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Abstract. Each coil image in a parallel magnetic resonance imaging (pMRI) system is an imaging slice modulated by the6
corresponding coil sensitivity. These coil images, structurally similar to each other, are stacked together as a 3-7
dimensional (3D) image data and their sparsity property can be explored via 3D directional Haar tight framelets.8
The features of the 3D image data from the 3D framelet systems are utilized to regularize sensitivity encoding9
(SENSE) pMRI reconstruction. Accordingly, a so-called SENSE3d-algorithm is proposed to reconstruct images10
of high quality from the sampled K-space data with a high acceleration rate by decoupling effects of the desired11
image (slice) and sensitivity maps. Since both the imaging slice and sensitivity maps are unknown, this algorithm12
repeatedly performs a slice-step followed by a sensitivity-step by using updated estimations of the desired image13
and the sensitivity maps. In the slice-step, for the given sensitivity maps, the estimation of the desired image is14
viewed as the solution to a convex optimization problem regularized by the sparsity of its 3D framelet coefficients15
of coil images. This optimization problem, involved data from the complex field, is solved by a primal-dual-16
three-operator splitting (PD3O) method. In the sensitivity-step, the estimation of sensitivity maps is modelled as17
the solution to a Tikhonov-type optimization problem that favours the smoothness of the sensitivity maps. This18
corresponding problem is nonconvex, and could be solved by a forward-backward splitting method. Experiments19
on real phantoms and in-vivo data show that the proposed SENSE3d-algorithm can explore the sparsity property20
of the imaging slices and efficiently produce reconstructed images of high quality with reducing aliasing artifacts21
caused by high acceleration rate, additive noise, as well as the inaccurate estimation of each coil sensitivity. To22
provide a comprehensive picture of the overall performance of our SENSE3d model, we provide quantitative23
index (HaarPSI) and comparisons to some deep learning methods such as VarNet and fastMRI-UNet.24
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U-Net, VarNet, fastMRI-UNet.26
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1. Introduction and motivation. The Magnetic Resonance Imaging (MRI) is a common tech-28

nique in medical diagnosis. Most of the MRI sequences in use today are based on a “spin-warp” imag-29

ing scheme [7], where the spatial information with phase was encoded successively by varying the30

amplitude of the gradients of the radio frequency pulses. Such a scheme is a Fourier-transform MRI31
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method that produces data in the spatial frequency space, known as the K-space. The spatial frequency32

domain content of the imaged object is encoded directly into g(kx, ky), the magnetic resonance (MR)33

signal at spatial frequencies kx and ky in the x- and y-directions, respectively. In the K-space of the34

form g(kx, ky) =
∫∫

s(x, y)u(x, y)e2πixkxe2πiykydxdy, where s(x, y) is the coil sensitivity function35

and u(x, y) is the spatial spin density function of the original object such as bones, joints, and soft36

tissues. The decoding process involves the inverse Fourier transform to obtain the target MRI image37

u(x, y) for medical diagnosis purpose. In order to reproduce accurate reconstruction images, enough38

phase-encoding steps are needed to cover sufficient positions in the K-space. Hence, the MRI scans39

typically take longer time.40

Parallel MRI (pMRI) technique is a hardware solution used in clinical applications to shorten41

the imaging time. It utilizes a set of receiver coils surrounding the target object to detect the MR42

signals. To accelerate the data acquisition procedure, the pMRI system uses reconstruction algorithms43

to predict the imaging structures of the original MR signal only from collected partial (downsampling)44

K-space data [9,28]. This downsampling process significantly reduces the scan time, but the resulting45

pMRI reconstruction is ill-posed and requires regularization techniques to improve the quality of the46

MRI images [6]. Most pMRI techniques can be categorized as the image domain methods (e.g.,47

SENSE), the K-space methods (e.g., GRAPPA), and their hybrids. In this paper, we focus on the48

SENSE-based pMRI method.49

1.1. SENSE-based pMRI reconstruction. SENSE is a technique that allows a reduction in50

scan time through the use of multiple receiver coils in an imaging mode [28]. More precisely, in a51

pMRI process, we denote g` the acquired K-space signal received by the `th coil by52

(1.1) g` = PF (s` � u) + η`, ` = 1, . . . , L,53

whereL is the total number of coils, u ∈ Rn is the vectorization form of the desired image representing54

the density of the hydrogen protons in tissues (this is for convenience of presentation, in practice, u55

is kept as a 2D image), F ∈ Cn×n is the discrete Fourier transform matrix, P ∈ Rn×n is a sampling56

matrix, η` ∈ Cn is the additive noise, and s` ∈ Cn is the sensitivity vector of the `th coil. Here, a� b57

is the Hadamard product of a and b with the same dimension. The sampling matrix P is diagonal58

with diagonal entries being 0 or 1. The observation model in (1.1) shows that the coils simultaneously59

measure the same region but with downsampling process in order to increase the scan speed.60

When the sensitivity vectors s` are available, we can write (1.1) in a compact form. To this end,61

let us define S` := diag(s`) for ` = 1, . . . , L and62

(1.2) g :=

g1
...
gL

 , S :=

S1
...
SL

 , η :=

η1
...
ηL

 ,M :=

PFS1
...

PFSL

 .63

With these notation, a unified representation of the acquired signal g` in equation (1.1) is given by64

(1.3) g = Mu+ η,65

where g ∈ CLn, M ∈ CLn×n, and η ∈ CLn.66

Regularization techniques are often adopted to regularize the ill-posed problem (1.3). In what67

follows, we address the issues related to dealing with the inverse problem (1.3).68
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1.2. Structural sparsity of coil images explored via 3D directional framelets. Regu-69

larization techniques on the 2D target image are commonly used for the SENSE methods to improve70

the reconstruction quality. One typical example is the framelet (or wavelet) regularization model of71

the form:72

(1.4) min

{
1

2
‖Mu− g‖22 + ‖ΓW2Du‖1 : u ∈ Rn

}
,73

where Γ is a diagonal matrix with non-negative diagonal elements, and W2D is the matrix associated74

with a 2D framelet transform. Model (1.4) uses fixed (pre-estimated) coil sensitivity maps s` and75

regularizes on the framelet coefficients of the underlying target image u. It applies W2D on each coil76

image or target slice to produce sparse coefficient sequences, and process them one by one. We refer77

to (1.4) as SENSE2d-U model.78

The pMRI system has multiple coil images and each coil image containing parts of the information79

of the target slice which are correlated with each others. For example, Fig. 1(a) shows the four coil80

images of size 512× 512 from (the inverse discrete Fourier transform of) the corresponding full K-81

space data g` acquired by an MRI machine. It can be seen that the intensity of each coil image is82

uneven and the intensities of the coil images are mismatched. Without considering their correlated83

information together, it could lead to poor quality of the reconstruction image, e.g., see Fig. 2(c).84

Observe that the coil images are sparse in two aspects: (1) each coil image contains essentially85

smooth areas separated by edge features, and (2) the coil images are structurally similar to each others86

with areas of different high intensity. How can we explore the sparsity within each coil image and87

among different coil images? In view of the fact that the coil images are from the same target slice88

modulated via multiple coils in different positions, it is thus natural and reasonable to stack and view89

them as a 3D signal (data) of size 512 × 512 × 4, see Fig. 1(b). We can then use a 3D directional90

framelet system to get a more harmonic image and explore its sparsity. More precisely, using a 3D91

Haar lowpass filter aH in a 3D directional framelet system DHF3
3 = {aH ; bx, by, bxy, bx,y, baux} (see92

Section 2), which plays the role of averaging, the neighbouring coil images with labels (1) – (4) are93

averaged, which produces a 3D signal of four images, labelled as (1+2), (2+3), (3+4), and (4+1),94

having more areas with less intensive difference, see Fig. 1(c). In the second level, the 3D signal, which95

is the stacked version of the four images (1 + 2), (2 + 3), (3 + 4), and (4 + 1), is further averaged by96

the upsampled lowpass filter, which produces a 3D signal of four images with label (1 + 2 + 3 + 4)97

having almost the same intensity level of brightness (see Fig. 1(d)). The lowpass filtering by the 3D98

tight framelet filter greatly utilizes the correlated information among the coil images as well within the99

coil images to produce images with harmonic intensity level, which in turn facilitates the production of100

the sparse representation of the 3D signal by the directional high-pass filters bx, by, bxy, bx,y (playing101

the role of differencing) of the 3D framelet system DHF3
3. The full 3D directional framelet system102

DHF3
3 plays the central role in our 3D SENSE-based pMRI regularization model.103

In view of the above discussion, it is natural to consider the following 3D framelet regularization104

pMRI model:105

(1.5) min

{
1

2
‖Mu− g‖22 + ‖ΓW3DSu‖1 : u ∈ Rn

}
,106

where W3D is the matrix associated with a 3D tight framelet transform. The differences of the regu-107

larization terms in (1.4) and (1.5) are obvious. The regularization term ‖ΓW2Du‖1 in (1.4) measures108
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(a) coil img. (b) 3D data (c) 1st level (d) 2nd level

Figure 1. 2-Level 3D directional Haar tight framelet lowpass filtering. (a) Four 512 × 512 coil images. (b) The 4
coil images, labeled as (1), (2), (3), and (4), are stacked as a 3D image data of size 512 × 512 × 4. (c) First level lowpass
filtering of the 3D image by a 3D Haar lowpass filter aH . This results in images obtained from averaging within each coil
image and across coil images. (d) Second level low-pass filtering of the middle 3D image. Each slice of the second level
filtered 3D image is the same, which is the average of the 4 coil images.

the sparsity with the `1 norm for the desired image u under a 2D tight framelet transform while the109

regularization term ‖ΓW3DSu‖1 in (1.5), as motivated by Fig. 1(c), measures the sparsity with the `1110

norm of all coil images Su under a 3D framelet transform. If S is pre-estimated, then we shall call111

such a model in (1.5) the SENSE3d-U model.112

1.3. The SENSE3d-algorithm and the SENSE3d model. The sensitivity vectors s` are113

spatially nonuniform and are unknown. The difficulty of model (1.5) is to find an estimate of u114

under the scenario that s` are unknown and the acquired K-space signals g` are incomplete. For115

the SENSE2d-U model and SENSE3d-U models, each sensitivity map s` is usually pre-estimated as116

follows: the blurry coil image g̃` = F−1g` is acquired by the inverse Fourier transform of the center117

K-space data, and then the sensitivity for each coil is estimated as s` = g̃`/
√
|g̃1|2 + · · ·+ |g̃L|2.118

However, both models with such pre-estimated coil selectivity maps usually do not perform well. See119

Figs. 2(c) and (d).120

We treat both u and the sensitivity vectors s` as our target solutions in our proposed optimization121

models and propose a so-called SENSE3d-algorithm to find the estimates of u and s` iteratively. The122

basic steps in the SENSE3d-algorithm are the ‘Slice-step’ and the ‘Sensitivity-step’:123

(1) Slice-step: Find an estimate of the slice image u from the observed K-space signals g` and124

the guesses of s`. The reconstruction of u from (1.3) is obtained by solving an optimization125
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model (see (1.5) or (3.3)) regularized by a 3D directional Haar tight framelet system.126

(2) Sensitivity-step: Update the sensitivity vectors s`, for ` = 1, 2, . . . , L, from the observed127

K-space signal g` and the estimate of u. The target image u is obtained by using a smooth128

assumption on s`. Once we have an approximation to the target image u, we can use it129

to update the sensitivities that are the solution of a Tikhonov-type optimization model (see130

(3.10)).131

The above two steps are alternately repeated until stability is reached. To avoid additional notation,132

details on the ‘Slice-step’ and the ‘Sensitivity-step’ will be discussed in Section 3. We shall call the133

model using the SENSE3d-algorithm, that is (3.3)+(3.10) detailed in Section 3, together with our134

DHF3
3 framelet regularization, the SENSE3d model.135

(a)Full (b)29% (c)SENSE2d-U (d)SENSE2d-Ũ (e)SENSE3d-U (f)SENSE3d

(a’)Full (b’)29% (c’)SENSE2d-U (d’)SENSE2d-Ũ (e’)SENSE3d-U (f’)SENSE3d

Figure 2. (a) Reference SoS image by the full K-space data with to-be zoom-in area (the white rectangle); (b) SoS
image by the four coil images with 29% K-space data on uniform sampling model as shown in Fig. 3(a); (c) The SENSE2d-
U model (1.4) by pMRI algorithm FADHFA [21]; (d) The SENSE2d-Ũ which is the pMRI algorithm FADHFA using the
sensitivity map estimated by our SENSE3d algorithm; (e) The SENSE3d-U model (1.5); and (f) The SENSE3d model
(3.3)+(3.10). (a’)–(f’): The zoom-in part of (a)–(f) of the same white rectangle area, respectively.

The SENSE3d model significantly improves the quality of the reconstruction target image u. One136

can see the performance comparisons among the three models SENSE2d-U, SENSE3d-U, SENSE3d,137

and SENSE2d-Ũ , from Fig. 2. We use the phantom images with four coil images of size 512 × 512.138

The K-space data of each coil is partially sampled according to the sampling model in Fig. 3(a) (29%139

of the K-space with 24 auto calibration signal (ACS) lines). Fig. 2(b) is the SoS (sum-of-square)140

image of the four downsampled coil images, which is obviously blurred with aliasing artifacts. The141

MRI images reconstructed by SENSE2d-U, SENSE2d-Ũ , SENSE3d-U, and SENSE3d are shown in142

Figs. 2(c), (d), (e), and (f), respectively.143

Comparing SENSE3d-U and SENSE2d-U model, one can see that SENSE3d-U model is better144

in reducing the aliasing artifacts than that of SENSE2d-U model. As shown by the zoom-in parts,145

the “Column” and the “Row” aliasing artifacts in Fig. 2(c’) (SENSE2d-U) are mostly reduced by146

the SENSE3d-U model in Fig. 2(e’). This confirms that the correlated futures of coil images by our147

3D framelet system can efficiently suppress the artifacts by the downsamping operation in the K-space148

domain. Comparing the SENSE3d-U model (without iterating updating of s`) and the SENSE3d model149
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(with iterating updating of s`), one can see from Figs. 2(e) and (f) that the reconstruction target image u150

by the SENSE3d does not have aliasing artifacts. The zoom-in parts in Figs. 2(e’) and (f’) show that the151

SENSE3d model can get more accurate sensitivity to reconstruct better target images. Aliasing artifacts152

in Fig. 2(e’) are removed in Fig. 2(f’) via our SENSE3d models. Finally, the SENSE2d-Ũ , which is153

the pMRI algorithm FADHFA using the sensitivity map estimated by our SENSE3d algorithm, shows154

its improvement over SENSE2d-U, but it is still not as good as SENSE3d-U.155

The performance of the SENSE3d-U model from the above is better than that of the SENSE2d-U156

model while the performance of SENSE3d model is better than that of the SENSE3d-U model. The157

reconstructed and sensitivity models in (3.3) and (3.10), respectively, are interacted with each other158

to improve the quality of the MRI images by our DHF3
3 framelet regularization. We demonstrate in159

Section 4 with more experimental results for comparing with other state-of-the-art methods.160

1.4. Contributions and structure. The contributions of the paper mainly lie in the following161

three aspects. First, we introduce the use of 3D directional Haar framelets for the regularization of the162

pMRI reconstruction under the SENSE-based method. In view of the correlated information among163

coil images, the 3D directional Haar framelet system DHF3
3 not only produces coil images with har-164

monic pixel intensity but also greatly facilitates the exploration of the sparsity within each coil image165

as well as the sparsity across coil images. Secondly, we propose a so-called SENSE3d-algorithm to166

estimate the target image and the coil sensitivity maps iteratively. Unlike some 2D models and 3D167

models that are using pre-estimated coil sensitivity maps, our SENSE3d-algorithm treats both the un-168

derlying image u and the coil sensitivity maps s` as our target solutions of some optimization models169

by 3D regularization. Such a SENSE3d-algorithm together with our 3D directional Haar framelet reg-170

ularization gives rise to our SENSE3d model, which provides high quality reconstruction images with171

excellent performance improvement. Finally, we provide detailed step-by-step procedures for solving172

the optimization problems appeared in the Slice-step and Sensitivity-step of the SENSE3d-algorithm.173

Moreover, we gives theoretical justifications on the convergence analysis of the two iterative algo-174

rithms for the Slice-step and Sensitivity-step, respectively.175

The structure of the paper is as follows. In Section 2, we discuss 3D directional Haar framelets176

for our pMRI regularization. In Section 3, we present our optimization model for the pMRI SENSE177

reconstruction and develop the numerical algorithms to solve the model iteratively. In Section 4, we178

conduct numerical experiments on the comparisons of several state-of-the-art methods using various179

MRI data. Conclusions and further remarks are given in the last section. Some proofs are postponed180

to the appendix.181

2. 3-Dimensional directional Haar framelets filter banks. In what follow, we briefly182

discuss the 3D directional Haar tight framelet filter bank DHF3
3 for our 3D SENSE-based pMRI reg-183

ularization model.184

By l0(Zd) we denote the set of all finitely supported sequences. A mask/filter h = {h(k)}k∈Zd :185

Zd → C on Zd is a sequence in l0(Zd) whose Fourier series is defined to be ĥ(ξ) :=
∑

k∈Zd h(k)e−ik·ξ186

for ξ ∈ Rd. We denote δ as the the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all187

k ∈ Zd\{0}, and δγ := δ(· − γ) for γ ∈ Zd. Throughout the paper, we assume the tight framelets188

are dyadic dilated, that is, the dilation matrix is 2Id with Id the d × d identity matrix. For filters189

a, b1, . . . , bm ∈ l0(Zd), we say that a filter bank {a; b1, . . . , bm} is a (d-dimension dyadic) tight190
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framelet filter bank if ∀ ξ ∈ Rd, ω ∈ {0, 1}d,191

(2.1) â(ξ)â(ξ + πω) +
m∑
ι=1

b̂ι(ξ)b̂ι(ξ + πω) = δ(ω),192

where x̄ denotes the complex conjugate of x ∈ C. The filter a is a lowpass filter satisfying â(0) = 1193

while bι’s are the highpass filters satisfying b̂ι(0) = 0. Such a filter bank {a; b1, . . . , bm} corre-194

sponds to a framelet system {ϕ;ψ1, . . . , ψm} through the refinement relations: ϕ̂(2ξ) = â(ξ)ϕ̂(ξ) and195

ψ̂ι(2ξ) = b̂ι(ξ)ϕ̂(ξ), where the Fourier transform is defined to be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for a196

function f ∈ L1(Rd). For more details, we refer to [11].197

Now consider aH = 2−d
∑

γ∈{0,1}d δγ to be the d-dimensional Haar lowpass filter. Define the set198

{b1, . . . , bm} := {2−d(δγ1 − δγ2) : γ1, γ2 ∈ {0, 1}d and γ1 < γ2} of highpass filters. Here γ1 < γ2199

is understood in the sense of lexicographical order. Then we have m =
(

2d

2

)
= 2d−1(2d − 1). It was200

shown in [12] (see also [19, 38] for the generalization) that {aH ; b1, . . . , bm} is a tight framelet filter201

bank such that all the highpass filters b1, . . . , bm have only two taps and exhibit 1
2(3d−1) directions in202

dimension d. In particular, for d = 1, the tight framelet filter bank is just the standard Haar orthogonal203

wavelet filter bank DHF1 := {aH ; b} with aH = 1
2 (δ0 + δ1) and b = 1

2 (δ0 − δ1). For d = 2,204

the corresponding tight framelet filter bank reduces to the directional Haar tight framelet filter bank205

DHF2 := {aH ; b1, . . . , b6} in [21, (3.5)].206

For d = 3, it is a 3D directional Haar tight framelet filter bank DHF1
3 := {aH ; b1, . . . , b28} with207

aH = 1
8(δ(0,0,0) + δ(0,0,1) + δ(0,1,0) + δ(0,1,1) + δ(1,0,0) + δ(1,0,1) + δ(1,1,0) + δ(1,1,1)) and the 28208

filters bι = 1
8(δγι1 − δγι2) for ι = 1, . . . , 28. Since we employ the UDFmT (undecimated discrete209

framelet transforms) for the W3D in our model (1.5), only the partition of unity condition is needed210

(ω = 0 in (2.1)) to guarantee the perfect reconstruction property. Hence, by considering filters with the211

same direction, the 28 high-pass filters in DHF1
3 can be regrouped to 13 filters as a filter bank DHF2

3212

with filters aH , bx, by, bz , bxy, bx,y, bxz, bx,z, byz, by,z , bxyz, bxy,z, bx,yz, bxz,y in [23]. Furthermore,213

as demonstrated in [22], the output framelet coefficient sequences involving the z-filters, i.e., those214

bz, bxz, bxyz , etc., are actually ‘bad’ features for our 3D signal reconstruction. They represent local215

contrast discrepancy between coil images which do not play a role in our restriction process. Hence, in216

[22], the filter bank DHF2
3 is further simplified to the filter bank DHF3

3 := {aH ; bx, by, bxy, bx,y, baux},217

where bx = 1
4(δ(1,0,0) − δ(0,0,0)), by = 1

4(δ(0,1,0) − δ(0,0,0)), bxy =
√

2
8 (δ(1,1,0) − δ(0,0,0)), bx,y =218

√
2

8 (δ(1,0,0)−δ(0,1,0)), and the filter baux is determined by b̂aux := 1−(|âH |2 + |b̂x|2 + |b̂y|2 + |b̂x,y|2 +219

|b̂xy|2).220

The 3D directional Haar filter bank DHF3
3 nicely fits into our SENSE pMRI regularization and221

reconstruction with the following properties: (a) the lowpass filter aH produces an underlying image222

with harmonic pixel intensity for further process by the directional highpass filters; (b) the directional223

highpass filters bx, by, bxy, bx,y are properly chosen to capture the edge information for the sparse224

representation, which facilitates the successful recovery in the `1-based optimization models; (c) the225

auxiliary filter baux guarantees the perfect reconstruction of the 3D filter bank and the UDFmT, where226

in practice it does not participate in the shrinkage operation so that the procedure of UDFmTs is227

equivalent to the UDFmT using the tight framelet filter bank DHF2
3. We refer to [22, 23] for the228

detailed construction of the DHF3
3 and the implementation of the UDFmT based on the DHF3

3.229
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3. Optimization models and the SENSE3d-algorithm. The problem (1.1) is highly ill-230

posed, because different pairs of u and s` can bring about the same g`. Under the priori knowledge231

about u and s`, our goal is to approximate the desired image u when s` are unknown and the acquired232

K-space signal g` are incomplete. To achieve this goal, we introduce a so-called SENSE3d-algorithm233

for finding an estimate of both u and s`. The basic steps for the SENSE3d-algorithm are outlined in234

Algorithm 3.1.

Algorithm 3.1 The SENSE3d-Algorithm
1: Given the observed K-space signal g`, sampling matrix P and an initial sensitivity matrices s0

` ,
` = 1, 2, . . . , L.

2: for k = 1, 2, . . . do
3: Slice-step: Find an estimate of u from the observed K-space signals g` and the estimated

sensitivity matrices s`;
4: Sensitivity-step: Update the sensitivity vectors s`, for ` = 1, 2, . . . , L, from the observed

K-space signal g` and the estimated image u.
5: end for
6: Return u∞ the estimate of the desired image u.

235
The SENSE3d-algorithm is an iterative way to find the estimate of u by decoupling the effects236

of u and the sensitivity maps s`. We remark that a model called JSENSE that alternatively estimates237

the slice image u and the sensitivity vectors s` was proposed in [44] but it is without considering238

any regularization technique and the convergence analysis. On the other hand, in the Slice-step of239

Algorithm 3.1 for our SENSE3d model, we integrate in the regularization with the novel 3D direc-240

tional Haar filter bank DHF3
3 that captures the sparsity of the coils image. In the Sensitivity-step of241

Algorithm 3.1, we propose a Tikhonov-type regularization that favors the smoothness of the sensi-242

tivity mapping s`, ` = 1, 2, . . . , L. For the regularized optimization problems in the Slice-step and243

Sensitivity-step, we develop efficient algorithms to solve them and provide convergence analysis to244

these algorithms.245

3.1. Slice-step: Object estimation. We begin by introducing the basic notation. The pMRI
acquisition model involves complex numbers. For a vector u ∈ Cn, we use ‖u‖2 :=

√∑n
j=1 |u[j]|2,

‖u‖1 :=
∑n

j=1 |u[j]|, and ‖u‖∞ := max16j6n |u[j]| to represent, respectively, the `2-, `1-, and `∞-
norm of u, where u[j] is the jth component of u. For a matrix A ∈ Cm×n, we define its norm as
follows:

‖A‖2 := max {‖Au‖2 : u ∈ Cn with ‖u‖2 = 1} .
Hereafter, Re(·) and Im(·) stand for the real and imaginary parts, respectively. For u ∈ Cn, we have246

u = Re(u) + iIm(u), where both Re(u) and Im(u) are in Rn and i is the imaginary unit satisfying247

i2 = −1.248

For the purpose of the exposition of optimization algorithms on Cn, the inner product of two249

vectors u and v in Cn is defined as250

(3.1) 〈u, v〉 := Re(u>v),251

where u> is the conjugate transpose of u. With this inner product, the vector space Cn is actually252

viewed as the vector space R2n.253
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From the observed K-space signals g` and the estimated sensitivity maps s`, we propose to estimate
u in (1.1) through an optimization model that is regularized by the prior knowledge of the coil images.
Note that the `-th coil image s` � u = diag(s`)u = S`u. From the identities S`u = F−1FS`u and
In = (In − P ) + P , in the noise-free situation we have

S`u = F−1((In − P )FS`u+ PFS`u) = F−1(In − P )FS`u+ F−1g`

for all ` = 1, 2, . . . , L. Putting all L coil images together, the above equations yield254

(3.2) c = Nu+ (IL ⊗ F−1)g,255

where c = Su and N = (IL ⊗ (F−1(In − P )F ))S. Here, S is defined in (1.2) and ⊗ denotes the256

Kronecker product. Equation (3.2) says that the integration of the coil images c is composed of the257

missing information Nu and the available information (IL ⊗ F−1)g.258

DenotingW := W3D the transformation matrix associated with the filter bank DHF3
3 onto the coil259

images c, we have Wc = W (Nu+ (IL ⊗F−1)g). Using this identity, (1.3), and (3.2), we propose to260

estimate image u through the following optimization problem261

(3.3) min

{
1

2
‖Mu− g‖22 + ‖ΓW (Nu+ (IL ⊗ F−1)g)‖1 : u ∈ Rn

}
,262

where Γ is a diagonal matrix with non-negative diagonal entries. In the objective function of (3.3), the263

term 1
2‖Mu − g‖22 measures the faithfulness of the recovered image to the given data while the term264

‖ΓW (Nu+ (IL ⊗ F−1)g)‖1 relates to the sparsity of the coil images Nu+ (IL ⊗ F−1)g under W .265

Note that the ideal image u is restricted in Rn.266

With the above preparation, we first present the PD3O (primal-dual three-operator) algorithm for267

solving (3.3) and the convergence analysis of the sequence generated by the algorithm. We postpone268

the discussion on the development and the convergence analysis of the algorithm in the Appendix 6.1269

to avoid a lengthy digression.270

This algorithm is written as follows: given the initial guess (v0, z0) ∈ Cn×Cd and the parameters
γ, δ and Γ, iterate 

uk = Re(vk)

wk = (I − γδAA>)zk + δA(v̄k − γM>(Muk − g))

zk+1 = (wk + δb)− soft(wk + δb,Γ)

vk+1 = uk − γM>(Muk − g)− γA>zk+1.

Here, A = WN , b = W (IL ⊗ F−1)g and wk is the auxiliary variable. Furthermore, soft is the
well-known soft shrinkage operator, i.e., for w ∈ Cd,

(soft(w,Γ))[j] = max{|w[j]| − Γ[j, j], 0} w[j]

|w[j]|

for j = 1, 2, . . . , d. One iteration of the above scheme can be viewed as the operator TPD3O (see271

(6.3a)–(6.3c) in Appendix 6.1 for its definition) such that (vk+1, zk+1) = TPD3O(vk, zk).272

The theorem for the convergence analysis of the PD3O algorithm for problem (3.3) is given as273

follows.274
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Theorem 3.1. Let the pair (v?, z?) be any fixed point of the TPD3O operator. Let κ be defined by275

(3.4) κ = max
j

L∑
`=1

|s`[j]|2276

and let {vk, zk}k>0 be the sequence generated by the PD3O algorithm (6.3a)–(6.3c) with

(vk+1, zk+1) = TPD3O(vk, zk)

and the initial guess (v0, z0). Choose γ and δ such that γ < 2/κ and γδ < 1/κ. Define B :=277
γ
δ (I − γδAA>) and ‖(v, z)‖B :=

√
‖v‖2 + 〈z,Bz〉. Then, the following statements hold.278

(i) The sequence {‖(vk, zk)− (v?, z?)‖B}k>0 is monotonically nonincreasing.279

(ii) The sequence {‖(vk+1, zk+1) − (vk, zk)‖B}k>0 is monotonically nonincreasing. Moreover,280

we have ‖(vk+1, zk+1)− (vk, zk)‖B = o
(

1
k+1

)
.281

The detailed proof of the above theorem is given in Appendix 6.1. We next focus on the estimation282

of the sensitivity maps s`.283

3.2. Sensitivity-step: Sensitivity maps estimation. Once we have an approximation to284

the target image u, we can use it to update the sensitivity maps s`, ` = 1, 2, . . . , L. From the acquisi-285

tion model (1.1) and the facts that In = P + (In − P ) and g` = PF (s` � u) in the noise-free case,286

the approximation of the full K-space signal, denoted by gest,` and received by the `th coil, can be287

modeled as288

(3.5) gest,` = g` + (In − P )F (s` � u).289

That is, gest,` is composed of the observed partial K-space information g` and the estimated unobserv-290

able K-space data (I − P )F (s` � u). In the noise-free case, due to s` � u = u� s` = diag(u)s`, we291

indeed have292

(3.6) gest,` = F (s` � u) = (Fdiag(u))s`.293

Define294

(3.7) gest =

gest,1...
gest,L

 , Q = IL ⊗ (Fdiag(u)), s =

s1
...
sL

 .295

Here, gest ∈ CLn, Q ∈ CLn×Ln, and s ∈ CLn. With these preparations, a compact representation of296

(3.6) is as follows:297

(3.8) gest = Qs.298

To estimate a faithful s from model (3.8), we should take both reliable K-space data information299

from gest and prior knowledge on s into consideration. Regarding the prior knowledge on s, each300

sensitivity map s` is assumed to be smooth and the energy of the values coming from the same location301

of the sensitivity maps is identical and equals to one, that is,
∑L

`=1 |s`[j]|2 = 1, for all j = 1, . . . , n,302
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see [24]. Due to u � s` = (hs`) � (u/h) holds for any nonzero constant h, the constraint on the303

sensitivity maps s` ensures the uniqueness of the underlying problem. Therefore, we define the domain304

(3.9) D := {s : s ∈ CLn,
L∑
`=1

|s[j + (`− 1)n]|2 = 1 for j = 1, . . . , n}.305

With these preparations, our proposed optimization problem for estimating s from model (3.8) has a306

form of307

(3.10) min

{
1

2
‖Psel(Qs− gest)‖22 +

1

2
‖ΓsWs‖22 : s ∈ D

}
,308

where Psel is a sampling matrix and W = W3D is associated with the 3D directional Haar framelet309

transform used in the Slice-step. Here Γs is a diagonal matrix whose diagonal entries corresponding310

to the framelet coefficients from lowpass filter of the framelet system are zero and the others have the311

same value. The use of Psel here is twofold. First, the K-space data is usually fully sampled near312

its center, i.e., the ACS lines, and thus gives more accurate estimation of gest near the center. The313

sampling matrix Psel is hence defined to sample coefficients near the center of K-space only. Second,314

the smooth assumption on each s` implies that the frequency response of s` is concentrated around315

the center of the K-space (a low-passed signal). Therefore, there is no need to use the full K-space316

data. Moreover, Psel reduces the computation cost significantly. In our experiments, Psel is indeed the317

sampling matrix corresponding to the ACS line.318

Since the objective function of the optimization problem (3.10) is Lispchitz continuous, problem319

(3.10) can be solved through the forward-backward algorithm (see, for example, [1]). It reads as, for320

any initial guess s0, iterate321

(3.11) sk+1 = projD(sk − τk(Q>Psel(Qs
k − gest) +W>Γ2Wsk)),322

where τk > 0. Here, if t = projD(s) for s ∈ CLn, then for each j = 1, 2, . . . , n, let t̃ = [t[j], t[j +
n], . . . , t[j + (L− 1)n]] and s̃ = [s[k], s[k + n], . . . , s[k + (L− 1)n]], we have

t̃ =

{
s̃
‖s̃‖2 , if ‖s̃‖2 6= 0;
any unit-vector in CL, otherwise.

The convergence analysis of the iterative scheme (3.11) is given in the following theorem.323

Theorem 3.2. Given an ε ∈
(

0, 1
2(‖u‖2∞+‖diag(Γ)‖2∞)

)
and a sequence of stepsize τk such that

ε < τk <
1

‖u‖2∞+‖diag(Γ)‖2∞
− ε, we consider the sequence {sk}k>0 generated by (3.11). Then the

sequence converges to a point s? in D such that

Q>Psel(Qs
? − gest) +Q>Γ2Qs? + νdiag(IL ⊗ ν)s? = 0

for some vector ν ∈ Rn with positive νi > 0, i = 1, 2, . . . , n.324

The proof of the above theorem is given in Appendix 6.2.325
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4. Experiments. In this section, we provide numerical experiments to demonstrate the perfor-326

mance of our SENSE3d model. We begin by reviewing some related work on SENSE and GRAPPA.327

We then provide numerical experiments for the comparisons of our model with some traditional meth-328

ods as well as some deep learning methods.329

4.1. Related work. For the SENSE method, total variation (TV) is one of the regularization330

techniques that has an ability to recover the edge details in the target image for the pMRI problem [43].331

It is well known that TV does not distinguish between jumps and smooth transitions, and tends to give332

piecewise constant images with staircase artifacts. Total generalized variation (TGV) with high-order333

differential operator can remove the staircase artifacts caused by TV, and the TGV of second-order334

is applied to parallel imaging in [17]. Wavelet transforms are adopted to detect artifacts appeared335

in the basic SENSE reconstruction and reduce the artifacts by emphasizing the sparse representation336

of the underlying image [4]. However, the reconstructed image will suffer from ringing artifacts337

when the wavelet coefficients are modified in an incorrect way. The 2D directional Haar framelet338

(DHF) based regularization technique assimilating the advantages of both total variation and wavelet339

regularization, called FADHFA, was proposed for SENSE to preserve details of slice and remove noise340

in [21]. To adaptively represent the image with sparse canonical coefficients by tight frame, a data-341

driven tight frame based off-the-grid regularization model was proposed for the compressive sensing342

MRI reconstruction in [3]. The non-convex and non-smooth Euler’s elastica functional was proposed343

to regularize SENSE reconstruction in [42]. These 2D regularization techniques only focus on each344

coil image independently, and the redundant information among multi-coil images of pMRI are not345

considered in the SENSE reconstructions.346

The generalized autocalibrating partially parallel acquisitions (GRAPPA) in [9] is a K-space me-347

thod and interpolates the missing data in the K-space for each coil from the multi-coil neighbouring348

K-space samples. The GRAPPA method can reconstruct almost the same quality of images as those349

from the SENSE method [2], but it requires the ACS data, near the center of K-space, to estimate350

the interpolation weights or coil sensitivities. In [37], sparsity-promoting calibration was proposed351

to regularize the GRAPPA-based interpolation weights for reconstructing high quality MRI images.352

By exploiting the nonlinear relationship between ACS and missing data, a kernel-based approach was353

suggested to interpolate the missing data in the K-space [25]. Iterative self-consistent parallel imaging354

reconstruction (SPIRiT) extends the GRAPPA’s interpolation weights on sampled and unsampled data355

and fills missing K-space as an inverse problem [24]. ESPIRiT is a “soft” SENSE reconstruction using356

the eigenvectors of a calibration matrix constructed by the SPIRiT model as sensitivity maps, and is357

called `1-ESPIRiT by regularizing the wavelet coefficients of the target images with `1 norm [33].358

Joint sparsity of the wavelet coefficients of each coil image at same position is applied to SPIRiT359

model (`1-SPIRiT) [27] and SENSE model (JSCSSENSE) [5] to further improve the quality of the360

reconstruction results. Since ESPIRiT does not consider the phase of image, an algorithm called361

VCC-ESPIRiT [34] incorporating the virtual conjugate coils was proposed to estimate the sensitivity362

maps that include the absolute phase of the image. A 3D directional Haar tight framelet (3DHF) was363

proposed to regularize the related features between coil images reconstructed by SPIRiT model for364

reducing the aliasing artifacts caused by the downsampling operation [23].365

The filling of K-space dada was formulated as the low-rank matrix completion problem in [14].366

The low-rank matrix modeling of local K-space neighborhoods (LORAKS) [10], and simultaneous367

autocalibration and K-space estimation (SAKE) [31] use local neighborhoods of multi-coil K-space368
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data to construct low-rank matrices for regularizing parallel imaging reconstruction. Under smooth369

phase assumptions, the LORAKS method also imposes phase constraints on low-rank matrices. When370

an image is with the finite rate of innovation, then its K-space data has a property with low-ranked371

weighted Hankel structured matrix, leading to an annihilating filter-based low rank Hankel matrix372

approach (ALOHA) [15]. Jointing sparsity of the patches from multi-coil images using sparse dictio-373

nary was proposed to regularize the reconstruction coil MR images by considering the cross-channel374

relationships in [36].375

Deep learning methods based on many neural network architectures can discover the internal rela-376

tionship of large-scale data through training and learning, and make multi-level abstract representation377

of data [40, 41]. A deep convolutional neural network was proposed to learn regularization part of378

the optimization model for inverse problem and applied to the pMRI problem in [16]. U-Net is a379

commonly used neural network model in medical image processing [30], and has been successfully380

applied to MRI reconstruction [32,45]. An end-to-end variation network (VarNet) [32] is a more pow-381

erful model built upon the fastMRI-UNet model [45]. The VarNet model utilizes a sensitivity map382

estimation module, a refinement module, and a data consistency module to estimate missing K-space383

data and reconstruct MRI images. It achieves good results on the fastMRI dataset and served as the384

baseline model for the 2020 fastMRI challenge [26].385

Deep learning methods for pMRI reconstruction require large number of multi-coil K-space data386

and accurate information about the MR machine acquisitions, however, the parameters of the imaging387

setting of MRI machine (for example, field of view, slice thicknesses, and others) maybe different for388

different cases. For example, a person’s heartbeat, slight body jitter and other factors in the process389

of scanning can form gradient information similar to adversarial attack, which affects the accuracy390

of prediction and results in blurred anatomical structure details and artifacts in reconstructed MRI391

images using deep learning methods [8]. Hence, in this paper, we focus on approaches without the392

needs of large scale data but simply with the few given multi-coil data in the pMRI reconstruction.393

Nevertheless, we provide comparisons of our methods with the deep learning methods as well.394

4.2. Parameter settings. The parameter setting of our SENSE3d-algorithm is as follow. In395

the Slice-step, the parameters γ = 1.99, δ = 0.5, and for a more precise choice of Γ, the thresholding396

parameter, we refer to [22, Section 4.2]; In the Sensitivity-step, all nonzero diagonal entries of the397

diagonal matrix Γ are identical, say each s-th diagonal entry λs = 0.05 for all experiments. After398

this parameter is determined, we choose τk = 0.99
2(‖u‖2∞+λ2s)

and 25 iterations for Sensitivity-step. We399

terminate our method when ‖uk+1 − uk‖22/‖uk‖22 < 10−6 or when the number of iterations exceeds400

40. Here uk is the kth iteration produced by the underlying algorithm. Our SENSE3d-algorithm only401

updates the sensitivity maps at k = 8, 16 and 24 by the Sensitivity-step, and then fixes them after402

k = 24 to guarantee convergence in Slice-step. The two-level decomposition of DHF3
3 is adopted in403

all experiments.404

Several state-of-the-art methods reviewed above, including the fast adaptive DHF algorithm FAD-405

HFA [21], the `1-ESPIRiT method [33], and ALOHA [15], are adopted to further compare with our406

SENSE3d model in numerical experiments. The source code of the `1-ESPIRiT method was down-407

loaded from the website of Michael Lustig1, and its default settings are used except for kernel size408

with 5× 5, maximal iteration 50 and regularization parameter λ set by hand for its best performance.409

1The code is available at: http://people.eecs.berkeley.edu/∼mlustig/Software.html
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The source code of ALOHA method is available at this website of BISPL2, and its default settings are410

used except for the follows: pyramidal decomposition with decreasing LMaFit tolerances, annihilating411

filters, and smoothed regularization parameter named as sroi.412

To evaluate the performance of the algorithms for removing artifacts and preserving details, we413

use the HaarPSI index to calculate the similarity between the reference image and the reconstructed414

image [29]3. The HaarPSI index ranges from 0 to 1, and higher value means that the algorithm is415

better to reconstruct details of slice and remove artifacts.416

The experiments will be carried out on the real phantom and in-vivo data to test different pMRI417

reconstruction algorithms. The phantom MR images are acquired on a 3T MRI System (Tim Trio,418

Siemens, Erlangen, Germany). A turbo spin-echo sequence was used to acquire T2-weighted images.419

The detailed imaging parameters are as follows: field of view (FOV) = 256× 256 mm2, image marix420

size = 512× 512, slice thicknesses (ST) = 3 mm, flip angle = 180 degree, repetition time (TR) = 4000421

ms, echo time (TE) = 71 ms, echo train length (ETL) = 11 and number of excitation (NEX) = 1.422

(a) 512-29%-24 (b) 512-18%-25 (c) 256-34%-11

Figure 3. Sampling modes for the K-space. (a) 29% data by the uniform sampling model of 512× 512 (one line taken
from every four lines) with 24 ACS lines (the middle white area); (b) 18% data by the random sampling model of 512× 512
with 25 ACS lines; (c) 34% data by the random sampling model of 256× 256 with 11 ACS lines.

4.3. Comparisons with other methods: MRI phantoms. In this subsection, three pMRI423

reconstruction methods FADHFA [21], `1-ESPIRiT [33] and ALOHA [15] are compared with our424

proposed SENSE3d model on the two slices of the MRI phantoms.425

We first use four MRI phantom images under the 512 × 512 (512-29%-24) sampling model as426

shown in Fig. 3(a). That is, the uniform sampling model of 512× 512 with one line taken from every427

four lines and with 24 ACS lines. In Fig. 4, the part (a) is the SoS image reconstructed from the full K-428

space data, while the part (b) is the SoS image with blurring and aliasing artifacts by four coil images429

from the downsampled K-space data by the uniform sampling mode in Fig. 3(a). The regularization430

parameter λ is to be 0.035 and 0.001 for `1-ESPIRiT and our SENSE3d model, respectively. The431

settings for ALOHA are four levels of pyramidal decomposition with decreasing LMaFit tolerances432

(0.3, 0.03, 0.003, 0.0003), annihilating filters with size of 11× 11 , and sroi = 10.433

The four pMRI reconstruction algorithms can retrieve most of the information from the parts of434

2The code is available at: https://bispl.weebly.com/aloha-for-mr-recon.html
3The code is available at: http://www.math.uni-bremen.de/cda/HaarPSI/
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(a) Full (b) 29% (c) ALOHA (d) FADHFA (e) `1-ESPRiT (f) SENSE3d

(a’) Full (b’) 29% (c’) ALOHA (d’) FADHFA (e’) `1-ESPRiT (f’) SENSE3d

Figure 4. MRI Phantoms of Slice 1 with size 512-by-512. (a) Reference SoS image by four full K-space data with zoom-
in area. (b) SoS image by four coil images by 29% K-space data on uniform sampling mode in Figure 3(a). (c) ALOHA. (d)
FADHFA. (e) `1-ESPRiT. (f) Our proposed 3D-US model. (a’)–(f’) are the zoom-in parts of (a)–(f), respectively.

the K-space data, but the images in Figs. 4(c), (d) and (e) by ALOHA, FADHFA and `1-ESPIRiT435

respectively, have some obvious aliasing artifacts, which are removed by our SENSE3d model and436

do not appear in Fig. 4(f). That is to say, the correlated features by 3D tight framelet can be utilized437

to regularize the reconstruction image. We provide the zoom-in parts of the reconstructed images in438

Figs. 4(a’)–(f’) for distinguishing their difference. One can see that the ‘circle’ and ‘line’ false aliasing439

artifacts in (b’) are mostly reduced by the regularized algorithms, but false ‘circle’ structures on the440

black region and and noisy artifacts still appear in the zoom-in image (c’) by low-rank regularization,441

while the ‘line’ artifact exists at the left-down corner of the zoom-in image (d’) by 2D-U model and442

at the middle of the zoom-in image (e’) by `1-ESPIRiT using 2D wavelet regularization without con-443

sidering the correlated features of coil images. The Fig. 4(f’) by our SENSE3d model does not have444

these aliasing artifacts and it removes noise and preserves details of the edges more closer to the refer-445

ence image (a’) with full K-space data. The HaarPSI indexes in Table 1 of these four zoom-in images446

by ALOHA, FADHFA , `1-ESPIRiT, and SENSE3d are 0.68, 0.81, 0.84 and 0.90, respectively. Our447

SENSE3d algorithm can get the highest index, which means that our SENSE3d model can efficiently448

remove artifacts and preserve details.449

We next use four MRI phantom images under the 512 × 512 (512-18%-25) sampling model as450

shown in Fig. 3(b). That is, we use 18% sampling rate and 25 ACS lines to collect K-space data for this451

phantom slice. The parameter settings for ALOHA are four levels of pyramidal decomposition with452

decreasing LMaFit tolerances (0.3, 0.03, 0.003, 0.0003), 9× 9 annihilating filers, and sroi = 8. The453

reconstructed results by ALOHA, FADHFA, `1-ESPIRiT with regularization parameter λ = 0.025454

and the proposed SENSE3d model with parameter λ = 0.0002 are shown in Figs. 5(c), (d), (e) and (f),455

respectively.456

Due to the downsampling operation on the K-space, the SoS image in Fig. 5(b) from 18% K-space457

data is blurry and has lots of aliasing artifacts. The ALOHA, FADHFA, `1-ESPIRiT and proposed458
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Table 1
The HaarPSI indexes of the zoom-in parts of reconstructed images by ALOHA, FADHFA , `1-ESPIRiT, and SENSE3d

in Algorithm 3.1 for removing artifacts and preserving details.

Algorithm ALOHA FADHFA `1-ESPIRiT SENSE3d
Zoom-in parts in Figures

Fig. 4 0.68 0.81 0.84 0.90
Fig. 5 0.73 0.85 0.86 0.92
Fig. 7

First row 0.89 0.93 0.95 0.96
Second row 0.87 0.90 0.93 0.96

(a) Full (b) 18% (c) ALOHA (d) FADHFA (e) `1-ESPRiT (f) SENSE3d

(a’) Full (b’) 18% (c’) ALOHA (d’) FADHFA (e’) `1-ESPRiT (f’) SENSE3d

Figure 5. MRI Phantoms of Slice 2 with size 512-by-512. (a) Reference SoS image by four full K-space data, (b) SoS
image by 18% K-space data with sampling model in Figure 3(b). (c) ALOHA. (d) FADHFA. (e) `1-ESPRiT. (f) Our proposed
SENSE3d model. (a’)–(f’) are the Zoom-in parts of (a)–(f), respectively.

SENSE3d model can reconstruct most of details of the target slice and reduce aliasing with respect to459

reference image by full K-space data in Figs. 5(c)–(f). However, the Fig. 5(c) by the ALOHA method460

has obvious aliasing artifacts and false structures, which is not suitable for doctor’s diagnosis. We461

present the zoom-in parts of the reconstruction images into Figs. 5(a’)–(f’) to further compare these462

methods. It is obvious to see that our SENSE3d model can efficiently remove aliasing artifacts and463

keep the structures of the imaging slice. The ALOHA method is not efficient to preserve the shape of464

the bright ‘points’ and separate boundary between the upper and lower regions, and aliasing artifacts465

in the zoom-in images in Fig. 5(c’); The `1-ESPIRiT is better than ALOHA to retrieve the bright466

‘points’ and reduce aliasing artifacts, but it is worse than the FADHFA and our SENSE3d model to467

preserve the boundary edges; The FADHFA is almost the same as the SENSE3d to preserve structure468

details of the slice, but the Fig. 5(d’) by FADHFA has ‘arc’ artifacts at left-down of the zoom-in image469

and false ‘gray’ edges covering the regions of bright ‘points’. The Fig. 5(e’) by `1-ESPIRiT also has470

the aliasing artifact problem as that in Fig. 5(d’) by FADHFA, but it is not efficient to preserve sharp471

edges and blurs these region. All the above issues in Figs. 5(c’)–(e’) do not appear in Fig. 5(f’) by our472

SENSE3d model. The HaarPSI indexes in Table 1 of these four zoom-in images by ALOHA, FADHFA473
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, `1-ESPIRiT, and SENSE3d are 0.73, 0.85, 0.86 and 0.92, respectively. It shows that our SENSE3d474

model gives the best performance for reconstructing the slice image.475

The 3D tight framelet regularization is essentially different from the 2D tight framelet regulariza-476

tion when extracting the features of the correlated coil images for pMRI reconstruction. Our SENSE3d477

model not only has merit of 2D tight framelet-based FADHFA to preserve details but also utilizes cor-478

related features to remove aliasing artifacts caused by downsampling operation in K-space. This case479

again shows our SENSE3d pMRI reconstruction algorithm can reconstruct most details of the slice and480

remove aliasing artifacts when the accelerated sampling rate is high.481

4.4. Comparisons with other methods: In-vivo data. In this subsection we test our482

SENSE3d model on MRI data that are obtained by head examination from a healthy volunteer. The483

detailed imaging was done on a 3T MRI system. Transverse T2-weighted images were acquired with484

a turbo spin-echo sequence. The detail imaging parameters are as follows: field of view = 256 × 256485

mm2, image matrix size = 256 × 256, slice thicknesses = 3 mm, flip angle = 150 degree, repetition486

time = 5920 ms, echo time = 101 ms, echo train length = 11 and number of excitation = 1.487

(a) Full SoS (b) SoS (34%) (c) ALOHA

(d) FADHFA (e) `1-ESPRiT (f) SENSE3d

Figure 6. In-vivo data with sampling model 256 × 256 (256-34%-11) as shown in Fig. 3(c) with two to-be zoom-in
square areas. (a) Reference SoS image of 32 coil images by full K-space data with two zoom-in regions. (b) SoS image by
34% K-space data. (c) ALOHA. (d) FADHFA. (e) `1-ESPRiT. (f) Our SENSE3d model.

The magnetic resonance signal of each slice is received by 32 channels, and the reference image of488

one slice in Fig. 6(a) is a SoS image of 32 coil images by full of the K-space data. In phase direction,489
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(a) Full SoS (b) ALOHA (c) FADHFA (d) `1-ESPRiT (e) SENSE3d

(f) Full SoS (g) ALOHA (h) FADHFA (i) `1-ESPRiT (j) SENSE3d

Figure 7. Two zoom-in parts of Fig. 6. (a)(f) Reference SoS image. (b)(g) ALOHA. (c)(h) FADHFA. (d)(i) `1-ESPRiT.
(e)(j) Our SENSE3d model.

about 34% K-space data are collected using the pseudo-random sampling mode with 11 ACS lines in490

Fig. 3(c). The resulting SoS image of the collected 34% K-space data in Fig. 6(b) is noisy and the brain491

structures are blurry. Furthermore, faint semicircle-like aliasing artifacts can be seen in the upper and492

lower portions of the image due to the accelerating K-space sampling mode.493

The reconstructions by the ALOHA, FADHFA, `1-ESPIRiT and our SENSE3d model are shown494

in Figs. 6(c), (d), (e) and (f), respectively. Their parameter settings are as follows: four levels of pyra-495

midal decomposition with decreasing LMaFit tolerances (10−1, 10−2, 10−3, 10−4), 9× 9 annihilating496

filers, and regularization parameter sroi = 1.1 for ALOHA; `1-ESPIRiT with λ = 0.003 and our 3D497

SENSE3d-Algorithm with λ = 0.00001. Clearly, the quality of the images in Figs. 6(c), (d), (e) and498

(f) are much better than the one in Fig. 6(b) in terms of the structures of the slice, the levels of noise499

and the aliasing artifacts.500

To discriminate the difference of reconstructed images, we zoom-in two square regions as in501

Fig. 6(a) to compare the quality of the reconstructions by ALOHA, FADHFA, `1-ESPIRiT and our502

SENSE3d model. The first region at the left side of frontal lobe is zoomed-in and provided in503

Figs. 7(a)–(e). According to HaarPSI indexes in Table 1, the Figs. 7(b)–(e) by ALOHA, FADHFA504

, `1-ESPIRiT, and SENSE3d are 0.89, 0.93, 0.95 and 0.96, respectively. Our SENSE3d algorithm is505

the best to reconstruct slice details from in-vivo data.506

We label three positions by red, green and yellow arrows to compare their differences by different507

algorithms. The artery pointed by green arrow in Fig. 7(b) by ALOHA is not clear and blurred, but508

structures of artery in Figs. 7(c), (d), and (e) respectively by FADHFA, `1-ESPIRiT and SENSE3d509

are more obvious than that by ALOHA. The FADHFA and SENSE3d models are better than the `1-510

ESPIRiT method, which reconstruct the structures of artery almost same as reference one in Fig. 7(a).511

At the region of white matter between red arrow and yellow arrow, there are aliasing artifacts in512

Fig. 7(d) by `1-ESPIRiT, extending from the frontal lobe into white matter; the boundary between the513

frontal lobe and white matter is blurry in Fig. 7(b) by ALOHA; there are ‘white artifact’ (yellow arrow514

pointing) in Fig. 7(b) by FADHFA; but Fig. 7(e) by our SENSE3d model doesn’t have these aliasing515
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problems and provides obvious boundary between tissues, and is very close to reference image in516

Fig. 7(a).517

We zoom-in another part of slice at the anterior border of the corpus callosum region, and present518

zoom-in images in Figs. 7(f)–(j). The lobus (green arrow pointing) in Figs. 7(h), (i) and (j), respectively519

reconstructed by FADHFA, `1-ESPIRiT and our SENSE3d, still have better tissue structure than that in520

Fig. 7(g) by ALOHA. The low-rank regularized method ALOHA doesn’t preserve details in the tissue.521

The yellow arrow pointing regions in Figs. 7(g), (h) and (i), respectively reconstructed by ALOHA,522

FADHFA, `1-ESPIRiT have aliasing artifacts at the anterior border of corpus callosum, which are false523

structures and do not appear in the reference image in Fig. 7(f). However, in Fig. 7(j), the aliasing524

artifacts is removed by our SENSE3d model and the geometry structures of the border is retrieved525

almost the same as the reference one. The HaarPSI indexes in Table 1, the Figs. 7(f)–(i) by ALOHA,526

FADHFA, `1-ESPIRiT, and SENSE3d are 0.87, 0.90, 0.93 and 0.96, respectively. The highest HaarPSI527

index of our SENSE3d algorithm is consistent with our visual observation. The ALOHA, FADHFA528

and `1-ESPIRiT methods are not very efficient to remove these artifact appeared in Fig. 6(b), but our529

SENSE3d model can be efficient to remove these aliasing artifacts and its reconstructed structures of530

tissues is close to reference image in Fig. 6(a). That is to say, 3D tight framelet-based SENSE3d-531

algorithm has a greater capacity of preserving edges and reducing most of the aliasing artifacts caused532

by downsamping operation in K-space than the 2D tight framelet-based, 2D wavelet-based and low-533

rank based regularization algorithms.534

(a) 372-35%-30 (b) 770-35%-59

Figure 8. Sampling modes for the K-space. (a) 35% data by the uniform sampling model of 372 × 640 with 30 ACS
lines ; (b) 35% data by the random sampling model of 770× 768 with 59 ACS lines.

4.5. Comparisons with deep learning methods: Knee data. In this section, we compare535

our SENSE3d model with deep learning model VarNet [32]4 that is built upon the fastMRI-UNet536

model [45] with fastMRI dataset. 5537

A set of knee with full K-space data from the fastMRI dataset is used for this section. This knee538

dataset is acquired using a clinical 1.5T system with a 2D turbo spin-echo sequence and a conventional539

Cartesian 2D TSE protocol. The detailed imaging parameters are as follows: field of view = 280.00×540

162.82 × 4.50 mm3, image marix size = 640 × 372, slice thicknesses = 4.5 mm, flip angle = 140541

4The code is available at: https://github.com/facebookresearch/fastMRI/tree/main/fastmri examples/varnet
5The dataset is available at: http://fastmri.med.nyu.edu/ and served as the baseline model for the 2020 fastMRI challenge

[26].
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degree, repetition time = 2800 ms, echo time = 32 ms and echo train length = 4. The VarNet crops542

the reconstructed images from the network outputs with size 640 × 372 to be image blocks with size543

320 × 320 centered on the original ones. We follow the settings of the VarNet model. The fully544

sampled images and reconstructed images by SENSE3d are also taken out from the same region for545

comparisons. Note that this knee dataset serves as a validation set for the VarNet model in training546

process. Hence, it is no doubt that the trained model VarNet gives superior performance on such data547

than the fastMRI-UNet model.548

(a) Full SoS (b) SoS (35%) (c) VarNet (d) SENSE3d

Figure 9. FastMRI data with sampling model 372-35%-30 as shown in Fig. 8(a) with two to-be zoom-in rectangle
areas. (a) Reference SoS image of 15 coil images by full K-space data with two zoom-in regions. (b) SoS image by 35%
K-space data. (c) VarNet. (d) Our SENSE3d model.

(a) Full SoS (b) VarNet (c) SENSE3d

(d) Full SoS (e) VarNet (f) SENSE3d

Figure 10. Two zoom-in parts of Fig. 9. (a)(d) Reference SoS image. (b)(e) VarNet. (c)(f) Our SENSE3d model.

The reference image in Fig. 9(a) is a SoS image by 15 coil images with full K-space data. In phase549

direction, about 35% K-space data are collected using the pseudo-random sampling mode with 30 ACS550

lines in Fig. 8(a). The resulting SoS image of the collected 35% K-space data in Fig. 9(b) is noisy and551

the knee structures are blurry. Furthermore, numerous faint elongated aliasing artifacts can be seen552

across the entire image due to the accelerating K-space sampling mode. The reconstructions by the553
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VarNet and our SENSE3d model are shown in Figs. 9(c) and (d), respectively. The parameter setting554

of our 3D SENSE3d-algorithm is λ = 0.0005, which remains the same throughout the subsequent555

experiments. Clearly, the quality of the images in Figs. 9(c) and (d) are much better than the one in556

Fig. 9(b) in terms of the structures of the slice, the levels of noise and the aliasing artifacts. To compare557

the difference between these two reconstructed images, we zoom-in parts of the femur and tibia regions558

and show them in Fig. 10. It is obvious that the zoom-in images by the VarNet are smoother than the559

original ones (lost of details) and have some aliasing artifacts, tibia image with ‘white line’ and femur560

image with ‘black line’. But our SENSE3d algorithm can suppress these artifacts and its reconstructed561

images are with closer structures to the reference one. We provide their HaarPSI index for further562

comparisons. The HaarPSI index provided in Table 2 for tibia and femur images in Figs. 10(c) and (f)563

by our SENSE3d are 0.891 and 0.894, respectively. But the HaarPSI index by the VarNet in Figs. 10(b)564

and (e) are 0.866 and 0.879, respectively. Our SENSE3d gets higher HaarPSI index than that by the565

VarNet.566

Table 2
The HaarPSI indexes of the zoom-in parts of reconstructed images by VarNet, fastMRI-UNet, and SENSE3d in Algo-

rithm 3.1 for removing artifacts and preserving details.

Algorithm Fig. 10 Algorithm Fig. 12
First row Second row First row Second row

VarNet 0.866 0.879 fastMRI-UNet 0.906 0.836
SENSE3d 0.891 0.894 SENSE3d 0.970 0.961

Another knee dataset is different from the data used in FastMRI, which is provided at this MRI567

data website 6. This knee dataset is acquired using a clinical 2.89T system with a turbo spin-echo568

sequence. The detail imaging parameters are as follows: field of view = 280 × 280.7 × 4.5 mm3,569

image marix size = 768 × 770, slice thicknesses = 4.5 mm, flip angle = 150 degree, repetition time =570

2800 ms, echo time = 22 ms.571

We attempt to use the VarNet to reconstruct the MRI image on this new knee data. However, the572

VarNet cannot produce correct result on this new knee data. The main reason is due to the inaccurate573

sensitivity maps estimated by the VarNet besides the common generalization limitation of the network574

model such as inconsistent image from the fastMRI dataset, different machines data acquisition set-575

tings, and so on. We hence use another model, the fastMRI-UNet [45], that has less restrictions, to576

reconstruct the result and compare it with our model. Unlike the VarNet, the fastMRI-UNet directly577

takes K-space data as input and produces reconstructed MRI images, without the need for a sensitivity578

map estimation model. The source code of fastMRI-UNet is available at the GitHub website7.579

We use the sampling mode with 59 ACS lines in Fig. 8(b) to collect 35% K-space for the fastMRI-580

UNet and our SENSE3d to reconstruct the target image. The reconstructions by the fastMRI-UNet581

and our SENSE3d model are shown in Fig. 11(c) and (d) respectively. The SoS image in Fig. 11(b)582

by the collected 35% K-space data is blurry, but reconstructed images by the fastMRI-UNet and our583

SENSE3d model are clear with more structure details. To compare the difference between Fig. 11(c)584

and (d), we zoom-in parts of the popliteus and Soleus muscle regions and show them in Figure 10. The585

reconstructed images by our SENSE3d model are with clear organizational details than the images by586

6http://www.mridata.org
7The code is available at: https://github.com/facebookresearch/fastMRI/tree/main/fastmri examples/unet
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the fastMRI-UNet. The popliteus part by our model is almost close to reference one with HaarPSI587

value 0.961 (see Table 2), but the image by the fastMRI-UNet is only 0.836. HaarPSI value of another588

part at soleus muscle by the fastMRI-UNet and our SENSE3d model are 0.906 and 0.970, respectively.589

Our model gives 0.064 higher than the fastMRI-UNet model. This case shows that our model is stable590

to reconstruct image and get nice results from the different data by different machine acquisition.591

(a) Full SoS (b) SoS (35%) (c) fastMRI-UNet (d) SENSE3d

Figure 11. MRI data with sampling model 770-35%-59 as shown in Fig. 8(b) with two to-be zoom-in rectangle areas.
(a) Reference SoS image of 15 coil images by full K-space data with two zoom-in regions. (b) SoS image by 35% K-space
data. (c) fastMRI-UNet. (d) Our SENSE3d model.

(a) Full SoS (b) fastMRI-UNet (c) SENSE3d

(d) Full SoS (e) fastMRI-UNet (f) SENSE3d

Figure 12. Two zoom-in parts of Fig. 11 . (a)(d) Reference SoS image. (b)(e) fastMRI-UNet. (c)(f) SENSE3d.

5. Conclusions and further remarks. We have proposed an effective SENSE3d model for592

the pMRI reconstruction. The proposed method can reconstruct high quality images from the sampled593

K-space data with a high acceleration rate by decoupling effects of the desired image (slice) and594

sensitivity maps. The developed SENSE3d-algorithm, which consists of a sequence of alternating595
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Slice-step and Sensitivity-step, exploits the decoupled slices and sensitivity maps. Each Slice-step596

solves a convex optimization problem for an estimated image with the given estimations of sensitivity597

maps while each Sensitivity-step solves an non-convex optimization problem for estimated sensitivity598

maps with the given estimation of the desired image. The convergence analysis for the optimization599

algorithm in both Slice-step and Sensitivity-step has been studied. Numerical results on various data600

and comparisons to other state-of-the-art methods including deep learning methods have demonstrated601

that the proposed method can produce images of high quality and reduce aliasing artifacts efficiently602

caused by inaccurate estimation of each coil sensitivity.603

The using of neural networks is to learn the relationship between input data (K-space data) and604

output data (for example, slice images) by training data. Thus, the databases with a large number of605

multi-coil K-space data are needed to train the neural networks for pMRI reconstruction [18]. The606

challenge of pMRI reconstruction by using neural networks is their instability of predicting output607

data when the imaging conditions of input data are different with different training conditions [35].608

How to take the advantages of our model to improve the performance of the models based on deep609

learning methods can be one of our future research topics.610

6. Appendix.611

6.1. Proof of Theorem 3.1. In this appendix, we give the proof of Theorem 3.1. To this end,
we first introduce our notation and recall some necessary background materials from optimization.
The class of all lower semicontinuous convex functions f : Cd → (−∞,+∞] such that dom f :=
{x ∈ Cd : f(x) < +∞} 6= ∅ is denoted by Γ0(Cd). The indicator function of a closed convex set C
in Cd is defined, at u ∈ Cd, as

ιC(u) :=

{
0, if u ∈ C,
+∞, otherwise.

Clearly, the indicator function ιC is in Γ0(Cd) for any closed nonempty convex set C.612

For a function f ∈ Γ0(Cd), the proximity operator of f with parameter λ, denoted by proxλf , is
a mapping from Cd to itself, defined for a given point x ∈ Cd by

proxλf (x) := argmin

{
1

2
‖u− x‖22 + λf(u) : u ∈ Cd

}
.

We also need the notation of conjugate. The conjugate of f ∈ Γ0(Cd) is the function f∗ ∈ Γ0(Cd)613

defined at x ∈ Cd by f∗(x) := sup{〈u, x〉 − f(u) : u ∈ Cd}. A key property of the proximity614

operators of f and its conjugate is615

(6.1) proxλf (x) + λproxλ−1f∗(x/λ) = x,616

which holds for all x ∈ Cn and any λ > 0.617

For a real function f defined on Cd, we say f is Fréchet differentiable at x ∈ Cd if there exits a
v ∈ Cd such that

lim
y→x

|f(y)− f(x)− 〈v, y − x〉|
‖y − x‖2

= 0.

The vector v is called the gradient of f at x, denoted by ∇f(x). As an example, ∇(‖A · −b‖22) =618

A>(A · −b), where A ∈ Cd×n and b ∈ Cd.619
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We consider the following optimization problem620

(6.2) min
x∈Cn

p(x) + q(x) + r(Ax),621

where A is a d× n matrix, p ∈ Γ0(Cn) is differentiable, q ∈ Γ0(Cn), and r ∈ Γ0(Cd).622
Several algorithms have been developed for the optimization problem (6.2), see, for example,623

[20, 39]. We adopt the algorithm given in [39] for problem (6.2) since it converges under a weaker624
condition and can choose a larger step-size, yielding a faster convergence. This algorithm, named as625
Primal-Dual Three-Operator splitting (PD3O), has the following iteration:626

xk = proxγq(y
k)(6.3a)627

zk+1 = proxδr∗
(
(I − γδAA>)zk + δA(2xk − yk − γ∇p(xk))

)
(6.3b)628

yk+1 = xk − γ∇p(xk)− γA>zk+1(6.3c)629630

One PD3O iteration can be viewed as an operator TPD3O such that (yk+1, zk+1) = TPD3O(yk, zk).631

The convergence analysis of PD3O is given in the following lemma.632

Lemma 6.1 (Sublinear convergence rate [39]). Let p ∈ Γ0(Cn) and its gradient be Lipschitz633

continuous with constant ν. Choose γ and δ such that γ < 2/ν and B = γ
δ (I − γδAA>) is positive634

definite. Let (y∗, z∗) be any fixed point of TPD3O, and {(yk, zk)}k>0 be the sequence generated by635

PD3O. Define ‖(y, z)‖B :=
√
‖y‖2 + 〈z,Bz〉. Then, the following statements hold.636

(i) The sequence {(‖(yk, zk)− (y∗, z∗)‖B)}k>0 is monotonically nonincreasing.637

(ii) The sequence {(‖(yk+1, zk+1)− (yk, zk)‖B)}k>0 is monotonically nonincreasing. Moreover,

‖(yk+1, zk+1)− (yk, zk)‖2B = o

(
1

k + 1

)
.

We remark that the statements in Lemma 6.1 are originally presented in real vector space Rn (see [39]).638

By using the inner product (3.1) for Cn, we essentially work with real vector space R2n. Therefore,639

the results in Lemma 6.1 hold on Cn as well.640

By identifying p, q, r and A in (6.2), respectively, as follows641

(6.4) p(·) =
1

2
‖M · −g‖2, q(·) = ιRn(·), r(·) = ‖Γ(·+ b)‖1, A = WN642

with b = W (IL⊗F−1)g, the PD3O algorithm can be applied for solving problem (3.3). To efficiently643

implement this algorithm, we need to know both proxq and proxδr∗ . By the definition of proximity644

operator, proxq = Re, i.e., proxq takes the real part of an input. The proximity operator proxδr∗ is645

given in the next lemma.646

Lemma 6.2. Let r be given in (6.4). Then, for δ > 0 and z ∈ Cd, proxδr∗(z) = (z + δb) −647

prox‖Γ·‖1(z + δb).648

Proof. Write w = proxδr∗(z). From the identity (6.1), w = z − δproxδ−1r(δ
−1z). Based on649

the separable property of r in (6.4), that is, r(u) = ‖Γ(u + b)‖1 =
∑d

k=1 γ[k]|u[k] + b[k]|, we have650

that w[k] = z[k] − δproxδ−1γ[k]|·+b[k]|(δ
−1z[k]), for k = 1, 2, . . . , d. By a simple manipulation on651

the above proximity operator, we have that w[k] = (z[k] + δb[k]) − proxγ[k]|·|(z[k] + δb[k]). This652

completes the proof of this result.653
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The proximity operator prox‖Γ·‖1 is the well-known soft shrinkage operator soft(x,Γ). To show the654

convergence of the PD3O algorithm under the proper choices of parameters γ and δ, we need the655

following lemma.656

Lemma 6.3. LetM and g be given in (1.2), and let p andA be given in (6.4). Then, the following657

statements hold:658

(i). The gradient of p is κ-Lipschitz continuous, where κ is given in (3.4).659

(ii). For any positive numbers γ and δ, the matrix I − γδAA> is positive definite if and only if γδ < 1/κ.660

Proof. Item (i): Note that ∇p(u) = M>(Mu − g). Then, ∇p is ‖M‖2-Lipschitz continuous.661

Define Q =
∑L

`=1 s`s
>
` which is the entry-wise conjugate of the matrix

∑L
`=1 s`s

>
` . From (1.2), we662

haveM>M =
∑L

`=1 diag(s̄`)F
>PFS` = (F>PF )�Q. SinceQ is positive semi-definite matrix, we663

have, for example, by Theorem 5.5.18 in [13], that ‖M>M‖2 6 maxi,j |Q[i, j]|‖F>PF‖2. Further,664

due to ‖F>PF‖ 6 1, maxi,j |Q[i, j]| = maxk |Q[k, k]|, and Q[k, k] =
∑L

`=1 |s`[k]|2, we have665

‖M>M‖2 6 κ.666

Item (ii): The proof replies on the estimation of the norm of AA>. From A = WN and W>W =667

I , one has ‖AA>‖2 = ‖A>A‖2 = ‖N>N‖2. Similar to the discussion in Item (i), we have N>N =668

(F>(I − P )F )�Q and ‖N>N‖2 6 κ. Therefore, the largest eigenvalue of AA> is less than κ. As669

a result, I − γδAA> is positive definite if and only if γδ < 1/κ. This completes the proof.670

Proof. (Theorem 3.1) By Lemma 6.3, the gradient p in (6.4) is κ-Lipschitz continuous and the671

matrix B is positive definite if and only if γδ < 1/κ, the result of this theorem follows immediately672

from Lemma 6.1.673

6.2. Proof of Theorem 3.2. For given Psel, M , gest, Γ and W in (3.10), define674

(6.5) h(s) :=
1

2
‖Psel(Qs− gest)‖22 +

1

2
‖ΓWs‖22.675

We have the following result for the function h.676

Lemma 6.4. Let h be defined in (6.5). Then, the gradient of h is Lipschitz continuous with677

Lipschitz constant ‖u‖2∞ + ‖diag(Γ)‖2∞.678

Proof. Note that∇h(s) = Q>Psel(Qs− gest) +W>Γ2Ws. For any vectors s1 and s2, we have679

‖∇h(s1)−∇h(s2)‖2 = ‖(Q>PselQ+W>Γ2W )(s1 − s2)‖2 6 (‖Q‖22‖Psel‖2 + ‖W‖22‖Γ‖22)‖s1 −680

s2‖2. We know that ‖Psel‖2 = 1, ‖W>‖2 = 1, and ‖Γ‖2 = ‖diag(Γ)‖∞. Next we estimate the norm681

of Q. Since682

Q>Q = (IL ⊗ (Fdiag(u)))>(IL ⊗ (Fdiag(u)))683

= (IL ⊗ (diag(u)F−1))(IL ⊗ (Fdiag(u)))684

= IL ⊗ (diag(u)diag(u))),685

we have that ‖Q‖22 = ‖Q>Q‖2 = ‖IL ⊗ (diag(u)diag(u))‖2 = ‖diag(u)‖22 = ‖u‖2∞. Hence, the686

gradient of h is Lipschitz continuous with Lipschitz constant ‖u‖2∞ + ‖diag(Γ)‖2∞.687

Proof. (Theorem 3.2) Note that h(s) is a quadratic polynomial with respect to s and the set D688

given in (3.9) is determined by a set of polynomials. Then, h(s) + ιD(s) is a Kurdyka-Łojasiewicz689

function (see, e.g., [1]). Hence, the result is the direct consequence of Theorem 5.3 of [1].690
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