeds. From left to right, first seed and second one. 

Fig. 4. Visual comparison of the seeding initialisation of SLIC vs ours.(a) One can see that we seek to focus on relevant areas (i.e. other than background). (b) The effect of 

τ in our seeding strategy. (c) Visual illustration of the positive repercussion of our technique over SLIC. Our approach seeks to focus on structure-rich parts (see the face) 

whilst avoid over-segmenting uniform areas such as the background. 

c
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i
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n
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ompared to state-of-the-art techniques: QS [13] , TP [14] ,TPS [12] , 

RW [19] , SNIC [33] and dSLIC [15] . We compare our approach 

ualitatively by visual comparisons and quantitatively by comput- 

ng three metrics: Under-segmentation Error (UE), Boundary Recall 

BR) and Boundary Precision (BP), which definitions are described 
ext. b

5 
We assume that we are given an image, along with a ground 

ruth � = { g i } M 

i =1 
, representing the true regions of the image. 

Boundary recall measures the proportion of the boundary of the 

rue regions in the ground truth which are close to a boundary 

n the segmentation. To quantify the notion of being close to a 

oundary, we recall the following definition. 
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Fig. 5. From left to right. Quantitative comparison of our approach vs SLIC using three metrics: UE, BR and BP. Our approach reported the best scores metric-wise. Four 

visual outputs comparisons of SLIC vs our approach. In a closer look, one can see that our approach achieves better connection of structures and keeps fine-details. For 

example, see (A), (C) and (D) the faces and (B) the hand. The numerical results in parenthesis denote (Undersegmentation Error, Boundary Recall). 

Fig. 6. Superpixel outputs comparisons of our approach vs different methods from the body of literature: QS [13] , SLIC [9] TP [14] , TPS [12] , LRW [19] , SNIC [33] and 

dSLIC [15] . A closer inspection, one can see that our approach offers better superpixels segmentation. For example, (A), (B), and (C) the eyes; (D) the ostrich’s boundary and 

(E) the eyes and basket. 

6 
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Fig. 7. Superpixel segmentation outputs of our approach vs QS [13] , SLIC [9] TP [14] , TPS [12] , LRW [19] , SNIC [33] and dSLIC [15] . Visual assessment shows that the proposed 

algorithm performs better than the compared approaches. Examples are: (F) the leaves; (G) and (I) the face; (H) the house boundaries and (J) the hand. 
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Given a subset Eof the edge set, we define the distance 

(e, E) = inf {| e − f | : f ∈ E} , where | · | denotes the l 2 norm of the

ifference, measured in pixels. We then define the Boundary Recall 

s 

efinition 2 (Boundary Recall) . Given a ground truth � = 

 g i } M 

i =1 
and a segmentation S = { s j } k j=1 

, we write ∂�for the union of

he edge boundaries ∂g i , and similarly write ∂Sfor { s j } k j=1 
. We de-

ne the boundary recall by 

(�, S) = 

# { e ∈ ∂� : d(e, ∂S) ≤ 2 } 
# ∂�

. 

n words, the boundary recall is the proportion of true edges which 

re close to a superpixel edge. 

Undersegmentation error Intuitively, this measures the size of all 

uperpixels which spill across boundaries of the ground-truth. 
7 
efinition 3. For a ground truth � = { g i } M 

i =1 
, we fix thresholds

 i , i = 1 , . . . , M. Given segmentation S = { s i } k i =1 
of the image, the

nder-segmentation error is given by 

 = 

1 

N 

[ 

M ∑ 

i =1 

( ∑ 

# s j ∩ g i ≥B i 

# s j 

) 

− N 

] 

bserve that, since Sis a partition of the image, we can rewrite 

 = 

1 

N 

M ∑ 

i =1 

[ ( ∑ 

# s j ∩ g i ≥B i 

# s j 

) 

− # g i 

] 

ence, the undersegmentation error Umeasures how wasteful the 

overings of the true regions g i by the superpixel regions s j are. We 

sually take B i to be a fixed proportion of # g i 

Parameter selection For all compared approaches QS [13] , 

P [14] , TPS [12] , SLIC [9] , LRW [19] , SNIC [33] and dSLIC [15] ,
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Fig. 8. Metric-wise comparison of our approach vs SOTA techniques using UE, BR and BP. In a closer look, we can see that our approach, overall, offers the lowest UE and 

the highest BR. Finally, the good boundary adherence to the true edges is reflected in the last plot, in which our approach overall gets the best trade-off between those 

metrics. These results are further supported by the rate of deviation and rate of improvement. 
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e set the parameters as suggested in the corresponding work. 

e also used the codes released from each corresponding author. 

or our approach, we set the m = 10 since it offers a good trade-

ff between shape uniformity and boundary adherence (see Sup- 

lementary Material Section 2 for further description on m ). We 

erformed the evaluation using up to a range of number of super- 

ixels up to 600. 

The experiments reported in this section were under the same 

onditions in a Matlab CPU-based implementation. We used an In- 

el Core i7 with 16 GB RAM. 

.2. Results and discussion 

We divide this section in two parts, following the comparison 

ethodology scheme presented in previous sections. 

� Is our Approach better than SLIC? As SLIC approach remains 

 top reference, and is the basis of our approach, we start by eval-

ating our approach against it. Results are displayed in Fig. 5 . In 

 closer look, at the right side, of this figure, one can see that our

pproach yields to a better segmentation of the structures, keeping 

ne details of the objects. Moreover, it avoids unnecessary over- 

egmentation on uniform areas. These positive properties of our 

pproach can be seen, for example, in (B) the proper recovery of 

he hand; in (C) the hair, eyebrows and the lines patterns in the 

umper that are correctly clustered; in (D) where our approach 

uccessfully capture the eyes and moustache, and in (A) with bet- 

er preservation of the face structure including the nose and lips. 

To further support of our visual results, we ran a quantitative 

nalysis based on three metrics UE, BR and BP. The results are dis- 

layed at the left side of Fig. 5 . The top part shows a comparison

n terms of UE, where the results reflect conformity to the true 

oundaries. We can observe that our approach achieves the lowest 

E for all superpixels counts. The same positive effect was found in 
8 
erms of precision versus recall, in which our approach displayed 

he best performance. Overall, our proposed technique outperforms 

LIC at all superpixels counts and reduces the error rate by 20%. 

his improvement is translated to our approach to be the best in 

erms of producing superpixels that respect the object boundaries. 

� Is our approach better than other Superpixel approaches? . 

s the second part of our evaluation, we compare our approach 

gainst SOTA models: QS [13] , TP [14] , TPS [12] , LRW [19] ,

NIC [33] and dSLIC [15] . We selected for our comparison ap- 

roaches coming from different perspectives: graph-based, path- 

ased, density-based and clustering-based approaches. Results are 

isplayed in Figs. 6 , 7 and 8 . 

We first present a visual comparison of a selection of images 

rom the Berkeley dataset in Figs. 6 and Fig. 7 . By visual inspec-

ion, one can see that QS and TPS are the ones that perform more 

oorly than the other compared approaches. They fail to provide 

ood boundaries of the structures and they do not preserve rele- 

ant details. Examples can be seen in (A), (B), (E) and (G) the eyes; 

C), (E) and (F) preservation of fine details. LRW offer a better edge 

dherence to the objects than QS and TPS but also fails to preserve 

elevant objects, for example (G) the eyes and moustache. 

In contrast to those approaches, SLIC and dSLIC performs bet- 

er than QS, TPS and LRW. One can observe that SLIC and dSLIC 

eadily compete in terms of having better boundary adherence to 

he structures and grouping correctly majority of the objects. How- 

ver, in particular, SLIC still produces outputs with more superpix- 

ls than necessary in homogeneous parts of the structures; see, 

or instance, in (A) the fish eye, (B) the nose and (J) the hand. 

lthough dSLIC performs slightly better than SLIC, it still fails to 

apture fine details. 

Among those approaches, SNIC approach display more robust- 

ess in terms of grouping structures correctly than the previous 
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Fig. 9. CPU time averaged comparison of our approach vs the body of literature. 

One can see that our approach improvement comes at a negligible cost in runtime 

in comparison with the fastest approaches SLIC and SNIC. 
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Fig. 10. Visual comparison of our approach and SLIC using out-of-the-focus sport images

fine detail and blurry structures. 

9 
pproaches. However, like SLIC it also tends to generate more su- 

erpixels than needed in uniform regions so that the final outputs 

o not capture fine details. Examples are (G), (E) and (C) face de- 

ails; (I) the eyes and head and (F) the leaves. 

These major drawbacks are mitigated by our model. Our algo- 

ithmic approach shows the best boundary adherence and regular- 

ty. This is visible in the leaves in image (F), in which our approach

s able to better capture the structure, in (I) on the lips where our 

pproach is able to capture the correct geometry, and (A) the fish 

yes, where our approach is the only one that correctly segments 

he inner part. These positive properties of our approach are preva- 

ent in all images. More examples include preservation of the ge- 

metry such as in (J) the hand and (G) face, in which our model is

he only one able to correctly segment these fine details. 

To further support our visual evaluation, we show a metric- 

ise comparison in Fig. 8 . We start by evaluating the approaches 

n terms of UE, which is displayed at the left side of this figure. 

lose observation shows that QS, TPS and TP perform poorly, and 

n particular, LRW that reported the highest Undersegmentation Er- 

or. dSLIC and SLIC show quite low UE, and SNIC ranks the second 

est. Overall, our approach shows substantial improvement over 

he compared approaches reporting the lowest UE for all super- 

ixels counts. A similar effect is exhibited in terms of Boundary 
. Zoom-in views display relevant areas, in which our approach successfully retrieve 
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Fig. 11. Visual comparison against SLIC using out-of-the-focus images. The selected frames show challenges cases when objects are highly blurry. Overall, our technique 

gives a better superpixel segmentation by preserving objects structures and fine details. 
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ecall. TP and TPS perform poorly while the other compared ap- 

roaches reported better BR. Our approach readily competes with 

he other compared schemes and the overall BR of our approach 

as reported to be the best. The same effect is observed in terms 

f BP-vs-BR, which reflects that our approach overall adheres bet- 

er to the truth boundaries. To have a better sense of the improve- 

ent, we finally report the rate of deviation and rate of improve- 

ent of all compared techniques with respect to ours, which re- 

ults are displayed at the bottom left side of Fig. 8 . With respect

o the rate of deviation our technique displays a clear difference 

anging from 299% to 8% whilst in terms of rate of improvement a 

ange of 75% to 10%. In particular, the worst performance was re- 

orted by LRW in which we improved substantially with 299% and 

5% in the rate of deviation and improvement. Our closest com- 

etitor is SNIC with which we reduce the error rate by more than 

0%. This improvement comes at a negligible cost time which can 

e seen in Figure 9. 

� How is the Computational Performance? Finally, we evaluate 

ur approach vs the SOTA models in terms of CPU performance 

n seconds. Results are displayed at Fig. 9 , using the average time 

cross all images and over the range of [80, 2500] superpixels. 

rom this plot, we observe that TP, TPS and LRW require high com- 

utational time whilst QS and dSLIC sightly improve in this regard. 

inally, SLIC, SNIC and OURS provide more feasible runtimes that 

re appropriate for a pre-processing task. We remark that our neg- 

igible computational load ( ∼5%) is justified by the substantially 

mproved results over SLIC, SNIC with the same number of super- 

ixels. Overall, the computational demand of our technique is of 

ractical interest for several domains, where decreasing the com- 

utational load by reducing the number of primitives in the image 

omain is needed, including remote sensing, medical applications 

nd video analysis. 

� Case Study: Out-of-the Focuss and Wide Field of View Im- 

ges To further support our technique, we included two interesting 

et challenging cases. The first one is superpixels with out-of-the 

ocus images. Whilst the second case is when using wide field of 

iew images. 
10 
We start evaluating our approach using out-of-focus images 

nd the visual outputs of our technique and SLIC are displayed in 

igs. 10 and 11 . The study of this case is relevant to assess the

ffectiveness of our technique in retrieving fine details and rich- 

tructures with blurry and non blurry objects in the image. A com- 

on scenario of this case is in sport events due to the fast ac- 

ions in the scene. In Fig. 10 , we displayed a set of outputs and

n a closer look, one can see that our technique was able to pre- 

erve relevant structures. We provide zoom-in snapshots of inter- 

sting cases. For example see the face details in all image, in which 

ur technique segmented correctly the eyes, mouth and nose. An- 

ther example is the letters in the background from the first, sec- 

nd and third images. We also included a set of different images 

ith different scenarios in Fig. 11 , in which previous positive ef- 

ects are also observed. For example at the first image the left 

ye is correctly retrieved with our technique whilst SLIC failed to 

egmented correctly. We observed that blurry parts are also well- 

egmented by our technique, and in particular, also in keeping fine 

etails. Overall, the outputs displayed in Figs. 10 and 11 suggest 

hat our proposed method produces visually more pleasant results 

han SLIC. 

Our second case of study is when using wide angle images. The 

hallenging when segmenting is due to the structure of the objects 

ecome highly distorted with respect to the distance between the 

amera point and the object position in the scene. This makes im- 

ge segmentation harder than rectilinear images. We then investi- 

ate if our technique is still efficient in terms of keeping the object 

hape and fine details. With this purpose, we ran our technique 

nd SLIC over a set of image samples from [42] , and the results are

eported in Fig. 12 . A closer look at the outputs, one can observe

hat our technique fulfill its purpose of avoiding over-segmenting 

omogeneous parts such as the sky and focus on the rich parts 

or example buildings or people. Visual comparison of this effect 

an be seen as pointed out by the red arrows. Overall, our tech- 

ique shows potentials for the two investigated cases by generat- 

ng better output segmentations in terms of retrieving fine details 

nd preserving the objects shape. 
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Fig. 12. Visual assessment of our techique vs SLIC using wide angle images, in which the objects are distorted and the segmentation task becomes more challenging. Red 

arrows show interesting areas, in which our technique improves over SLIC. 
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. Conclusion 

In this work, we proposed a new superpixel approach that 

uilds upon SLIC technique. Our approach incorporates the no- 

ion of spectral residual as a proxy for object density and a novel 

eeding strategy. We demonstrated that our approach seeds clus- 

ers advantageously and modifies the local search radius. This leads 

o better segmentation, with a comparable computational load, to 

ther state-of-the-art algorithms. These modifications leads to ma- 

or advantages in terms of avoiding the over-segmentation of uni- 

orm areas in terms of fine-detail preservation, with a comparable 

omputational load to other state-of-the-art algorithms. 

We offer the following two remarks on how future work may 

educe the computational load of our technique. First, we observe 
11 
hat our slightly higher computational load is justified by the sub- 

tantially improved results over SLIC and SNIC with the same num- 

er of superpixels. This suggests that, by reducing the number of 

uperpixels in our approach, we could achieve better segmenta- 

ion than SLIC and SNIC while also reducing computational load. 

econdly, we remark that the full saliency measure SR (x ) contains 

ore information that is strictly necessary for our technique, since 

t is only used as a rough measure of object density, while also 

dding substantially to the computational load. We therefore sug- 

est that a density measure Gcould instead be constructed from 

 down-sampled version of the image so that the computational 

oad could be significantly reduced, while maintaining excellent 

egmentation. For instance, down-sampling by a factor of 2 will 

educe the computational load of computing SR by a factor of 4 
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nd, provided that the superpixel resolution is much lower than 

he resolution of the true image, have minimal effect on the ini- 

ial seeding. We also note that the map SR used here is certainly 

ot the only possible technique for determining object density; fu- 

ure research may consider using other techniques, possibly based 

n machine learning, to replace our object density measure G. Fur- 

hermore, future work will include performance evaluation over a 

ange of applications, where superpixels makes significant positive 

ffect in decreasing the computational cost. For example, in remote 

ensing, video analysis and medical image analysis. 
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