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Abstract—The nature of heterophilous graphs is significantly1

different from that of homophilous graphs, which causes dif-2

ficulties in early graph neural network models and suggests3

aggregations beyond the 1-hop neighborhood. In this paper,4

we develop a new way to implement multi-scale extraction via5

constructing Haar-type graph framelets with desired properties6

of permutation equivariance, efficiency, and sparsity, for deep7

learning tasks on graphs. We further design a graph framelet8

neural network model PEGFAN (Permutation Equivariant Graph9

Framelet Augmented Network) based on our constructed graph10

framelets. The experiments are conducted on a synthetic dataset11

and 9 benchmark datasets to compare performance with other12

state-of-the-art models. The result shows that our model can13

achieve the best performance on certain datasets of heterophilous14

graphs (including the majority of heterophilous datasets with15

relatively larger sizes and denser connections) and competitive16

performance on the remaining.17

Index Terms—Graph neural networks (GNNs), Graph18

framelets/wavelets, Permutation equivariance, Heterophily.19

I. INTRODUCTION20

GRAPHS are ubiquitous data structures for a variety of21

real-life entities, such as traffic networks, social networks,22

citation networks, chemo- and bio-informatics networks, etc.23

With the abstraction via graphs, many real-world problems24

that are related to networks and communities can be cast into25

a unified framework and solved by exploiting its underlying26

rich and deep mathematical theory as well as tremendously27

efficient computational techniques. In recent years, graph neural28

networks (GNNs) for graph learning such as node classification29

[1], link prediction [2], and graph classification [3], have30

demonstrated their powerful learning ability and achieved31

remarkable performance [4]–[8]. In the particular field of32

node classification, many GNN models follow the homophily33

assumption, that is, the majority of edges connect nodes from34
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the same classes (e.g., researchers in a citation network tend to 35

cite each other from the same area), yet graphs with heterophily, 36

that is, the majority of edges connect nodes from different 37

classes [9], do exist in many real-world scenarios. A typical 38

example is in a cyber network where a phishing attacker usually 39

sends fraudulent messages to a large population of normal users 40

(victims) in order to obtain sensitive information. We refer to 41

[10], [11] for the limitations of early GNNs on homophilous 42

graphs and a recent survey paper [9] on GNNs for heterophilous 43

graphs. 44

Heterophilous graphs differ from homophilous graphs not 45

only spatially in terms of distribution beyond the 1-hop 46

neighborhood but also spectrally with larger oscillation in 47

terms of the frequency distribution of graph signals under 48

the graph Laplacian. Such properties bring challenges to 49

learning on heterophilous graphs and demand new GNNs 50

the ability to extract intrinsic information in order to achieve 51

high performance. To enhance the influence of nodes from 52

the same classes that are outside of 1-hop neighborhoods, 53

one common approach is based on the multi-hop aggregation 54

to leverage information of k-hop neighborhoods, k ≥ 2. 55

Its effectiveness for heterophilous graphs is emphasized and 56

theoretically verified in [12]. A common way to perform multi- 57

hop aggregation is to utilize the powers of the adjacency 58

matrix. Repeatedly applying Laplacian smoothing many times, 59

prompted by using higher powers of adjacency matrix, can 60

result in a convergence of vertex features within each connected 61

component of the graph towards uninformative or identical 62

values, a phenomenon referred to as over-smoothing [10], 63

[13]. Moreover, they may lead to dense matrices and cause 64

computation and storage burdens. To seek further improvement, 65

it is thus desirable to consider an alternative spatial resolution of 66

graphs other than k-hop neighborhood. To answer this question, 67

we work on the theory of wavelet/framelet systems on graphs 68

which brings a notion of scale on graphs and wavelets/framelets 69

corresponding to such scales. In this paper, we introduce and 70

integrate a dedicated graph framelet system so as to perform 71

multi-scale extraction on graphs. 72

Actually, classical wavelets/framelets in the Euclidean do- 73

mains, e.g., see [14], [15], are well-known examples of multi- 74

scale representation, which have been extended to irregular do- 75

mains such as graphs and manifolds under similar principles in 76

recent years, e.g., see [16]–[19]. Some graph wavelets/framelets 77

systems are also proposed and applied in GNNs for node and 78

graph classifications [20]–[22]. When the graph is reordered, 79

it is natural to expect the produced wavelets/framelets to be 80

reordered in the same way for robust learning. However, most 81

of the graph wavelets/framelets do not possess such a property 82
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of permutation equivariance. That is, up to certain permutations,1

the constructed graph wavelet/framelet systems should be the2

“same” regardless of the underlying node orderings. The work3

on Haar-type graph wavelets/framelets [17], [20], [23]–[25]4

are “piecewise-constant” functions on graphs that depend on5

a given tree with certain underlying node ordering. If new6

orderings are given, though the underlying graph and graph7

data are the same, the newly resulting graph wavelets/framelets8

are no longer the same. Without the property of permutation9

equivariance, the network outputs could vary with respect to10

graph reordering and thus lead to instability of the GNNs.11

In this paper, we provide a novel and general method to12

construct Haar-type graph framelets having the permutation13

equivariance property, which further implies the permutation14

equivariance of our graph framelet neural network model15

PEGFAN (Permutation Equivariant Graph Framelet Augmented16

Network). Our Haar-type graph framelets are constructed spa-17

tially with respect to a hierarchical structure on the underlying18

graph. Scales in such systems correspond to the levels in the19

hierarchical structure in which higher levels are associated with20

larger groups of nodes. Multi-scale extractions via such graph21

framelets are regarded as alternatives and supplements for the22

usual multi-hop aggregations. Moreover, we show that our23

graph framelets possess sparse representation property, which24

leads to the sparsity property of the orthogonal projection25

matrix (framelet matrix) formed by stacking those framelet26

vectors at certain scales. This is in contrast to the high27

powers of adjacency matrices and their non-sparse nature.28

Furthermore, we apply our graph framelets in the neural29

network architecture design by using the framelet matrices30

at different scales as well as the adjacency matrices to31

form multi-channel input and perform multi-scale extraction32

through attention and concatenation. The state-of-the-art node33

classification accuracies on several benchmark datasets validate34

the effectiveness of our model.35

In summary, the contribution of this paper is as follows:36

1) We propose a novel and general method to construct37

Haar-type graph framelets that have properties of permutation38

equivariance, sparse representation, efficient computation, and39

so on. 2) We apply our Haar-type graph framelet system40

to extract multi-scale information and integrate it into a41

graph neural network architecture. 3) We demonstrate the42

effectiveness of our model for node classification on synthetic43

and benchmark datasets via extensive comparisons with several44

state-of-the-art GNN models.45

II. RELATED WORK46

Node Classification on Heterophilous Graphs. Early work47

on node classification includes [1], [26], [27], which are some48

of the earliest examples of spectral and spatial GNNs. GEOM-49

GCN [28] is the first work that aims at heterophilous graphs.50

Topology augmentation graph convolutional network (TA-GCN)51

[29] is proposed under the guidance of an NCC (neighborhood52

class consistency) metric. To enhance the performance of GNNs53

on the heterophily datasets, conv-agnostic GNN (CAGNN) [30]54

is developed by learning the neighbor effect for each node.55

From relation-based frequency point of view, relation-based56

frequency adaptive GNN (RFA-GNN) [31] aims to adaptively 57

pick up signals of different frequencies in each corresponding 58

relation space in the message-passing process. In [12], a set 59

of key designs is discussed, which can boost learning under 60

heterophily. So as to counter the limit imposed by node-level 61

assortativity (homophily), in [32], a computation graph with 62

proximity and structural information is proposed, which is 63

converted from the input graph. A new generalized PageRank 64

[33], which is jointly optimized with node features and 65

topological information extraction, works for graphs regardless 66

of homophily or heterophily. Two novel fully differentiable 67

and inductive rewiring layers are introduced in [34] to mitigate 68

the problems of over-smoothing, over-squashing, and under- 69

reaching on both homophilous and heterophilous graphs. Adopt- 70

ing a homophily-oriented deep heterogeneous graph rewiring 71

method to increase the meta-paths subgraph homophily ratio, 72

heterogeneous graph neural network (HGNN) [35] improves 73

the performance of on heterophilous graphs. In [36], a random- 74

edge dropping mechanism for increasing heterophily of graphs 75

is proposed, aiming at enhancing fairness in GNNs’ predictions. 76

We refer to [9] for a comprehensive review of graph neural 77

networks for graphs with heterophily. 78

Multi-hop Aggregation in GNNs. Papers of [12], [37]–[39] 79

are GNNs that adopt hidden layer concatenation and multi- 80

hop aggregation and involve the powers of adjacency matrices. 81

Thus, they resemble each other in terms of neural network 82

architecture. The difference is that [37], [38] mainly deal with 83

homophilous datasets. On the other hand, with emphasis on 84

the heterophilous setting, the work [12] theoretically shows the 85

importance of concatenation of aggregation beyond the 1-hop 86

neighborhood, with an addition on the importance of ego- and 87

neighbor-embedding separation. Such a non-local neighborhood 88

aggregation is also emphasized in [27], [37]. The current state- 89

of-the-art model FSGNN, i.e., Feature Selection GNN [39], 90

is different from the previous ones by, in our interpretation, 91

viewing the semi-supervised setting as a supervised setting in 92

which multi-hop aggregation is regarded as input of different 93

feature channels from different hops and were not applied in the 94

following layers. As a result, its network architecture basically 95

consists of a mix-hop [38] layer and fully-connected layers 96

with attention weights for different channels being applied 97

before the concatenation. It is worth mentioning that a recent 98

work [40] on large-scale heterophilous node classification is 99

very similar to [39], in which input channels were limited to 100

the 0-hop and the 1-hop. 101

Graph Wavelets/Framelets. Papers of [16]–[18], [20], [23]– 102

[25], [41] are work of graph wavelets/framelets in which [16], 103

[18] are spectral-type and the rest are Haar-type. A framelet 104

system differs from the classical (orthogonal) wavelet system 105

by being a frame in a Hilbert space and offering redundant 106

representation. The Haar-type wavelet system in [41] is defined 107

for different nodes as centers. In [17], [20], [23]–[25], graph 108

wavelets/framelets are defined under a given tree and they differ 109

in the interpretation and generation of the tree. In [23], it is 110

applied to trees from graphs. In [17], the tree is represented 111

as a filtration on [0, 1], and the wavelet system is equivalent 112

to an orthogonal basis of tree polynomials. Similar to [17], 113

the trees are further generalized to hierarchical partitions of 114
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[0, 1]2 in [24] and apply to directed graphs, and a Haar-type1

wavelet system for directed graphs is thus constructed. To2

further generalizes [24], [42], the constructions of Haar-type3

framelet systems on any compact set in Rd is considered under4

a given hierarchical partition and adapt the construction of5

directed graph framelets to such cases [25].6

1 2 3 4 5 6 7 8

(a) Graph G1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2

3

4 5 6 7 8

1 2

3

4 5 6 7 8
(b) Hierarchical partition P4

(c) Graph framelets
Fig. 1. Graph framelets (bottom) w.r.t. G1 (top) and the hierarchical partition
P4 (middle). The blue points in (c) are the values of graph framelets on each
node. The height of blue points represents the value of graph framelets ψΛ

(8 sub-figures in (c)). The blue points are above the corresponding nodes if
values are positive, and below otherwise.

III. PERMUTATION EQUIVARIANT GRAPH FRAMELETS7

In this section, we develop Haar-type graph framelet systems,8

the binary Haar graph framelets, with properties of tightness,9

sparsity, efficiency, and permutation equivariance, which yield10

robustness and effective algorithms for the model PEGFAN to11

be introduced in Section IV. All proofs of the main results in12

this paper are postponed to Appendix A.13

A. Preliminaries14

Let G = (V, E) be a graph, where V = {v1, . . . , vn} is the15

vertex set containing n vertices (or equivalently, we simply16

identify V = {1, 2, . . . , n}), and E ⊂ V × V is the edge set17

of ordered pairs (i, j). The adjacency matrix A : V × V → R18

of G is a matrix of size n × n such that its (i, j)-entry aij19

is the weight on edge (i, j) and aij = 0 if (i, j) /∈ E . We20

consider only undirected graphs in this paper, i.e., A⊤ = A.21

We denote Ã :=D−1/2AD−1/2 with D being the diagonal22

degree matrix of G, whose diagonal elements defined as dii =23 ∑n
j=1 aij . A signal f = [f1, . . . , fn]

⊤ on the graph is defined24

as f : V → R with ℓ2 norm ∥f∥2 =
∑n

i=1 |fi|2 < ∞. All 25

such ℓ2 signals on G form a Hilbert space L2(G) under the 26

usual inner product. A collection {em : m ∈ [M ]} ⊂ L2(G) 27

is a tight frame of L2(G) if f =
∑M

m=1⟨f , em⟩em for all 28

f ∈ L2(G), where ⟨·, ·⟩ is the inner product and we denote 29

[M ] := {1, . . . ,M}. We denote the i-th column vector and 30

row vector of a matrix M , by M:i and Mi:, respectively. 31

For K ≥ 2, we call a sequence PK := {Vj : j = 1, . . . ,K} 32

of sets as a K-hierarchical clustering of V if each Vj := 33

{sΛ ⊂ V : dim(Λ) = j} is a partition of V , i.e., V = ∪ΛsΛ, 34

and Vj is a refinement of Vj−1, where we use the index 35

vector Λ = (λ1, . . . , λj) ∈ Nj to encode position, level j, 36

and parent-children relationship, of the clusters sΛ. Fig. 1 37

gives an example of a K-hierarchical clustering. Let us denote 38

V1 = {s(1) = V = {1, 2, . . . , 8}}. Then according to parent- 39

children relationship in Fig. 1, we have V2 = {s(1,1), s(1,2)} 40

where s(1,1) = {1, . . . , 4} and s(1,2) = {5, . . . , 8}. Simi- 41

larly, we have V3 = {s(1,1,1), s(1,1,2), s(1,2,1), s(1,2,2)} where 42

s(1,1,1) = {1, 2}, s(1,1,2) = {3, 4}, s(1,2,1) = {5, 6} and 43

s(1,2,2) = {7, 8}, and thus s(1,1,1,1) = {1} and s(1,1,1,2) = {2}. 44

Here dim(Λ) denotes the length of the index vector. If sΛ ∈ Vj 45

is a parent, then the index vectors of its children are appended 46

with an integer, i.e. (Λ, i), indicating its i-th child, and thus 47

the child is denoted by s(Λ,i) ∈ Vj+1. Then we have the 48

parent-children relationship s(Λ,i) ⊂ sΛ. We denote the number 49

of children of sΛ by LΛ. Unless specified, we consider K- 50

hierarchical clustering PK with VK = {{1}, . . . , {n}} and 51

V1 = {[n]} being a singleton, i.e., PK is a tree. 52

In classical wavelet/framelet theory, an important concept is 53

the multiresolution analysis (MRA). One of the most important 54

ideas is to find a sequence of subspaces {Vj} ⊂ L2(R) such 55

that Vj ⊂ Vj+1 and ∪j∈ZVj = L2(R). If there exists ϕ(t) ∈ V0 56

such that {ϕ(t − b)}b∈Z forms an orthonormal basis of V0 57

and f(t) ∈ Vj if and only if f(2t) ∈ Vj+1, then we can 58

find a mother wavelet ψ(t) such that {2j/2ψ(2jt− b)}j,b∈Z 59

forms an orthonormal basis for L2(R). For example, let 60

ϕ(t) = χ[0,1)(t) and ψ(t) = ϕ(2t) − ϕ(2t − 1), then the 61

resulting wavelet is the so-called Haar wavelet. However, the 62

translation and dilation operators are not naturally defined for 63

graph signals. Fortunately, if we look at the support of Haar 64

wavelets, we can find that the union of the support of elements 65

in Wj := {2j/2ψ(2jt− b)}b∈N is equal to R for a fixed j 66

and the collection of the support of elements in Wj+1 is a 67

refinement of that of Wj+1. Hence, these supports actually 68

form a hierarchical partition. Based on this observation, a 69

natural way to define translations on the graph is to generalize 70

hierarchical partitions to the graph, see [19], [25]. For example, 71

when mapping each node in a graph to an interval on [0, 1], then 72

based on the hierarchical partition on [0, 1], graph framelets can 73

be constructed similarly as classical Haar wavelet [25]. Below, 74

we provide general conditions in Theorem 1 for constructing 75

Haar graph framelets based on a K-hierarchical clustering. 76

B. Main Construction 77

Given PK , we define the unit scaling vectors ϕΛ (similar
to scaling functions for Vj’s on a MRA) iteratively from
dim(Λ) = K to dim(Λ) = 1. When dim(Λ) = K, each
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cluster (node) sΛ contains only one vertex in graph G (see
Fig. 1), thus we define ϕΛ = I:i, where i ∈ sΛ ⊂ V and I:i
is the i-th column of the identity matrix I ∈ Rn×n. When
dim(Λ) < K, we define

ϕΛ :=
∑

ℓ∈[LΛ]

p(Λ,ℓ)ϕ(Λ,ℓ), (1)

where pΛ = [p(Λ,1), . . . , p(Λ,LΛ)]
⊤ ∈ RLΛ and ∥pΛ∥ = 1.

Obviously, ϕΛ is with support suppϕΛ = sΛ and ∥ϕΛ∥ = 1.
For framelet vectors on the graph, we define ψ(Λ,m), m ∈
[MΛ] for some MΛ ∈ N by

ψ(Λ,m) :=
∑

ℓ∈[LΛ]

(BΛ)m,ℓ ϕ(Λ,ℓ), (2)

from some matrices BΛ ∈ RMΛ×LΛ . Theorem 1 characterizes1

when ϕΛ and ψ(Λ,m) form a tight frame of L2(G).2

Theorem 1 (General characterization). Let PK be a K-3

hierarchical clustering on a graph G. Then the matrices BΛ4

and vectors pΛ satisfy BΛB
⊤
ΛBΛ = BΛ, BΛpΛ = 0, and5

Rank(BΛ) = LΛ − 1 for all Λ with dim(Λ) = j0, . . . ,K6

if and only if for any j0 ∈ [K], the collection Fj0(PK) :=7

{ϕΛ : dim(Λ) = j0} ∪ {ψΛ : dim(Λ) = j}Kj=j0+1 defined by8

Equations (1) and (2) is a tight frame of L2(G).9

We remark that Theorem 1 provides a more general sufficient10

and necessary condition than that in [19], for all graph framelets11

having the form (1) and (2) to be a tight frame. When we12

use the Haar graph framelets to extract frequency features13

of graph signals, general graph wavelets/framelets ((1) and14

(2)) can be viewed as multi-scale representation systems in15

which the notion of ‘scale’ is different from the usual k-hop16

neighborhood in graphs and serve as an alternative to capture17

long-range information.18

Besides, the given PK in the proposed construction is not19

specified. The advantage of the generality of this definition is20

that there is no constraint on how the PK is generated: one can21

use solely the edges or combine the edges and node features to22

generate PK , etc. Thus this provides great potential in theories23

and applications. As well shown in experiments, clustering24

graph nodes based only on adjacency matrices is capable of25

providing nice graph framelets that help improve the learning26

abilities of neural networks on node classification tasks.27

The following example shows a close relationship between28

our framelet systems and the traditional Haar graph basis.29

Example 1 (Path graph and Haar basis). Given a path graph30

G1 with 8 nodes V = {1, 2, . . . , 8}. If we choose hierarchical31

clustering P4 = {V1,V2,V3,V4} with V1 = {s(1)},32

V2 = {s(1,1), s(1,2)}, V3 = {s(1,1,1), s(1,1,2), s(1,2,1), s(1,2,2)},33

V4 = {s(1,1,1,1), s(1,1,1,2), s(1,1,2,1), s(1,1,2,2), s(1,2,1,1),34

s(1,2,1,2), s(1,2,2,1), s(1,2,2,2)}, and pΛ = [ 1√
2
, 1√

2
]⊤ and35

BΛ = [ 1√
2
,− 1√

2
] for all Λ (note that each parent has36

exactly two children LΛ = 2), then the graph framelet system37

Fj0(PK) with K = 4 as in Theorem 1 is a Haar basis for38

any j0 ∈ [K]. See Fig. 1 for illustration.39

Based on the general conditions in Theorem 1, we further40

investigate the specific structure of BΛ. We give the following41

proposition that completely characterizes the structure of 42

matrices BΛ in Theorem 1. 43

Proposition 1. Let p be a unit vector of length L ≥ 1, that is, 44

∥p∥ = 1. Assume that B ∈ RM×L with M ≥ L−1 is a matrix 45

such thatBp = 0 and Rank(B) = L−1. ThenBB⊤B = cB 46

for some constant c if and only if B⊤B = c(I − pp⊤). In 47

particular, if c ̸= 0, then P := [p, 1√
c
B⊤] satisfies PP⊤ = I . 48

Proposition 1 shows that BΛ is from the (matrix) splitting of 49

a rank L−1 matrix I−pΛp⊤Λ. Notice that the role of elements 50

in pΛ in Equation (1) is to give weights to each cluster s(Λ,ℓ). 51

One typical scenario is that each child cluster is of equal 52

importance, which means that the vector pΛ is a vector with 53

all equal elements. On the other hand, it could be too involved 54

to use matrix splitting techniques [43]–[46] for obtaining the 55

matrix BΛ. We next show that we can obtain matrices BΛ 56

by simply permuting a fixed vector w such that each of its 57

elements appears with equal chance. Under this hypothesis of 58

equal importance and equal chance, in the following result, we 59

introduce a binary Haar graph framelet system by a careful 60

design of the matrices BΛ and pΛ. The word binary here 61

is chosen since each nonzero coefficient of high-frequency 62

framelets in Equation (2) only takes from {1,−1} (without 63

normalization). We show that such graph framelet systems 64

Fj0(PK) have many desirable properties including permutation 65

equivariance. 66

For each pair (ℓ1, ℓ2) with 1 ≤ ℓ1 < ℓ2 ≤ LΛ, define a
vector wm

Λ of size LΛ × 1 by

(wm
Λ )τ =


1√
LΛ

τ = ℓ1;
−1√
LΛ

τ = ℓ2;

0 otherwise,

(3)

where m := m(ℓ1, ℓ2, LΛ) := (2LΛ−ℓ1)(ℓ1−1)
2 + ℓ2 − ℓ1 is 67

ranging from 1 to MΛ := LΛ(LΛ−1)
2 for all possible pairs 68

(ℓ1, ℓ2) with 1 ≤ ℓ1 < ℓ2 ≤ LΛ. Note that wm
Λ has only 69

two non-zero entries locating at the ℓ1-th and ℓ2-th position, 70

respectively. Such a wm
Λ will be used as the m-th row of the 71

matrix BΛ. 72

Corollary 1 (Binary Haar graph framelets). Let PK be a K- 73

hierarchical clustering on a graph G. Let pΛ = 1√
LΛ

1 be a 74

constant vector of size LΛ × 1 and BΛ := [w1
Λ, . . . ,w

MΛ

Λ ]⊤ 75

with wm
Λ being given as in Equation (3). Define Fj0(PK) as 76

in Theorem 1. Then Fj0(PK) is a tight frame for L2(G) for 77

any j0 ∈ [K]. 78

Remark 1. In fact, the framelets obtained in Examples 1 79

belongs to binary Haar graph framelets (See Fig. 1 for 80

illustration). The matrix BΛ is formed by permuting 1,−1 81

of the specific type of vectors w = [1,−1, 0, . . . , 0] to all 82

possible positions. In fact, more general types of vectors w 83

can be served to form the matrix BΛ through permutations. 84

We next focus on the sparsity, efficiency, and permutation 85

equivariance of the binary Haar graph framelets constructed in 86

Corollary 1. 87
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C. Sparsity1

Notice that if each row of the matrix BΛ is sparse, then2

the produced ψ(Λ,m) is also sparse. For the binary Haar3

graph framelets, each row of BΛ only contains two nonzero4

values. Let Lj := maxdim(Λ)=j LΛ, then it is easy to see5

that the number
∥∥ψ(Λ,m)

∥∥
0

of non-zero entries of ψ(Λ,m)6

satisfies
∥∥ψ(Λ,m)

∥∥
0
≤ 2Lj+1, for all dim(Λ) = j. When7

the hierarchical clustering is balanced and dim(Λ) is large,8

high-level framelets ψ(Λ,m) are well-localized and thus sparse.9

Besides the sparsity of the framelets, we also want to know10

when the framelet coefficients of a signal are sparse, which11

is the desired property of sparse representation of framelets.12

Different coefficients represent different scales. The sparse13

representation property plays an important role in feature14

extraction and representation for classification tasks. In node15

classification, piecewise constant signals, e.g., one-hot label16

encoding, are of great importance in practice due to its17

simplicity [47]. Hence, it is valuable to study the framelet18

coefficients of the piecewise constant signals. Let Fj0(PK) :=19

{ϕΛ,dim(Λ) = j0} ∪ {ψΛ,dim(Λ) = j}Kj=j0+1 =: {ui}MG
i=120

be a binary Haar graph framelet system with MG elements and21

define f̂ ∈ RMG to be the framelet coefficient vector with its22

i-th element (f̂)i := ⟨f ,ui⟩ for a signal f . In what follows,23

we denote F := [u1, . . . ,uMG ] to be the matrix representation24

of the graph framelet system Fj0(PK). Then, f̂ = F⊤f . We25

have the following result regarding the sparsity of f̂ .26

Theorem 2 (Binary Haar graph framelet transform preserving27

sparsity). Let Fj0(PK) be a binary Haar graph framelet system28

defined as in Corollary 1. Assume that maxdim(Λ)>0 LΛ ≤ h.29

Then for a signal f ∈ Rn, the framelet coefficient vector f̂30

satisfies ∥f̂∥0 ≤ (K − 1)(h− 1)∥f∥0.31

Remark 2. If for all Λ, we have LΛ = h for some integer h ≥32

2, then K = O(logh n) and hence ∥f̂∥0 = ∥f∥0 ·O(h logh n),33

which shows that our binary Haar graph transform preserves34

sparsity for sparse signals. In fact, the total number MG of35

elements in Fj0(PK) in this case is of order O(nh). When36

∥f∥0 ≪ n, we see that ∥f̂∥0 ≪ O(nh) = MG . Theorem 237

can be extended to other type of matrices BΛ that is row-wise38

sparse.39

D. Efficiency40

Graph Fourier basis based on graph Laplacian is of great im-41

portance in graph neural networks. However, the computational42

complexity and space complexity of generating graph Fourier43

basis could be as large as O(n3) and O(n2), respectively.44

Hence, these reasons prevent it from being more flexible in45

practice when n is large and the graph Laplacian is not sparse.46

On the other hand, when using our binary Haar graph framelets,47

we have an efficient way to compute our framelets as well as48

the framelet coefficient vector via sparse computation. For the49

rest of this paper, when we discuss computational complexity,50

we assume that all matrix/vector operations are done by using51

sparse operations, i.e., the operations are evaluated only on52

non-zero entries.53

1 2

1 2

(a) s(1,1,1) of P4

1 2

2 1

(b) Permute chil-
dren of s(1,1,1)

1 2 3 4 5 6 7 8

(c) ψ(1,1,1)

1 2 3 4 5 6 7 8

(d) ψ̃(1,1,1)

Fig. 2. Partition permutation. Consider the graph G1 and P4 in Fig. 1. Let us
permute the order of children of s(1,1,1) = {1, 2} in P4 only while keeping
other part of P4 and pΛ and BΛ. The orginial framelet is given by ψ(1,1,1)

(w.r.t. s(1,1,1)) and the new framelet is given by ψ̃(1,1,1) (w.r.t. s̃(1,1,1)).

Theorem 3. Let h > 1 be a positive integer. Assume that the 54

K-hierarchical clustering PK satisfies n = O(hK−1) with 55

h := maxdim(Λ)>0 LΛ. For j0 ∈ [K], let F = [u1, . . . ,uMG ] 56

be the framelet matrix with respect to the binary Haar graph 57

framelet system Fj0(PK) as given in Corollary 1. Then, for 58

all j0 ∈ [K], the number MG of framelet vectors in Fj0(PK) 59

is of order O(nh), the computational complexity of generating 60

all um, m = 1, . . . ,MG , in F is of order O(nh logh n), and 61

the total number nnz(F ) of nonzero entries in F is of order 62

O(nh logh n). 63

Remark 3. In practice, h is usually small (e.g., 2, 4, or 8), 64

and hence F is a sparse matrix. Theorem 3 shows that our 65

binary Haar graph framelet systems are efficient in processing 66

datasets with large graphs. Moreover, the framelet coefficient 67

vector f̂ can be computed with the computational complexity 68

of order O(nh) as well. See Theorem 5 in Appendix B for the 69

fast decomposition and reconstruction algorithms using our 70

graph framelet systems. 71

E. Permutation Equivariance 72

Fix G = (V, E) and PK . Denote our construction of 73

graph framelets in Theorem 1 by A where it is provided 74

a graph G and a corresponding hierarchical partition PK and 75

then builds the graph framelet A(G,PK) = Fj0(PK). Let 76

π : V → V be a reordering (relabelling, bijection) of V = 77

{1, 2, . . . , n}, i.e., π is w.r.t. a node permutation on [n] with 78

π(V ) = {π(1), . . . , π(n)}. We denote π(G) = (π(V ), π(E)) 79

with π(E) := {(π(i), π(j)) : (i, j) ∈ E}. The corresponding 80

signal f on the graph G is reordered to be π(f) under the newly 81

ordered graph π(G). In other words, given a π, there exists a 82

permutation matrix Pπ of size n×n such that π(f) = Pπf . For 83

each node permutation π, the construction A is called (node) 84

permutation equivariant if A (π(G),PK) = π (A(G,PK)), 85

where π(um) = Pπum for um ∈ Fj0(PK). 86
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Note that PK is a tree and that the children nodes in a1

parent-children subtree are ordered according to the last integer2

in the index vectors Λ. The order of nodes in such subtrees3

and the order of nodes in V are separately defined. This means4

a reordering of nodes in V does not affect the order in subtrees5

in PK and vice versa. On the other hand, the reordering of tree6

nodes Λ may result in different graph framelets. Fig. 2 shows a7

simple example. Thus it is necessary to analyze the relationship8

of the graph framelets under such types of permutations. We9

say that πp is a partition permutation on PK if the permutation10

is on the children of each tree node Λ only. For each11

partition permutation πp, the construction A is called partition12

permutation equivariant if A (G, πp(PK)) = πp (A(G,PK)),13

that is, there exists a permutation π∗ on [MG ] associated with14

πp such that for each um ∈ Fj0(PK), πp(um) = cmuπ∗(m)15

for some cm ∈ {−1,+1}. We have the following theorem16

regarding the permutation equivariance on both node and17

partition permutations.18

Theorem 4. Let A(G,PK) be the construction of the binary19

Haar graph framelet systems in Corollary 1 for j0 ∈ [K]. Then,20

the following three statements hold:21

(i) For any node permutation π, we have A (π(G),PK) =22

π(A(G,PK)).23

(ii) For any partition permutation πp, we have24

A (G, πp(PK)) = πp (A(G,PK)).25

(iii) For any node permutation π and partition permutation26

πp, we have A (π(G), πp(PK)) = πp(π(A(G,PK))) =27

π(πp(A(G,PK))).28

Remark 4. Theorem 4 shows that our binary framelet system29

Fj0(PK) is permutation equivariant when reordering node or30

the tree indices. By applying Theorem 4, we show that our31

proposed graph framelet neural network model PEGFAN has32

the property of permutation equivariance. See Proposition 233

in the next section.34

Permutation equivariance is a subtle property that most35

of the GNNs in the literature possess since they generally36

employ operation that only involves the adjacency matri-37

ces, the graph Laplacians, summation, and concatenation.38

Nonetheless, there are works [48], [49] that theoretically39

investigate the permutation equivariance of general and specific40

GNNs, which is highly related to the graph classification and41

the importance of the topic of the expressiveness of GNNs42

[50], [51] as permutation is one of the most basic type of43

isomorphism on graphs. In this paper, we confine ourselves to44

the output consistency that permutation equivariance derives45

as this is coherent to our context of node classification. On46

the contrary, graph wavelets/framelets, especially Haar-type47

graph wavelets/framelets are more complicatedly generated48

mathematical tools and the discussion of such property is49

missing in both the mathematical literature and the recent50

works of GNNs that apply graph wavelets/framelets. In some51

of the works of Haar-type graph wavelets/framelets ( [20],52

[23], [24]), it is obvious that the permutation equivariance is53

violated if there are no further constraints.54

IV. GRAPH FRAMELET NEURAL NETWORKS 55

We introduce the graph framelet neural network model 56

that integrates our constructed binary Haar graph framelets, 57

which we call Permutation Equivariant Graph Framelet 58

Augmented Network (PEGFAN), see Fig. 3. 59

Semi-supervised learning is characterized by involving both
unlabeled and labeled data to infer a discriminative function f .
In contrast, in supervised learning, only labeled data is utilized
in obtaining f . In a (semi-supervised) node classification task,
we assume that the first l nodes are labeled. Each node i ∈ V
is associated with a feature vector xi ∈ Rnf and a one-hot
yi ∈ Rnc indicating the ground truth of labels, where nf and
nc are the numbers of features and classes. Stacking these
vectors gives a feature matrix X ∈ Rn×nf and a label matrix
Y ∈ Rn×nc (the first l elements are given labels and the rest
part has no label and need to predict). Suppose there are nC
channels, associating a series of matrices X1,X2, . . . ,XnC

for each channel, and Xi ∈ Rn×di , 1 ≤ i ≤ nC . Our model is
a two-layer network, which is defined as

H1 =
nC

∥
i=1

αi ·N(XiWi), (4)

Ŷ = softmax(ReLU(H1)W ), (5)

where ∥ denotes the concatenation operation, αi are trainable 60

attention weights satisfying αi ∈ (0, 1) and
∑

i αi = 1, N(·) 61

is the row normalization operation, and Wi ∈ Rdi×nh and 62

W ∈ RnCnh×nc are trainable parameters. Our model com- 63

prises several input channels at the beginning and subsequently 64

several fully connected layers. Therefore, it is easy to be 65

extended with more layers. As usual, we minimize the cross 66

entropy of the labeled nodes using the first l columns of Ŷ 67

and Y . 68

Given the binary Haar graph framelet system Fj0(PK), 69

We also use Φj = (ϕΛ)dim(Λ)=j ∈ RNj×n and Ψj = 70

(ψ(Λ,m))dim(Λ)=j,m∈[MΛ] ∈ RMj×n to be the matrix repre- 71

sentations of the scaling vectors and framelet vectors at scale 72

j, respectively. We denote F0(M) := Φ⊤
1 Φ1M , Fj(M) := 73

Ψ⊤
j ΨjM , 1 ≤ j ≤ K−1. For our model PEGFAN, we select 74

3 options for {X1, . . . ,XnC
} of feature matrices for graphs 75

with homophily and heterophily, respectively. 76

For homophilous graphs, we have 3 types: 77

a) nC = 1 +K, {X,F0(X),F1(X), . . . ,FK−1(X)}. 78

b) nC = 1 + r + K, {X, ÃX, Ã2X, . . . , ÃrX,F0(X), 79

F1(X), . . . ,FK−1(X)}. 80

c) nC = 1+ r+K, {X, ÃX, Ã2X, . . . , ÃrX,F0(ÃX), 81

F1(ÃX), . . . ,FK−1(ÃX)}. 82

For heterophilous graphs, we have 3 types: 83

a) nC = 1 +K, {X,F0(X),F1(X), . . . ,FK−1(X)}. 84

b) nC = 1 + r + K, {X,AX,A2X, . . . ,ArX,F0(X), 85

F1(X), . . . ,FK−1(X)}. 86

c) nC = 1+ r+K, {X,AX,A2X, . . . ,ArX,F0(AX), 87

F1(AX), . . . ,FK−1(AX)}. 88

With the permutation equivariance of our graph Haar 89

framelets, now we can formally state the permutation equivari- 90

ance of our graph framelet neural network model PEGFAN. 91
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PredictionFeatures of 
labeled nodes

Features of 
unlabeled nodes

Graph Framelet Matrix

Fig. 3. Neural network architecture. The input is the feature matrix X . The network operations are determined by the underlying adjacency matrix A and the
constructed binary Haar graph framelet system {F0, . . . ,FK−1}. The operator N(·) is defined as normalizing each row of any given matrix.

Proposition 2. Let G = (V, E) be a graph with feature matrix1

X , adjacency matrix A, and a K-hierarchical partition PK .2

Let P be a permutation matrix w.r.t. to a node permutation π3

on V . If the permuted feature matrix PX , adjacency matrix4

PAP⊤, and binary Haar graph framelet system π(A(G,PK))5

are used in forming the type a), b) and c) channels for PEGFAN,6

then the new output ŶP differs from the original one by a7

permutation matrix, i.e. ŶP = P Ŷ .8

Remark 5. In contrast to our PEGFAN, the model FSGNN9

[39] adopts the 2-layer network model with the follow-10

ing 3 options of input channels: 1) Homophily: nC =11

1 + r, {X, ÃX, Ã2X, . . . , ÃrX}. 2) Heterophily: nC =12

1 + r, {X,AX,A2X, . . . ,ArX}. 3) All: nC = 1 + 2r,13

{X,AX, ÃX,A2X, Ã2X, . . . ,ArX, ÃrX}.14

As shown in Fig. 3, our network model differs from existing15

GNNs using graph wavelets/framelets in the sense that we fully16

utilize the multi-scale property of our Haar graph framelets as17

well as the powers of the adjacency matrix as the multi-channel18

inputs. In such a way, short- and long-range information of19

the graph are fully exploited for the training of the network20

model. On the contrary, neural network architectures of other21

existing GNNs using graph wavelets/framelets are similar to22

classical spectral graph neural networks, which are essentially23

different from ours in exploiting multi-scale information.24

V. EXPERIMENTS25

A. Experiment on Synthetic Dataset26

In [52], it has been theoretically shown that for a linear27

classifier, using Arw := D−1A to aggregate features has28

a lower probability to misclassify under the condition that29

the “neighborhood class distributions” are distinguishable. To30

elaborate, it assumes that for each node i of class yi = c, the31

neighbors of i are sampled from a distribution Dyi
, and the32

distributions Dc’s are different. For heterophilous graphs, it is33

possible to fit the aforementioned condition as long as for each34

node of some class, the connection pattern with nodes from35

each class is different from the patterns of nodes of a different36

class. In other words, using simple neighborhood aggregation37

such as ArwX in GNNs still has the chance to achieve good38

performance for heterophilous graphs and the experiments in 39

[52] has empirically validated this statement. 40

Following their observation, we are interested in how 41

the neighborhood distribution Dc affects the performance of 42

FSGNN and PEGFAN. We follow the way in [52] and generate 43

4-class heterophilous graphs with 3,000 nodes, fixed Gaussian 44

features, and different neighborhood class distributions. The 45

proportion of training, validation, and test set was set to 48%, 46

32%, and 20%, respectively. We compare the performance 47

of PEGFAN with FSGNN to demonstrate the ability of 48

multi-scale extraction when our binary Haar graph framelet 49

system is added. To emphasize the difference between graph 50

framelets and K-hop aggregation, we excluded the feature 51

matrix channel X in the overall channels. A hyperparameter 52

γ ∈ [0, 1] indicates the tendency to sample edges from uniform 53

neighborhood class distribution. Consequently, larger γ results 54

in more indistinguishable neighborhood class distributions. 55

Implementation details are the same as shown in the subsection 56

for the benchmark datasets except that the hyperparameter 57

search range is reduced and h is set to 4, 8, and 12 (cf. 58

Theorem 3). More details of the synthetic dataset experiment 59

are given in Appendix C. 60

Table I collects results from the experiment following the 61

procedure defined in Appendix C. Table II contains results of 62

replacing features sampled Gaussian distributions with closer 63

means, which are more similar for different classes and more 64

difficult to classify. 65

TABLE I
CLASSIFICATION ACCURACY ON SYNTHETIC DATASET WITH FEATURES

SAMPLED FROM 6(−0.75+0.5c)+ ξ, WHERE ξ ∼ N(0, 1), c ∈ {0, 1, 2, 3}.

γ 0 0.2 0.4 0.6 0.8 1

Ours(Type a, h = 12) 68.3 68.5 63.8 59.7 63.3 65.3
Ours(Type a, h = 8) 67.3 63.2 61.2 63 61 59.2
Ours(Type a, h = 4) 63 56.3 43.5 37.7 31.8 27.7
Ours(Type b, h = 4) 95.7 92.3 86 74.3 61 54
Ours(Type c, h = 4) 91.8 83.8 74.2 63.5 52.3 47.2
FSGNN(r = 3) 91.7 82.3 74.2 61.5 51.8 46.8
FSGNN(r = 3, all) 92 83.5 74.8 63 51.7 48
FSGNN(r = 8) 92.5 85.5 73.8 62.5 51.2 47.3
FSGNN(r = 8, all) 92.3 84.3 74.7 63 52.5 47.2
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TABLE II
CLASSIFICATION ACCURACY ON SYNTHETIC DATASET WITH FEATURES

SAMPLED FROM (−0.75 + 0.5c) + ξ, WHERE ξ ∼ N(0, 1), c ∈ {0, 1, 2, 3}.

γ 0 0.2 0.4 0.6 0.8 1

Ours(Type a, h = 12) 63.5 60 55.7 59.3 54.8 57.3
Ours(Type a, h = 8) 61.7 57.5 57 55.8 55.3 55.8
Ours(Type a, h = 4) 58.8 50.7 42 36 28.7 23.2
Ours(Type b, h = 4) 91.3 88.5 77.5 62.7 53.7 42
Ours(Type c, h = 4) 81.8 76.3 68.3 59.5 47.3 39.2
FSGNN(r = 3) 91.8 80.8 70.7 64.5 50.5 44.2
FSGNN(r = 3, all) 92 83.8 73.5 63.3 52.3 44.2
FSGNN(r = 8) 93.8 84 67.8 59.8 48.5 40.8
FSGNN(r = 8, all) 92.7 81.7 69.7 59.7 51.2 42.7
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Fig. 4. Demonstration of statistical performance comparison: (a) results in
Table I; (b): results in Table II.

B. Comments on the Synthetic Dataset Experiment1

For the synthetic dataset, it can be seen from Table I and2

Table I that in most of the cases, the performance decreases3

with respect to γ in all cases (if γ → 1 then, the graph is4

close to the case of being generated by uniform neighborhood5

class distribution). However, in Table I, Type b channels6

input, in which graph framelets project the original feature7

matrix X , show a large improvement compared with FSGNN.8

In some cases, the increment can reach over 10%. This9

evidently shows the effectiveness of multi-scale extractions 10

via graph framelets when combined with adjacency matrix 11

aggregations. There are also drawbacks, which can be seen 12

from the results of type a channels input in both tables. It 13

shows that the results are sensitive to hyperparameter h and that 14

using graph framelets alone is not enough. Indeed, we chose a 15

rather simple and unsupervised way to generate hierarchical 16

clustering. This process altered the representation of the 17

connectivity among nodes and caused a loss of information. 18

Therefore, it is better to combine fine-scale information using 19

1 to 3-hop aggregation and coarse scale projection via graph 20

framelets. However, the performance of Type a channels has 21

less variation across different γ and is better when γ is closed 22

to 1. It is also obvious that the neighborhood distributions 23

affect our model performance for Type b and Type c given 24

the theory in [52], in which the model accuracy decreased 25

as the neighborhood distributions approached the same and 26

indistinguishable uniform distribution. As for Type c channels 27

in both tables, the channels are affected by the adjacency matrix 28

before multi-scale extraction and thus they perform similarly 29

compared with FSGNN. In Table II, since it is more difficult to 30

correctly classify nodes, Type b channels gain less improvement 31

as compared to Table I. 32

C. Experiments on Benchmark Datasets 33

We conducted experiments on 9 datasets including 3 ho- 34

mophilous citation networks and 6 heterophilous datasets 35

and followed the public data splits provided in [28]. We 36

define the density of a graph as ∥A∥0/n2, which is the 37

proportion between the number of non-zero terms in A and 38

the numbers of terms of A. The statistics is summarized 39

in the top rows of Table III. To generate a series of parti- 40

tions for each dataset, we applied sknetwork.hierarchy.Ward 41

and sknetwork.hierarchy.cut balanced from python package 42

scikit-network1 to form intermediate clusters and control the 43

hyperparameter h in Theorem 3. h is set to 4 and 8 and the 44

values are indicated in Table III. Once new partition V ′′ of 45

clusters is formed from a graph G′ = (V ′,A′), we define 46

as follows the new adjacency matrix A′′ to form the graph 47

G′′ = (V ′′,A′′) for next level clustering: 48

A′′
ij =

n′∑
p=1

n′∑
q=p+1

A′
pqδ(ID(p), i)δ(ID(q), j),

where #V ′ = n′, #V ′′ = m′, ID(p), ID(q) are the indices 49

of clusters that nodes p and q belong to and δ(a, b) takes 1 50

when a = b. For heterophilous graphs, we iterate for a few 51

steps until the final graph has less than h = 4 or h = 8 nodes. 52

For Pubmed, when h = 4 we constrained the number of steps 53

of generating hierarchical clustering to be 6 so as to reduce 54

input channels. 55

As for the implementation of the neural network2, we 56

adopted the publicly released code of FSGNN3 for integrating 57

the graph framelet projections as detailed in our PEGFAN 58

1https://scikit-network.readthedocs.io/en/v0.26.0/
2https://github.com/zrgcityu/PEGFAN
3https://github.com/sunilkmaurya/FSGNN/
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TABLE III
DATASET STATISTICS, CLASSIFICATION ACCURACY, AND STANDARD DEVIATION. BEST IN BOLD, SECOND BEST IN BLUE.

Cora Citeseer Pubmed Texas Wisconsin Cornell Actor Chameleon Squirrel Avg. Rank

Node 2,708 3,327 19,717 183 251 183 7,600 2,277 5,201 - -
∥A∥0 10,556 9,228 88,651 325 515 298 30,019 36,101 217,073 - -
Feature 1,433 3,703 500 1,703 1,703 1,703 931 2,325 2,089 - -
Density 1.44 · 10−3 8.34 · 10−4 2.28 · 10−4 9.70 · 10−3 8.17 · 10−3 8.90 · 10−3 5.20 · 10−4 6.96 · 10−3 8.02 · 10−3 - -
Class 6 7 3 5 5 5 5 5 5 - -
Type Homophily Homophily Homophily Heterophily Heterophily Heterophily Heterophily Heterophily Heterophily - -

Mixhop 87.61±0.85 76.26±1.33 85.31±0.61 77.84±7.73 75.88±4.90 73.51±6.34 32.22±2.34 60.50±2.53 43.80±1.48 68.10 14
GEOM-GCN 85.27 77.99 90.05 67.57 64.12 60.81 31.63 60.90 38.14 64.05 15
GCNII 88.01±1.33 77.13±1.38 90.30±0.37 77.84±5.64 81.57±4.98 76.49±4.37 - 62.48±2.74 - - -
H2GCN-1 86.92±1.37 77.07±1.64 89.40±0.34 84.86±6.77 86.67±4.69 82.16±4.80 35.86±1.03 57.11±1.58 36.42±1.89 70.72 13
WRGAT 88.20±2.26 76.81±1.89 88.52±0.92 83.62±5.50 86.98±3.78 81.62±3.90 36.53±0.77 65.24±0.87 48.85±0.78 72.93 11
GPRGNN 88.49±0.95 77.08±1.63 88.99±0.40 86.49±4.83 85.88±3.70 81.89±6.17 36.04±0.96 66.47±2.47 49.03±1.28 73.37 10
FSGNN(r = 3) 86.92±1.66 77.18±1.27 89.71±0.45 84.51±4.71 87.84±3.37 84.86±4.56 35.26±1.01 78.60±0.71 73.93±2.00 77.65 5
FSGNN(r = 8) 88.15±1.15 77.23±1.41 89.67±0.45 86.76±3.72 87.65±3.51 85.95±5.10 35.22±0.96 79.01±1.23 73.78±1.58 78.16 2nd

FSGNN(r = 3, all) 87.59±1.03 76.91±1.60 89.68±0.37 84.60±5.41 86.67±2.75 86.22±6.78 35.51±0.89 77.68±1.10 73.79±2.32 77.63 6
FSGNN(r = 8, all) 87.53±1.37 76.86±1.49 89.73±0.40 82.70±5.01 85.88±5.02 85.13±7.57 35.28±0.79 77.94±1.17 74.04±1.51 77.23 8
Ours(h = 4, Type a) 79.48±2.68 71.29±2.01 88.46±0.35 83.78±5.54 86.08±4.34 85.95±5.51 34.96±1.24 65.83±2.05 51.98±1.98 71.97 12
Ours(h = 4, Type b) 87.12±0.91 77.39±1.28 89.62±0.25 86.47±5.54 86.67±3.59 85.14±5.57 35.07±1.03 79.63±1.23 73.89±1.89 77.88 4
Ours(h = 4, Type c) 87.36±1.09 76.78±1.51 89.55±0.32 85.14±4.05 87.65±4.02 86.76±5.33 35.41±0.82 79.65±1.33 74.58±2.07 78.10 3rd

Ours(h = 8, Type a) 83.16±1.86 73.51±1.67 88.85±0.30 84.32±3.78 86.67±3.80 84.05±6.10 35.15±0.77 77.48±1.71 71.10±1.75 76.03 9
Ours(h = 8, Type b) 87.22±1.21 76.76±1.40 89.73±0.40 84.87±5.70 85.69±3.29 84.60±5.41 35.34±0.81 79.21±1.09 73.09±1.66 77.39 7
Ours(h = 8, Type c) 87.16±1.31 76.92±1.57 89.56±0.30 86.22±3.30 86.67±4.28 86.22±4.75 35.48±0.94 80.31±1.10 75.06±1.72 78.18 1st

model. We use the same optimizer, hidden layer size, etc.,1

as those in FSGNN, and hence the details are omitted. We2

noticed that the outcome of FSGNN was a bit different from3

those reported in [39] when we tried to reproduce the results.4

Therefore we did a separate grid search for FSGNN and5

the results had slight changes. For our model, we set r of6

input channels to 3. Results of other models (Mixhop [38],7

GEOM-GCN [28], GCNII [53], H2GCN-1 [12], WRGAT [32],8

GPRGNN [33]) are cited from [39] and the results of some9

of the top rows are omitted, which are not among the models10

with relatively superior performance. All results are collected11

in Table III.12

As a brief comparison, Table IV summarizes the average,13

maximum, and minimum training time of our model and14

FSGNN on Chameleon and Squirrel over 108 sets of hyper-15

parameters shown in Table VI of Appendix C. Each training16

consists of 10 individual training, each of which is on a single17

data split. All experiments in this paper were conducted using18

an RTX 3090 graphics card.

TABLE IV
TRAINING TIME OVER 108 CONFIGURATIONS OF HYPERPARAMETERS.

NUMBER OF CHANNELS: FSGNN(r = 3): 4, FSGNN(r = 8): 9,
OURS(TYPE C, h = 4): 13 (CHAMELEON), 14 (SQURRIEL)

Chameleon avg. max. min.

FSGNN(r = 3) 20.71s 64.68s 11.21s
FSGNN(r = 8) 37.41s 90.70s 17.75s
Ours(Type c, h = 4) 47.66s 125.25s 22.52s

Squirrel avg. max. min.

FSGNN(r = 3) 34.57s 83.24s 18.58s
FSGNN(r = 8) 53.40s 141.24s 26.52s
Ours(Type c, h = 4) 59.82s 198.77s 32.87s

19

D. Comments on Benchmark Dataset Experiments20

We provide in Table III not only the performance of many21

state-of-the-art models but also their performance on both the22

homophilous and heterophilous graph datasets (9 datasets in 23

total). 24

As pointed out in the Introduction, traditional models are 25

usually with the underlying assumption of homophily. They 26

perform well for homophilous graph datasets. One can clearly 27

see from Table III that the best performances for the three 28

typical homophilous datasets (Cora, Citeseer, and Pubmed) 29

are given by GEOM-GCN, GCNII, and GPRGNN. For the 30

homophilous datasets, their nature of being homophilous does 31

not necessitate the need for further multi-scale information, 32

and thus our method has a similar performance. The same 33

drawback is shown as in the results of synthetic data, where 34

the results of Type a channels are not superior and sensitive to 35

the hyperparameter h. It empirically shows that to use framelets 36

alone, it is required to form sufficiently large clusters at the 37

beginning of forming hierarchical partitions. 38

While models such as GEOM-GCN, GCNII, and GPRGNN 39

perform well in those homophilous datasets, they do not give 40

the best performance for the other six heterophilous datasets. 41

The models that give the best performance for heterophilous 42

datasets are FSGNN and our PEGFAN. 43

Now between FSGNN and our PEGFAN, from the above 44

discussion, we only need to focus on the 6 heterophilous 45

datasets: Texas, Wisconsin, Cornell, Actor, Chamelon, and 46

Squirrel. We would like to emphasize that we follow the most 47

common way that uses the public data splits in [28]. The 48

proportions of train-validation-test splits are all 48%, 32%, 49

20%. These 6 datasets can be considered as three groups 50

discussed as follows. 51

The first group is the datasets of Texas, Wisconsin, and 52

Cornell. They are similar datasets with a small number of 53

nodes, edges, and features. Since the test sets are only 20% of 54

the graph, they contain at most 51 nodes. A correctly predicted 55

node accounts for at least 1.9% of accuracy. Hence we can say 56

that experiments on such datasets are relatively and statistically 57

insignificant. Most of the models have very similar performance 58
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Fig. 5. Demonstration of training time comparison: (a) Chamemleon dataset;
(b) Squirrel dataset

with at most 7 nodes wrongly predicted. Nonetheless, we1

chose to follow the common conduct and report the results for2

completeness. PEGFAN is best for Cornell while ranks second3

for Texas. FSGNN is best for Wisconsin and Texas while ranks4

third for Cornell. The best or second-best performances of5

FSGNN and PEGFAN are without much difference. Since the6

number of nodes is too small. It is not reasonable to say one7

is better than the other.8

The second group is simply the dataset Actor. It is a large9

dataset with 7,600 nodes. However, for this Actor dataset,10

all models, including Mixhop, GEOM-GCN, GCNII, etc., do11

not give reasonable performance. They only give very low12

accuracy about 35%. The best performance is given by the13

model WRGAT. For this dataset, it is not reasonable to compare14

performance among different methods.15

The last group is the datasets of Chameleon and Squirrel.16

They are both big datasets in terms of nodes and edges. We17

can see that PEGFAN performs the best. Being heterophilous18

makes it necessary to gather multi-scale information, and19

denser graphs facilitate forming better series of partitions and20

thus better graph framelets. This is also consistent with the21

empirical results of the synthetic dataset since as shown in22

[52], the neighborhood distributions of Chameleon and Squirrel23

are distinguishable enough for different classes, while other24

heterophilous datasets either are small datasets that suffer from25

bias or do not fit such a condition.26

Moreover, to compare the overall performance of each 27

method on the 9 benchmark datasets, we take the average 28

of the performance of each method over the 9 datasets. The 29

average score of each method is given in the second last column 30

(Avg.) of Table III. Our method with respect to h = 8 and 31

Type c (the last row) ranks first among the comparing methods. 32

In general, our Type c methods outperform other methods 33

with high average overall performance. See the last column of 34

Table III for the ranking of each method. 35

VI. CONCLUSION 36

This paper proposes a novel and general method to construct 37

Haar-type framelets on graphs that are permutation equivariant. 38

It aims to serve as an alternative and supplement for multi- 39

hop aggregations using powers of adjacency matrices. The 40

results show that combining graph framelets and multi-hop 41

aggregation increases the performance of node classification 42

on heterophilous graphs in both synthetic and real-world data. 43

Moreover, compared with using multi-hop aggregation alone, in 44

the synthetic case our model shows significant increases against 45

the deterioration of neighborhood distribution and results show 46

consistency between the synthetic and benchmark datasets 47

in terms of the patterns of neighborhood distribution. The 48

overall results validate the capability of our graph framelets 49

to extract multi-scale information under certain conditions and 50

its superior performance. We would also like to mention that 51

choosing a more sophisticated way to generate the hierarchical 52

partitions has the potential to produce better graph framelets, 53

which will be a future experimental direction to explore. 54

Additionally, theoretical investigations on the impact of the 55

heterophily ratio on the expressive capabilities of framelet- 56

based graph neural networks are expected. Such studies could 57

inspire more advanced GNNs tailored for heterophilous graphs. 58

Building on our work, it would be beneficial to theoretically and 59

empirically explore the potential interplay between key issues 60

like homophily versus heterophily, over-smoothing, and over- 61

squashing, all through the lens of graph wavelets/framelets. We 62

plan to delve into these significant directions in our subsequent 63

research efforts. 64

APPENDIX 65

A. Proofs of theoretical results 66

Proof of Theorem 1. We denote Φj = {ϕΛ}dim(Λ)=j and 67

Ψj = {ψ(Λ,m)}dim(Λ)=j,m∈[MΛ]. Let Vj := spanΦj and 68

Wj := spanΨj . Note that supports of ϕΛ and ϕΛ′ are 69

disjoint if Λ ̸= Λ′, so are ψ(Λ,m) and ψ(Λ′,m′). Hence, 70

by definition and ∥pΛ∥ = 1, we can see that Φj forms an 71

orthonormal basis of Vj for each j. Thus by Lemma 1 in 72

[19], the conditions BΛB
⊤
ΛBΛ = BΛ, BΛpΛ = 0, and 73

Rank(BΛ) = LΛ − 1 are equivalent to that Vj+1 = Vj ⊕Wj 74

and {ϕΛ}dim(Λ)=j ∪ {ψ(Λ,m)}dim(Λ)=j,m∈[MΛ] is a tight 75

frame of Vj+1. Iteratively, for j0 < j, we deduce that 76

Vj0 ⊕Wj0 ⊕ · · · ⊕Wj−1 = Vj and Φj0 ∪ Ψj0 ∪ · · · ∪ Ψj−1 77

is a tight frame for Vj if and only if matrices BΛ and 78

vectors pΛ satisfy BΛB
⊤
ΛBΛ = BΛ, BΛpΛ = 0, and 79

Rank(BΛ) = LΛ − 1 for all Λ with dim(Λ) = j0, . . . , j. 80

Now the conclusion of the theorem follows by letting j = K 81
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and noting that Fj0(PK) = Φj0 ∪Ψj0 ∪ · · · ∪ΨK−1 as well1

as VK = L2(G).2

Proof of Proposition 1. If B⊤B = c(I − pp⊤), then3

BB⊤B = cB by direct computation and in view of Bp = 0.4

Conversely, if BB⊤B = cB for some constant c. Then, by5

B(B⊤B) = cB = cB(I − pp⊤) and p⊤(I − pp⊤) = 0,6

we have
[
p⊤

B

]
(B⊤B − c(I − pp⊤)) = 0. Consequently, by7

the full rank property of the matrix [p,B⊤], we conclude that8

B⊤B = c(I − pp⊤). The particular part follows by direction9

evaluation. we are done.10

Proof of Corollary 1. We only need to show that BΛ and11

pΛ satisfy BΛB
⊤
ΛBΛ = BΛ, BΛpΛ = 0 and Rank(BΛ) =12

LΛ−1. Obviously, BΛpΛ = 0. Define AΛ := [pΛ,B
⊤
Λ ]⊤. By13

direct evaluations, one can show that the columns of AΛ satisfy14

∥[AΛ]:ℓ1∥ = 1 and their inner product ⟨[AΛ]:ℓ1 , [AΛ]:ℓ2⟩ =15

0 for all ℓ1 ̸= ℓ2. That is, A⊤
ΛAΛ = I , where I is the16

identity matrix of size LΛ. Consequently, we deduce that17

B⊤
ΛBΛ = A⊤

ΛAΛ − pΛp⊤Λ = I − pΛp⊤Λ, which then implies18

BΛB
⊤
ΛBΛ = BΛ(I − pΛp⊤Λ) = BΛ in view of BΛpΛ = 0.19

Now Rank(BΛ) = LΛ − 1 directly follows from that AΛ is20

of full column rank and BΛpΛ = 0. We are done.21

Proof of Theorem 2. We first consider the sparsity of22

⟨I:1,ψ(Λ,m)⟩, m = 1, . . . ,MΛ. Notice that only when the23

node 1 ∈ sΛ, can the term ⟨I:1,ψ(Λ,m)⟩ be nonzero. Thus,24

without loss of generality, we assume that 1 ∈ sΛ. Thus,25

by our construction in Corollary 1, at most h − 1 framelets26

ψ(Λ,m) that make ⟨I:1,ψ(Λ,m)⟩ ̸= 0. For each j, only one27

cluster sΛ of Vj = {sΛ : dim(Λ) = j} contains node 1. Thus28

F⊤I:1 has at most (h − 1)(K − 1) nonzero entries. Similar29

results hold for I:i. Hence, for f = [f1, . . . , fn]
⊤, it is easy30

to show that ∥f̂∥0 = ∥F⊤f∥0 = ∥
∑

i∈[n],fi ̸=0 F
⊤I:i∥0 ≤31 ∑

i∈[n],fi ̸=0 ∥F⊤I:i∥0 ≤ (h− 1)(K − 1)∥f∥0.32

For generating framelets, we use Algorithm 1 (Equations (1)33

and (2)). Its efficiency is discussed in Theorem 2.34

Algorithm 1 Generating framelets
Input: Node set V , Partition PK , Vectors {pΛ}, Matrices
{BΛ}, j0
initialize Fj0(PK) = ∅, ϕΛ = I:i for any sΛ = {i}.
for j = 2 to j0 − 1 do

for Λ ∈ {Λ : dim(Λ) = j} do
ϕΛ :=

∑
ℓ∈[LΛ] p(Λ,ℓ)ϕ(Λ,ℓ)

for m = 1 to MΛ do
ψ(Λ,m) :=

∑
ℓ∈[LΛ] (BΛ)m,ℓ ϕ(Λ,ℓ)

update Fj0(PK) ← Fj0(PK) ∪
{ϕΛ,ψ(Λ,m),m=1,...,MΛ

}
Output: Fj0(PK)

Proof of Theorem 3. Note that we have n ≤ ChK−1 and
#Vj = #{Λ : dim(Λ) = j} ≤ Chj−1 for some fixed
constant C > 0. Moreover, MΛ = LΛ(LΛ−1)

2 ≤ h(h−1)
2 .

Therefore, there is no more than C(hj0−1 +
∑K−1

j=j0
1
2h(h −

1)hj−1) = O(nh) elements in the binary graph Haar framelet

system Fj0(PK) for any j0 ∈ [K]. By Equations (1) and (2),
we have

ϕ⊤
Λ := p⊤Λ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 ,
 ψ⊤

(Λ,1)

...
ψ⊤

(Λ,MΛ)

 := BΛ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 .
(6)

By our construction, there is at most hK−j nonzero 35

entries for each ϕΛ and at most 2 · hK−j−1 nonzero 36

entries for each ψ(Λ,m) for dim(Λ) = j. Hence, 37

the number of nonzero entries of F is at most 38

C(hK−j0 · hj0−1 +
∑K−1

j=j0
2hK−j−1 · h(h−1)

2 · hj−1) ≤ 39

C(K − 1)hK = O(nh logh n). Fix a Λ which has 40

size dim(Λ) = j. Then Equation (9) implies at most 41

h · hK−j−1 multiplication operations and (h − 1) · hK−j−1
42

addition operations needed for ϕΛ. For computing Ψ(Λ,m), 43

m = 1, . . . ,MΛ, we need at most 2 · hK−j−1 · h(h−1)
2 44

multiplication operations and hK−j−1 · h(h−1)
2 addition 45

operations, respectively. Notice that #Vj ≤ Chj−1. 46

To compute the nonzero entries of ϕΛ and ψ(Λ,m) 47

for all dim(Λ) = j and m = 1, . . . ,MΛ, from the 48

above computation, one can see that it needs at most 49

2C(hK−j−1 · h · hj−1 +2hK−j−1 · h(h−1)
2 · hj−1) = 2C · hK 50

evaluations of multiplications and additions. Hence, in total, 51

to compute the nonzero entries of ϕΛ and ψ(Λ,m) for all 52

dim(Λ) = j0, . . . ,K−1 and m = 1, . . . ,MΛ, it needs at most 53

2C
∑K−1

j=1

(
hK−j−1 · h · hj−1 + 2hK−j−1 · h(h−1)

2 · hj−1
)
= 54

2C(K − 1)hK = O(nh logh n) evaluations of multiplications 55

and additions. 56

Before showing the proof of Theorem 4, we want to give
some comments on permutations. Notice that the construction
of pΛ and BΛ only depends on LΛ. Hence, under node
permutation (π or Pπ), it means that we have the following
relationship between original ϕΛ and ϕ∗

Λ, ψΛ and ψ∗
Λ,

(ϕ∗
Λ)

⊤ :=p⊤Λ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

Pπ, (7)

 (ψ∗
(Λ,1))

⊤

...
(ψ∗

(Λ,MΛ))
⊤

 :=BΛ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

Pπ. (8)

Under partition permutation πp, fixing a Λ (there exists a
permutation matrix QΛ w.r.t. πp at Λ), we have the following
relationship between original ϕΛ and ϕ∗

Λ, ψΛ and ψ∗
Λ,

(ϕ∗
Λ)

⊤ :=p⊤ΛQΛ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 , (9)

 (ψ∗
(Λ,1))

⊤

...
(ψ∗

(Λ,MΛ))
⊤

 :=BΛQΛ

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 . (10)

Proof of Theorem 4. Let ΦΛ := [ϕ(Λ,1), . . . ,ϕ(Λ,LΛ)]
⊤ and 57

ΨΛ := [ψ(Λ,1), . . . ,ψ(Λ,MΛ)]
⊤. Since the scaling vectors 58
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ϕ⊤
Λ = p⊤ΛΦΛ are defined iteratively for dim(Λ) decreasing1

from K to 1 through Equation (1) and the framelets ψ(Λ,m) are2

given by ΨΛ = BΛΦΛ, we only need to prove the permutation3

equivariance properties for each Λ.4

For Item (i), note that by Equation (1) and Corollary 1,5

ϕ(Λ,ℓ) : V → R only depends on G, PK , and pΛ = 1√
LΛ

1.6

For any node permutation π, the PK is determined by the index7

vectors Λ according to a tree structure and is independent of8

the node permutation π. Moreover, the vectors pΛ are fixed9

constants. Hence, iteratively, after node permutation π acting10

on graph G, the new scaling vector ϕπ
(Λ,ℓ) : π(V) → R is11

given by ϕπ
(Λ,ℓ) = Pπϕ(Λ,ℓ), where Pπ is the permutation12

matrix with respect to π. Consequently, the new Φπ
Λ and13

Ψπ
Λ on the permuted graph π(G) are given by Φπ

Λ = ΦΛPπ14

and Ψπ
Λ = BΛΦ

π
Λ = BΛΦΛPπ = ΨΛPπ. This implies the15

conclusion in Item (i).16

For Item (ii), given a partition permutation πp acting on PK ,17

We denote πp(PK) the hierarchical clustering w.r.t. such a πp.18

Let Λ̃ := πp(Λ) be the permuted index vector πp(PK) from19

the index vector Λ in PK . Since the partition permutation acts20

on the children of each Λ only, we have πp(Λ, ℓ) = (Λ̃, πΛ(ℓ))21

for some permutation πΛ on [LΛ]. Then, the matrix ΦΛ̃ is22

ΦΛ̃ := [ϕ(Λ̃,πΛ(1)), . . . ,ϕ(Λ̃,πΛ(LΛ))]
⊤ = PπΛ

ΦΛ

with PπΛ
being the permutation matrix with respect to πΛ.23

Then, in view of p⊤ΛPπΛ
= p⊤Λ, the permuted scaling vector24

ϕΛ̃ is given by25

(ϕΛ̃)
⊤ = (ϕπp(Λ))

⊤ = p⊤Λ(PπΛ
ΦΛ)

= (p⊤ΛPπΛ
)ΦΛ = p⊤ΛΦΛ = ϕ⊤

Λ,

That is, the new scaling vectors in {ϕΛ̃ : dim(Λ̃) = j} are26

simply the recording of {ϕΛ : dim(Λ) = j} under πp for27

j = 0, . . . ,K. Thus, all scaling vectors are invariant (up to28

index permutation) under the partition permutation πp. Now29

for the framelet vectors ψ(Λ,m), by Equation (2), we have30

ΨΛ̃ = BΛΦΛ̃ = BΛPπΛ
ΦΛ.

We claim that there exist MΛ×MΛ permutation matrixRΛ and31

sign matrix SΛ = diag(c1, . . . , cMΛ
) with all ci ∈ {−1,+1}32

such that BΛPπΛ
= SΛRΛBΛ. Then, we have33

ΨΛ̃ = BΛPπΛ
ΦΛ = SΛRΛBΛΦΛ = SΛRΛΨΛ,

which then concludes Item (ii). Noting that BΛPπΛ
is to34

reorder the columns of BΛ and regardless the sign, all elements35

appear in each column with the same times and 1 (or −1)36

appears in rows of BΛ once. In other words, (BΛPπΛ
)r: =37

w⊤P⊤
r PπΛ

, which is to permutew = [1,−1, 0, . . . , 0]⊤ (up to38

a constant) with respect to P⊤
r PπΛ

. Since Rank(BΛ) = L−139

and BΛ1 = 0, we have Pw ∈ span{Pmw}MΛ
m=1 for any40

permutation matrix P . Thus for any r, there exists exactly one41

j ∈ [MΛ] such that (BΛPπΛ
)r: = w⊤P⊤

r PπΛ
= cw⊤P⊤

j42

where c is either 1 or −1. Hence the claim holds. This43

completes the proof of Item (ii).44

The proof of Item (iii) is a direct consequence of Items (i)45

and (ii).46

Proof of Proposition 2. From Item (i) of Theorem 4 , we47

see that the corresponding permuted versions of Φ1 and48

Ψj are Φ1P and ΨjP . Thus Fj(PX) = PFj(X), 49

Fj(PAP
⊤PX) = PFj(AX), Fj(PÃP

⊤PX) = 50

PFj(ÃX) for j = 0, . . . ,K − 1. It is obvious that the 51

remaining channels also differ by a permutation matrix P . 52

Since the row normalization and the softmax function are 53

applied row-wise and the activation function is applied element- 54

wise, it is straightforward to see that ŶP = P Ŷ . 55

B. Fast Decomposition and Reconstruction Algorithms 56

Given a K-hierarchical clustering PK , we consider graph
Haar framelet transform between Vj+1 and Vj ⊕Wj . Define
x(Λ,ℓ) := ⟨f ,ϕ(Λ,ℓ)⟩ and y(Λ,m) := ⟨f ,ψ(Λ,m)⟩ for a given
graph signal f . The transform algorithm is to evaluate x(Λ,ℓ)

and y(Λ,m) effectively. Let CΛ ∈ RLΛ×(1+MΛ) be a matrix
satisfying CΛ

(
p⊤
Λ

BΛ

)
= I ∈ RLΛ×LΛ . Then Lemma 1 in [19]

and Equations (1) and (2) imply that
ϕ⊤

Λ

ψ⊤
(Λ,1)

...
ψ⊤

(Λ,MΛ)

 :=

(
p⊤Λ
BΛ

) ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 , (11)

 ϕ
⊤
(Λ,1)

...
ϕ⊤

(Λ,LΛ)

 :=CΛ


ϕ⊤

Λ

ψ⊤
(Λ,1)

...
ψ⊤

(Λ,MΛ)

 . (12)

For the decomposition algorithm, we are given a signal f ∈ 57

Vj+1, which means that 58

f =
∑

dim(Λ)=j

∑
ℓ∈[LΛ]

x(Λ,ℓ)ϕ(Λ,ℓ).

By Equation (11), we have

f =
∑

dim(Λ)=j

∑
ℓ∈[LΛ]

x(Λ,ℓ)ϕ(Λ,ℓ)

=
∑

dim(Λ)=j

∑
ℓ∈[LΛ]

x(Λ,ℓ)

(CΛ)ℓ,1ϕΛ +
∑

m∈[MΛ]

(CΛ)ℓ,m+1ψ(Λ,m)


=

∑
dim(Λ)=j

ϕΛ

∑
ℓ∈[LΛ]

x(Λ,ℓ)(CΛ)ℓ,1

+
∑

dim(Λ)=j

∑
m∈[MΛ]

ψ(Λ,m)

∑
ℓ∈[LΛ]

x(Λ,ℓ)(CΛ)ℓ,m+1

=
∑

dim(Λ)=j

xΛϕΛ +
∑

dim(Λ)=j

∑
m∈[MΛ]

y(Λ,m)ψ(Λ,m),

(13)

where we can represent decomposition of f with respect to
each Λ as [

xΛ, y(Λ,1), · · · , y(Λ,MΛ)

]
=
[
x(Λ,1), x(Λ,2), · · · , x(Λ,LΛ)

]
CΛ.

(14)

Conversely, if we have f ∈ Vj ⊕Wj , which means that 59

f =
∑

dim(Λ)=j

xΛϕΛ +
∑

dim(Λ)=j

∑
m∈[MΛ]

y(Λ,m)ψ(Λ,m),
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then, by Equation (11), for the reconstruction from Vj ⊕Wj

to Vj+1, we have

f =
∑

dim(Λ)=j

xΛϕΛ +
∑

dim(Λ)=j

∑
m∈[MΛ]

y(Λ,m)ψ(Λ,m)

=
∑

dim(Λ)=j

∑
ℓ∈[LΛ]

(rΛ)ℓ ϕ(Λ,ℓ)

=
∑

dim(Λ)=j

∑
ℓ∈[LΛ]

x(Λ,ℓ)ϕ(Λ,ℓ),

(15)

where

rΛ = xΛp
⊤
Λ + y⊤

ΛBΛ, with yΛ = [y(Λ,1), . . . , y(Λ,MΛ)]
⊤,
(16)

and x(Λ,ℓ) := (rΛ)ℓ.1

Algorithm 2 Fast framelet decomposition
Input: PK , {xΛ : dim(Λ) = j0}, {CΛ}, j1
initialize f̂ = ∅.
for j = j0 − 1 to j1 do

for Λ ∈ {Λ : dim(Λ) = j} do
[xΛ, y(Λ,1), · · · , y(Λ,MΛ)] ←

[x(Λ,1), x(Λ,2), · · · , x(Λ,LΛ)]CΛ

update f̂ ← f̂ ∪ {xΛ, y(Λ,m),m = 1, . . . ,MΛ}
Output: Fj0(PK)

Algorithm 3 Fast framelet reconstruction
Input: PK , {xΛ : dim(Λ) = j0} ∪ {y(Λ,m) : dim(Λ) =
j0,m ∈ [MΛ]}, {pΛ,CΛ}, j1
initialize f = ∅.
for j = j0 + 1 to j1 do

for Λ ∈ {Λ : dim(Λ) = j} do
rΛ = xΛp

⊤
Λ + y⊤

ΛBΛ

for ℓ = 1 to LΛ do
x(Λ,ℓ) ← (rΛ)ℓ

update f ← f ∪ {x(Λ,ℓ)}ℓ∈[LΛ]

Output: f

Hence, by using Equation (14) iteratively from VK , given2

a framelet system Fj0(PK) and a graph signal f , we get the3

coefficient vector f̂ consisting of coefficients from4

f 7→ {xΛ : dim(Λ) = j0} ∪ {yΛ : dim(Λ) = j}K−1
j=j0+1 (17)

with respect to Vj0 ⊕Wj0 ⊕· · ·⊕WK−1. In the reconstruction5

process, we iteratively obtain the representation of f in VK6

from coefficient vector f̂ :7

{xΛ : dim(Λ) = j0} ∪ {yΛ : dim(Λ) = j}K−1
j=j0+1 7→ f (18)

with respect to Vj0 ⊕Wj0 ⊕ · · · ⊕WK−1.8

From the above discussion, we observe that decomposition9

and reconstruction algorithms do not need to form the full10

framelet system explicitly, but pΛ, BΛ and CΛ, which implies11

efficiency in general applications that apply our framelet12

system.13

Theorem 5. Under the same assumption as in Corollary 1. 14

The decomposition algorithm to obtain the framelet coefficient 15

vector f̂ from f and the reconstruction algorithm to obtain 16

the graph signal f from f̂ , as described in Equations (17) 17

and (18), are both with a computational complexity of order 18

O(nh). 19

Proof of Theorem 5. A fast decomposition algorithm is given 20

by Equation (13), which computes f̂ iteratively. In or- 21

der to get xΛ and y(Λ,m) for f̂ , we need to compute 22∑
ℓ∈[LΛ] x(Λ,ℓ)(CΛ)ℓ,t = (q⊤ΛCΛ)t, where t = 1, . . . ,MΛ + 23

1, ℓ ∈ [LΛ] and qΛ := [x(Λ,1), . . . , x(Λ,LΛ)]
⊤ (see Equa- 24

tion (14)). Note that for our binary graph Haar framelet 25

system Fj0(PK), the matrix CΛ in Equation (11) is given 26

by CΛ = [pΛ,B
⊤
Λ ] and each row of BΛ has only two 27

nonzero elements. Hence, for a given Λ with dim(Λ) = j, 28

since LΛ ≤ h and MΛ ≤ h(h−1)
2 , the number of nonzero 29

elements in CΛ is no more than h+2 · h(h−1)
2 . Therefore, the 30

computational complexity for obtaining q⊤ΛC is of the same 31

order as h+2·h(h−1)
2 . In total, observing that #{Λ : dim(Λ) = 32

j} ≤ hj−1, to get the full f̂ , the computational complexity is 33

of order the same as
∑K−1

j=1 (h+ 2 · h(h−1)
2 )hj−1 = O(nh). 34

Fast reconstruction algorithm (Equation (15)) which com- 35

putes f from f̂ only need to compute rΛ iteratively. Let YΛ := 36

[xΛ,y
⊤
Λ ]

⊤ ∈ RMΛ+1 and PΛ :=
(
p⊤
Λ

BΛ

)
. Then PΛ = C⊤

Λ and 37

rΛ = Y ⊤
Λ PΛ. Following a similar calculation as for the fast 38

decomposition algorithm, it is not hard to see the computation 39

complexity is of
∑K−1

j=1 hj−1(h+ 2 · h(h−1)
2 ) = O(nh). 40

C. Experiment Details on the Synthetic Dataset 41

A theoretical characterization of graphs, given in [52], 42

explains when GCN fails to produce acceptable performance. 43

We follow and modify Algorithm 2 in [52] to generate synthetic 44

data. 45

The key idea of the algorithm is to generate edges of 46

nodes in a graph such that the intra-class and inter-class 47

similarities are properly controlled. The intra-class and inter- 48

class similarity are defined by Definition 1. Cross-class 49

neighborhood similarity (CCNS) measures how close the 50

patterns of connections of nodes between two classes are. 51

In our experiment, we generate graphs with 3, 000 nodes for 52

which assign labels from C = {0, 1, 2, 3} randomly. It means 53

that we have nc = 4 classes. We generate edges according 54

to Algorithm 4. The distributions that control CCNS are 55

designed based on the uniform distribution and a prescribed 56

distribution {Dc : c ∈ C}. The distributions {Dc : c ∈ C} 57

can be found in Table V. Integer N is set to be 45, 000. 58

The hyperparameter γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} indicates the 59

probability of sampling neighbors from uniform distributions 60

other than the predefined distributions that are much more 61

distinguishable for different classes. When γ is small, vertices 62

of the neighborhood are more likely to be sampled according to 63

{Dc : c ∈ C} and when γ is large, it is more likely to sample 64

from the indistinguishable uniform distribution. As a result, 65

when γ becomes larger, the uniform distribution has more 66

impact on CCNS and thus the metric becomes more similar 67

between classes. We evaluate CCNSs on the generated graphs 68
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Fig. 6. CCNS on the synthetic graphs with different hyperparameters γ.

and show heatmaps in Fig. 6. It is clear that, when γ = 0, CCNS1

is dominated by {Dc : c ∈ C}, and since D0 is more similar to2

D2 than D1, we get s(0, 1) = 0.367 ≤ 0.686 = s(0, 2). And3

finally when γ = 1, all CCNS are almost 0.91. Notice that in4

Algorithm 4, we slightly modify the algorithm in [52]. Since5

we generate graphs with only nodes initialized, when r ≤ γ,6

we sample label c from all labels C, instead of C − {yi} used7

in [52]. Table VI shows the hyperparameter search range for8

the experiments of FSGNN and PEGFAN on the synthetic9

data, where {WDsca, LRsca,WDfc1,WDfc2, LRfc} are the10

weight decay coefficient of attention weights, learning rate of11

attention weights, weight decay coefficient of the first fully-12

connected layer, weight decay coefficient of the second fully-13

connected layer and learning rate of the fully-connected part,14

respectively.15

Definition 1 (Cross-Class Neighborhood Similarity (CCNS)16

[52]). Given graph G and node labels yi ∈ {0, 1, . . . , nc − 1}17

for i ∈ V . the metric between classes c and c′ is s(c, c′) =18

1
|Vc||Vc′ |

∑
i∈Vc,j∈Vc′ cos⟨d(i), d(j)⟩, where Vc := {i ∈ V :19

yi = c} and d(i) ∈ Rnc is a vector with elements defined by20

#{j : (i, j) ∈ E , yj = c} for any c ∈ {0, 1, . . . , nc − 1}.21

TABLE V
DISTRIBUTION D4

{Dc : c ∈ C} class 0 class 1 class 2 class 3

D0 0.1 0.4 0 0.5
D1 0.5 0 0.5 0
D2 0.2 0 0.5 0.3
D3 0.25 0.25 0.25 0.25

Features on graph nodes are from R700, with each element22

randomly generated according to Gaussian distribution (− 9
2 +23

TABLE VI
HYPERPARAMETER SEARCH RANGE

Hyperparameters Values

WDsca 0.0, 0.001, 0.1
LRsca 0.01, 0.04
WDfc1 0.0, 0.0001, 0.001
WDfc2 0.0, 0.0001, 0.001
LRfc 0.005, 0.01

1
2c) + ξ (Table I) or (− 3

4 + 1
2c) + ξ (Table II) independently, 24

where ξ ∼ N(0, 1) and c is the label. 25

Algorithm 4 [52]
Input: Nodes V , Integer N , Distribution matrix {Dc : c ∈
C}, labels C = {c}nc−1

i=0 , γ
initialize E = ∅ and k = 0;
while k ≤ N do

Sample i ∈ V and r ∈ [0, 1] uniformly
Obtain the label yi ∈ C of node i
if r ≤ γ then

Sample a label c from C uniformly
else

Sample a label c from C according to distribution
Dyi

Sample node j from class c uniformly
if (i, j) /∈ E then

update E ← E ∪ (i, j)
update k ← k + 1

Output: G = (V, E)
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