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In this paper, we provide detailed discussions on the probability estimates of quadrature
rules from uniformly sampled points on spheres. Besides gathering relevant lemmas in
the literature to derive probability estimates on the existence of exact quadrature rules
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and should increase as t increases. This is empirically verified in our experiments.
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1. Introduction and motivation

Various methods for function approximation on d-dimensional unit sphere Sd such as

hyperinterpolation [34], multi-scale analysis [13], localized systems [22,31], sketching

for noisy data fitting [25], and spherical framelets [23, 35], are based on exact

quadrature rules for spherical harmonics. Apart from the numerical applications,

recent works in machine learning on spheres (see e.g., [9]), which generalize analysis

on Euclidean spaces (see e.g., [27]), are also deeply related to exact quadrature

rules on spheres. Intuitively, points in quadrature rules serve as sampling locations.

However, unlike 1- and 2-dimensional signals defined on regular grids, commonly

used quadrature rules on the d-dimensional unit sphere Sd := {x ∈ Rd+1 : |x| = 1},
e.g., the Gauss–Legendre tensor product rule [16], generally do not support the

direct up- and down-sampling operations [7,15,26]. This is due to the non-nested
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property of the quadrature rules, i.e., the points in the quadrature rule for low-

degree spherical harmonics are not contained in the quadrature rule for high-degree

spherical harmonics. More precisely, for n numbers w1, . . . , wn ∈ R and n points

x1, . . . ,xn ∈ Sd, if ∫
Sd

P (x) dµd(x) =

n∑
i=1

wiP (xi),

holds for any (d+1)-variate polynomial P (equivalent to any spherical harmonic) with

total degree up to t ∈ N0 := N ∪ {0}, where µd is the uniform probability measure

on Sd, then we call the finite sequence Xt := ((wi,xi))
n
i=1 a t-exact quadrature rule

(for Sd), in which the numbers w1, . . . , wn are called quadrature weights and the

points x1, . . . ,xn are called quadrature nodes. Moreover, if two finite sequences

Xt1 = ((wi,xi))
n
i=1 and Xt2 = ((w̃i,xi))

n+m
i=1 (i.e., (xi)

n
i=1 is a subsequence of

(xi)
n+m
i=1 ), are t1-exact and t2-exact (t1 < t2), respectively, then the two quadrature

rules are said to be nested. One can have a sequence Xt1 ,Xt2 , . . . ,Xtk , . . . of nested

quadrature rules, similarly, if Xti and Xti+1 are nested for i = 1, 2, · · · .
In practice, when approximating functions using spherical harmonics from low

degree to high degree, e.g., in numerical integration, multiple quadrature rules have

to be adopted. The computation and storage burden are directly related to the total

number of nodes in such quadrature rules. If the quadrature rules are non-nested,

then the computation and storage burden could be quite large, not to mention

the inconvenience in the down- and up-sampling operations for spherical signal

processing. Therefore, it is desirable to have nested quadrature rules for which the

number of points is as small as possible.

One special case of the t-exact quadrature rules is the so-called spherical t-

designs [1], where each of the n points x1, . . . ,xn ∈ Sd has the same (quadrature)

weight wi ≡ 1
n . Since the weights are the same, one only needs to consider the

storage of the points. The well-known conjecture regarding the optimal order of

spherical t-designs is resolved in [2], which proves that for any t ∈ N0, there exists

a spherical t-design such that its number of nodes is Cdt
d and the constant Cd

depends only on d. Hence, spherical t-designs are nice quadrature rules having a

simple quadrature weight with the optimal number of nodes (in a certain sense). It

is thus desirable to consider spherical designs with the extra desirable property of

nesting. Our recent work [37] addresses such nested spherical designs and proves

several fundamental results on their existence and estimates. To elaborate, given a

spherical t1-design with points x1, . . . ,xn, it is confirmed that one can append extra

points y1, . . . ,ym such that all the points form a spherical t-design (t > t1). Though

spherical designs enjoy many nice properties, it is, however, rather time-consuming

to obtain spherical t-designs with large degree t. It is shown in [36] that for S2 and

t > 1000 it takes months to complete the corresponding numerical optimizations.

Moreover, in [37], we proved that the spherical t-design that extends a spherical

t1-design could be of order t2d+1. Thus, in terms of the number of points, nested

spherical designs in general could be too large. For practical considerations, we need
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to consider other types of quadrature rules that allow nested structure with easy

derivation, efficient computation, and effective applications.

Other than the spherical t-designs that are with fixed constant weights, one

simple and practical way is to consider the derivation of t-exact quadrature rules

from uniformly sampled points on Sd with nearly constant weights. In fact, by the

law of large numbers, given n points x̃1, . . . , x̃n ∈ Sd sampled from the uniform

distribution µd, we have (with n sufficiently large)∫
Sd

P (x) dµd(x) ≈
1

n

n∑
i=1

P (x̃i).

It is thus very natural to expect that one can obtain a quadrature rule by slightly

adjusting the weight 1
n for each point. Most importantly, by continuing the uniform

sampling process, it is straightforward to obtain sequences of uniformly sampled

points that are nested. Nonetheless, compared to the spherical t-designs, the weights

here still require extra storage.

Since there is no obstacle in obtaining nested sequences of uniformly sampled

points, the problem of finding nested quadrature rules is reduced to showing the

existence of quadrature weights to form a quadrature rule from a given uniformly

sampled point set. On the other hand, due to the presence of noise in spherical

signal processing, it is also important to consider quadrature rules with bounded

weights. Thus, we are interested in answering the following problems:

Q1) Given n uniformly sampled points on the sphere, what is the probability

(lower bound) to obtain a t-exact quadrature rule with bounded weights?

Q2) Suppose that for some constant Cd > 0, it is enough with Cdt
d
1 number of

uniformly sampled points on the sphere to obtain a t1-exact quadrature rule

with bounded weights. Then, for any t > t1, are Cdt
d uniformly sampled

points enough to guarantee the existence of a t-exact quadrature rule with

high probability?

Q3) If the relation n = Cdt
d is not sufficient to guarantee the existence of a

t-exact quadrature rule with high probability, is there any other relation

between the number of sampled points n and the degree t that does?

There are three closely related works [10, 14, 22], in which results related to

the M–Z inequalities or exact quadrature rules on uniformly sampled points are

given. In [22], a method for finding quadrature rules on Sd is proposed. Given a

set {xi}ni=1 of points on the sphere, finding the quadrature weights {ai}ni=1 can be

reduced to solve a system of linear equations that involves a positive definite Gram

matrix, which is induced by an alternative inner-product for the spherical harmonics.

An estimate on the numbers of required points is also given in [22], which is of

order O(t6 log t) for S2 (though the numerical experiments in [22] shown that at

most 4(t+ 1)2 points are needed with t ≤ 140). Moreover, on such a point set, the

computed quadrature weights have high probability to be of order O( 1n ). However,

since the points are random, there should also be an estimate on the probability of
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such a point sequence satisfying the M–Z inequalities, which is missing in [22]. On

the other hand, in [14], by utilizing numerical optimizations, the empirical study

shows successful results for t-exact quadrature rules on S2 with the number of

uniformly sampled points of order (t+ 1)2. However, as opposed to [22], there is no

theoretical guarantee on the number of required points. Finally, in [10], it is shown

that for sufficiently large n, with probability at least 1 − 1
n , the sampled points

satisfy the M–Z inequalities. Therefore, the existence of exact quadrature rules with

the same probability estimate easily follows.

To answer question Q1, we first summarize relevant results in the current

literature and provide estimates that are straightforward to obtain by following

our summarized framework. In detail, our summarized framework consists of the

implication from the deterministic statements of the Marcinkiewicz–Zygmund (M–

Z) inequalities to the existence of exact quadrature rules [12, 28, 29, 31], and the

implication from probabilistic quantities to the M–Z inequalities. We also give

additional probability estimates based on the probabilistic quantities related to the

measure and diameter of Voronoi cells induced by the sampled points, for which we

follow [8] to obtain generalized results on Sd. Based on these quantities, we obtain a

more specific probability estimate of satisfying the M–Z inequalities. Consequently,

we obtain additional estimates on the probability lower bound of the existence of

t-exact quadrature rules with finer characterizations. In numerical applications, our

results together with those derived from the literature provide upper bounds on the

number of points that allow finding t-exact quadrature rules with high probability.

On the other hand, the question Q2 is motivated by the optimal order of spherical

t-designs. In practice, to obtain nested rules of order td via uniformly sampled points,

we may first obtain a t1-exact quadrature rule with Cdt
d
1 points, and the constant Cd

is as small as possible. Then, after sampling extra points, we can numerically check

whether it is possible to find a t-exact rule (t > t1) with Cdt
d points. By simply

taking the limit with respect to t in our estimates, the answer to Q2 is possibly

negative since the lower bound diverges to −∞ and we thus lose the probability

guarantee. Moreover, a smaller constant will speed up this process. Therefore,

it is suggested that the aforementioned procedure will not be successful. This is

empirically tested in numerical experiments in which setting a smaller constant

leads to drastic changes in the time consumed and outcomes of optimizations for

relatively large t. Therefore, when dealing with very large t, instead of setting a

fixed constant Cd, one might have to increase the number C in n = Ctd as t grows

to ensure an efficient optimization with acceptable results.

Finally, question Q3 aims to find other possible relations between the number of

sampled points n and the degree t of spherical harmonics. Based on our estimates,

we show that both relations
n

lnn
= Cdt

d, n = Cdt
d ln t

guarantee the existence of exact quadrature rules with high probability, which is

consistent with the results derived from the literature. Moreover, as we show later,
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our estimates give asymptotically higher probability under such relations.

The paper is organized as follows. In Section 2, we state our main results together

with the estimates derived from the literature. In Section 3, numerical results of

finding quadrature rules on S2 are demonstrated. The lemmas, theorems, and proofs

of our main result are postponed to Section 4. Finally, we give conclusions and

further remarks in Section 5.

2. Main Results

In this section, we introduce our main results on the measure and the diameter of

Voronoi cell with respect to a sequence of uniform sampled points on the sphere as

well as the existence of quadrature weights for such a sequence. Proofs of our main

results will be postponed to Section 4.

The usual surface measure md on Sd satisfies

ωd :=

∫
Sd

dmd =
2π(d+1)/2

Γ((d+ 1)/2)
,

where Γ is the Gamma function, e.g., ω2 = 4π. For the uniform distribution µd

on Sd, we have µd(A) = ω−1
d md(A) for a measurable set A on Sd. In the following,

unless explicitly stated, we assume that all functions are real-valued. The Lp-

norm of a measurable function on Sd is defined with respect to the measure md:

∥ · ∥p := ∥ · ∥p,md
:= (

∫
Sd | · |

p dmd)
1/p for 1 ≤ p < ∞ and ∥ · ∥∞ is the essential

supremum. The space Lp(Sd,md) is then the usual Lp-space with respect to such a

Lp-norm.

The Laplace-Beltrami operator on Sd is defined as:

∆f := −div(∇f)

where f ∈ C∞(Sd) and div,∇ are the divergence and function gradient on Sd.
The eigenfunctions of ∆, or so called spherical harmonics, are the restrictions of

real-valued homogeneous harmonic polynomials on Sd. These eigenfunctions form an

orthonormal basis for L2(Sd,md). Its distinct eigenvalues are λ∗
ℓ := ℓ(ℓ+ d− 1), ℓ ∈

N0 := N ∪ {0}, where ℓ corresponds to the degree of the polynomial. For each λ∗
ℓ ,

the dimension of the associated eigenspace Hd
ℓ is

dimℓ :=


2ℓ+ d− 1

ℓ+ d− 1

(
ℓ+ d− 1

ℓ

)
if ℓ ≥ 1,

1 if ℓ = 0.

We denote the sorted eigenvalues counted with multiplicities as λℓ and an orthonor-

mal basis in Hd
ℓ as {Yℓ,k : ℓ ∈ N0, k = 1, . . . ,dimℓ}. The space Πd

t of polynomials

on the sphere Sd up to degree t is then given by the direct sum of Hd
ℓ , ℓ ≤ t,

i.e., Πd
t :=

⊕t
ℓ=0 H

d
ℓ . We denote the dimension of Πd

t as Nt =
∑t

ℓ=0 dimℓ. The

Nt spherical harmonics that form an orthonormal basis for Πd
t can be sorted as

{yi : i = 1, . . . , Nt}. For more details, we refer to, e.g., [6, 30].
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The geodesic distance of two points x,y on Sd is ρ(x,y) := arccos(x ·y). Denote

Bx,r := {y ∈ Sd : ρ(x,y) ≤ r} as the spherical cap with radius r > 0 and center

x ∈ Sd. Given n points x1, . . . ,xn ∈ Sd, define the Voronoi tessellation mn,d as

mn,d := {C1,n, . . . , Cn,n}, where

Ci,n; =
{
x ∈ Sd | ρ(x,xi) ≤ min

j={1,...,n}\{i}
ρ(x,xj)

}
, i ∈ {1, . . . , n}.

As mentioned in [18], the Voronoi cells Ci,n, i = 1, . . . , n, are spherical polytopes

covering Sd. If x1, . . . ,xn are distinct, then each xi is associated with Ci,n and lies

in the non-empty and disjoint interior of Ci,n. The partition norm of mn,d is defined

as

∥R(mn,d)∥ := max
i

diam(Ci,n), diam(Ci,n) := sup
x,y∈Ci,n

ρ(x,y).

Let X1, X2, . . . , Xn be n independent, identically, and uniformly distributed

random vectors taking values in Sd. Given a point x ∈ Sd (or X1), we denote

the µd-measure of the (random) Voronoi cell of x (or X1) with respect to the

Voronoi tessellation of x (or X1) and X2, . . . , Xn as Mn(x). In what follows, the

expectation E[Mn(x)] is taken with respect to the joint distribution of X2, . . . , Xn

while E[Mn(X1)] is taken with respect to the joint distribution of X1, X2, . . . , Xn.

The expectation E[Mn(Xi)], i ∈ {1, . . . , n} can be similarly defined, which are also

taken with respect to the joint distribution of X1, X2, . . . , Xn. We have omitted the

dependencies for brevity. The variance of Mn(Xi) is denoted as Var[Mn(Xi)]. The

following result gives the estimates related to the moment information of Mn(Xi).

Theorem 2.1. Let X1, X2, . . . , Xn be n independent, identically, and uniformly

distributed random vectors taking values in Sd, and C1,n, . . . , Cn,n be the Voronoi

cells determined by X1, . . . , Xn. Let Mn(Xi) denote the µd-measure of the Voronoi

cell associated with Xi for i = 1, . . . , n. Then, for all i ∈ {1, . . . , n}, we have

E[Mn(Xi)] =
1
n , E[Mn(Xi)

2] < 2
n2 , and Var[Mn(Xi)] <

1
n2 . Moreover, for any

c > 1, with probability at least 1− 1
c2 , we have

max
i

∣∣Mn(Xi)− E[Mn(Xi)]
∣∣ = max

i

∣∣∣Mn(Xi)−
1

n

∣∣∣ < c√
n
.

We use Dn(x) to denote the diameter of the Voronoi cell associated with x

with respect to the Voronoi tessellation of x, X2, . . . , Xn. Thus, the probabilities of

events of Dn(x), e.g., {Dn(x) > δ}, involve the joint distribution of X2, . . . , Xn. For

Dn(X1), the probabilities of the events of Dn(X1), e.g., {Dn(X1) > δ}, involve the

joint distribution of X1, X2, . . . , Xn. Similarly, Dn(X2), . . . , Dn(Xn) can be defined

likewise. We use P(P ) to denote the probability of an event P . We have the following

result show that the diameters of the Voronoi cells possess an exponential tail, which

further implies the probability of the tail event {∥R(mn,d)∥ > δ}.

Theorem 2.2. Let X1, X2, . . . , Xn be n independent, identically, and uniformly

distributed random vectors taking values in Sd, and C1,n, . . . , Cn,n be the Voronoi
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cells determined by X1, . . . , Xn. Let Dn(Xi) denote the diameter of the Voronoi

cell associated with Xi for i = 1, . . . , n and ∥R(mn,d)∥ be the partition norm of the

Voronoi tessellation mn,d = {C1,n, . . . , Cn,n}. Then, for each δ > 0, there exist two

constants c1,d > 0 and c2,d,δ > 0 such that

P ({Dn(Xi) > δ}) ≤ c1,d (1− c2,d,δ)
n−1 ∀i ∈ {1, . . . , n}

and

P({∥R(mn,d)∥ > δ}) ≤ nc1,d (1− c2,d,δ)
n−1

, (2.1)

where the constants c1,d depends on d and c2,d,δ depends on d, δ.

With the above results and the results on the existence of quadrature rules

derived from the Marcinkiewicz–Zygmund (M–Z) inequalities (details are given in

Section 4.3), we have the following theorem which provides the probability estimate

on the existence of t-exact quadrature rules deriving from a finite sequence of

uniformly sampled points on the sphere Sd.

Theorem 2.3. Suppose integers d ∈ N and t ≥ 1. Let τd := 6(3
d
2 π + 2d + 3).

Let X1, X2, . . . , Xn be n independent, identically, and uniformly distributed random

vectors taking values in Sd. Then the following statements hold.

(i) For any c > 1 and η ∈ (0, 1) with probability at least 1 −
nc1,d (1− c2,d,δ)

n−1 − 1
c2 , there exist quadrature weights a1, . . . , an ∈ R

such that ((ai, Xi))
n
i=1 forms a t-exact quadrature rule satisfying

|ai| ≤
c
√
n+ 1

n
(1− η)−1, i ∈ {1, . . . , n}. (2.2)

(ii) For any η ∈ (0, 1
2 ), with probability at least 1− nc1,d (1− c2,d,δ)

n−1
, there

exist quadrature weights b1, . . . , bn ∈ R such that ((bi, Xi))
n
i=1 is a t-exact

quadrature rule satisfying

0 ≤ bi ≤
1

N⌊ t
2 ⌋
, i ∈ {1, . . . , n}, (2.3)

where δ := η
τd(t+d2) , the constant c1,d depends on d, and the constant c2,d,δ depends

on d, δ.

We shall provide the proofs of the main results in Section 4. In comparison,

we provide alternative estimates that directly follows from [10, Theorem 5.1] and

Lemma 4.3 Section 4.

Theorem 2.4. Suppose integers d ∈ N and t ≥ 1. Let τd := 6(3
d
2 π + 2d+ 3) and

αd := 8
(

ωdd
ωd−1

) 1
d

. Let X1, X2, . . . , Xn be n independent, identically, and uniformly

distributed random vectors taking values in Sd. Let η ∈ (0, 1), if

6τdαd

( n

4 lnn

)− 1
d

(t+ d2) < η, (2.4)

then the following statements hold.
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(i) With probability at least 1− 1
n , there exist quadrature weights a1, . . . , an ∈ R

such that ((ai, Xi))
n
i=1 forms a t-exact quadrature rule satisfying

|ai| ≤
4 lnn

n
(1− η)−1, i ∈ {1, . . . , n}, (2.5)

(ii) If η ∈ (0, 1
2 ), then with probability at least 1 − 1

n , there exist quadrature

weights b1, . . . , bn ∈ R such that ((bi, Xi))
n
i=1 is a t-exact quadrature rule

satisfying

0 ≤ bi ≤
1

N⌊ t
2 ⌋
, i ∈ {1, . . . , n}, (2.6)

We give below some remarks with quantitative and qualitative analysis based on

the above main results.

Remark 2.1. The constants c1,d and c2,d,δ in Theorem 2.2 can be explicitly

computed or estimated, e.g., for S2, c1,d = 8 and c2,d,δ = 1
32π · m2(Bx,

√
2δ) =

1
16 · (1− cos(

√
2δ)), where m2(Bx,

√
2δ) is the m2-measure of a spherical cap with ra-

dius
√
2δ. The definitions of the constants will be presented in the proof of Theorem

2.2.

Remark 2.2. By Theorem 2.3, given a fixed number of points, η and bounds

on quadrature weights, we can explicitly compute the probability estimate of the

existence of quadrature rules under prescribed conditions, since all the constants are

explicitly defined. However, this estimate is still pessimistic due to that the constant

τd in Lemma 4.4 (see Section 4.3) is not well-estimated and the upper bound of the

tail event in Theorem 2.2 is over-estimated. Take S2 and η = 1
2 for example, when

t = 10 and n = 4(t+ 1)2, δ ≈ 1/689.85 and we have

nc1,d (1− c2,d,δ)
n−1 ≈ 3872

1−
1− cos

( √
2

689.85

)
16

484

and

ln
[
nc1,d (1− c2,d,δ)

n−1
]
≈ ln 3872 + 483 ln (1− c2,d,δ) ≈ ln 8.262,

where c2,d,δ involves the area of a spherical cap with radius
√
2δ, which is 2π(1−

cos(
√
2δ)) [24]. The absolute value of the second addendum is approximately less

than 1E-7, and thus the whole term is denominated by ln 3872. In this case, the

probability lower bound 1− nc1,d (1− c2,d,δ)
n−1

becomes negative and therefore we

lose the probability guarantee. On the other hand, given the same values of t, n and

η, the right hand side of (2.4) is far greater than η. Thus, we also can not obtain

probability guarantee from Theorem 2.4. However, as in the experimental results

mentioned in [22] and also ours shown later in Section 3, the number 4Nt = 4(t+1)2

of points on the 2-sphere is enough for finding quadrature rules for t up to 512.
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Therefore, there are empirically very large gaps between the estimates and the

numerical findings.

Remark 2.3. Though the estimates are not empirically ideal, we can still provide

qualitative assertions based on Theorem 2.3. To investigate Q2 mentioned in Section

1, we first fix the dimension d, the constant η and the constant c in Theorem 2.3.

Then, let n = Cdt
d for each t ∈ N. Since µd(Bx,t−1) ∼ (1/t)d for any x ∈ Sd and

t ∈ N [16], we have

lim
t→∞

(1− nc1,d (1− c2,d,δ)
n−1 − c−2) = −∞ ⇔ lim

t→∞
td(1− Ct−d)t

d−1 = ∞, (2.7)

where C is some constant not depending on t. The right hand side is obvious since

(1 − Ct−d)t
d−1 converges to e−C and td diverges. Therefore, it is suggested that

we might not be able to set n = Cdt
d with small Cd if we attempt to find exact

quadrature rules successfully for large t. This will be empirically validated in the

following experiments in Section 3.

Remark 2.4. For fixed η, by (2.4) in Theorem 2.4, when n and t satisfy the relation

n

lnn
= Cdt

d (2.8)

where Cd is some positive number independent of t. there exist exact quadrature

rules for Πd
t with probability 1 − 1

n . We would like to compare the probability

estimates from Theorem 2.3 under the same relation. We first show that

lim
t→∞

nc1,d(1− c2,d,δ)
n−1

1/n
= lim

n→∞

nc1,d(1− c2,d,δ)
n−1

1/n
= 0 given

n

lnn
= Cdt

d. (2.9)

For simplicity, we denote c1 := c1,d and c3 := Cd. As in the previous remark, by the

definition of δ and that µd(Bx,t−1) ∼ (1/t)d, it is equivalent to show that

lim
n→∞

nc1(1− c2t
−d)n−1

1/n
= 0 given

n

lnn
= c3t

d,

where c2 is some positive constant independent of t. Take the logarithm of n2c1(1−
c2t

−d)n−1 and combine with t−d = c3 lnn/n, then it is equivalent to show that

2 lnn+ n ln

(
1− c2c3

lnn

n

)
→ −∞, n → ∞.

When n is sufficiently large, by the inequality ln(1 + x) ≤ x, x > −1 we have

2 lnn+ n ln

(
1− c2c3

lnn

n

)
≤ 2 lnn− c2c3 lnn.

Note that by definition c3 = Cd and thus c3 is undetermined and adjustable.

Therefore, (2.9) is true when c2c3 > 2. Therefore, in terms of the probability

estimates of the existence of quadrature rules with non-negative weights, under

the relation (2.8), Theorem 2.3 provides a lower bound with asymptotically faster

convergence to 1, and overall high probability guarantee for sufficiently large t.
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Remark 2.5. Similarly, we would like to investigate the relation

n = Cdt
d ln t, (2.10)

in which the logarithm factor is related to t instead. To show that the estimates in

Theorem 2.3 give high probability guarantees for sufficiently large t, we prove that

lim
t→∞

nc1(1− c2t
−d)n−1 = 0, n = c3t

d ln t (2.11)

where c1, c2, c3 are defined as in the previous remark. Substitute n with c3t
d ln t,

then it is equivalent to show that

d ln t+ ln(ln t) + c3t
d(ln t) ln(1− c2t

−d) → −∞, t → ∞.

Note that limt→∞ td ln(1− c2t
−d) = −c2. Therefore, when t is sufficiently large, we

have

d ln t+ ln(ln t) + c3(ln t)
(
td ln(1− c2t

−d)
)
≤ (d+ 1) ln t− 1

2
c2c3 ln t.

Thus, when 1
2c2c3 > d+ 1, we have (2.11).

Remark 2.6. Despite the estimate 1 − nc1,d(1 − c2,d,δ)
n−1 from Theorem 2.3

possessing faster convergence, there are still some drawbacks compared with (2.5)

of Theorem (2.4). By (2.2), the amount needed for adjusting 1
n to obtain a t-exact

quadrature rule is of order O( 1√
n
). However, (2.5) provides a lower order, which is

O( lnn
n ). Moreover, our estimates have an extra term − 1

c2 , which limits the overall

probability estimate. These drawbacks are induced by the randomness of the Voronoi

cells. In contrast, [10, Theorem 5.1] involves deterministic and equal-area partitions,

which are free from such randomness. It can be seen from the proofs in Section 4.1

that the order O( 1√
n
) is largely due to trivially handling the n events of the Voronoi

cells. It would be ideal to show an order smaller than O( lnn
n ) or even to be O( 1n ).

Remark 2.7. Since the mesh norm (also called covering radius) of a point set on

the sphere is comparable to the partition norm induced by the associated Voronoi

tessellation [19], an alternative way to obtain probability estimates is to estimate

the mesh norm with respect to the sampled points. One can follow [33, (5.1), (5.2)]

which are stated for a certain class of smooth manifolds, and obtain estimates that

essentially differ from the right hand side of (2.7) by multiplying −(1 − Ctd). In

contrast, our approach is more constructive and provides explicit constants.

3. Numerical Experiments

We also would like to mention some details of finding exact quadrature rules on S2
from [14]. Such rules were obtained numerically by applying fast spherical Fourier

and adjoint transforms [20,21] and solving the following optimization problem:

min
w≥0

∥Y ∗w −
√
4πe0∥2 (3.1)
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where Y ∈ Cn×Nt , Yij := ỹj(Xi) (ỹi are complex-valued spherical harmonics),

w, e0 ∈ Rn with e0 := [1, 0, . . . , 0]⊤. A 500-exact rule using 106 sampled points with

residual 4.843589E-13 was found. We follow [14] and consider the equivalent problem

of finding quadrature rules for Π2
t :

min
w∈Rn

L := ∥Aw −
√
4πe0∥2 (3.2)

where A := [A1, A2]
⊤ ∈ R(t+1)2×n with

A1 := Re(Y l
k(Xi))i=0,...,n;l=0,...,t,0≤k≤l ∈ Rn× (t+1)(t+2)

2 ,

A2 := Im(Y l
k(Xi))i=1,...,n;l=1,...,t,−l≤k≤−1 ∈ Rn× t(t+1)

2 .

Here we use Y l
k to denote the complex valued spherical harmonics in S2 [30]. The

operations Re(f), Im(f) are the real and imaginary part of a complex number

(function) f , respectively.

Incorporating the lower bounds and upper bounds in (2.2) and (2.3), we therefore

consider the following constrained convex optimizations adapted from (3.2):

min
L1≤w≤R1

∥Aw −
√
4πe0∥2, (3.3)

min
0≤w≤R2

∥Aw −
√
4πe0∥2, (3.4)

where

L1 := −ω2
9
√
n+ 1

n
· 2 (c = 9, η =

1

2
), R1 := −L1, R2 :=

ω2

N⌊ t
2 ⌋
.

The problems (3.3) and (3.4) are then numerically solved using the MATLAB

Optimization Toolbox with algorithm trust-region-reflective [3,4] (see also [36])

and custom functions for computing the gradient ∇L and Hessian of L.a Such

functions adopted the fast spherical Fourier and adjoint transforms in [20,21]. All

experiments were done on a desktop PC with an Intel Core i7-12700KF CPU and

16GB of RAM. The maximum number of iterations is set to be 201.

Since (t+1)2 ∼ t2, it is equivalent to set n = c(t+1)2 where c is the constant to

be tested. We set t ∈ {16, 32, 64, 128, 256, 512}. The initial value of each component

of w to be 4π
n . The results associated with (3.3) and (3.4) are shown in Table 1 and

2.

We give some detailed comments from our numerical results .

Remark 3.1. Exp 1 and Exp 2 in Table 1 show that for both (3.3) and (3.4), a

large enough fixed constant c enables the successful findings of t-exact quadrature

rules with a fixed range of t.

Remark 3.2. However, by lowering the constant c, the performance behaves

differently. Exp 1 and Exp 3 in Table 1 show the difference for (3.3). When c is

aSee https://github.com/zrgcityu/usq code for implementation details
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Table 1. Numerical Results of 3 Settings [objective, n]: Exp 1 [(3.3), n = 4(t+ 1)2], Exp 2 [(3.4),
n = 6(t+ 1)2], Exp 3 [(3.3), n = 1.2(t+ 1)2].

Exp 1 For (3.3), n = 4(t+ 1)2

t L ∥∇L∥∞ Time Iteration

16 3.134581E-15 3.063353E-15 1.788075s 15

32 3.291015E-14 3.388295E-14 0.807776s 16

64 1.841470E-13 1.872858E-13 6.399274s 17

128 2.637861E-13 3.969358E-13 18.665806s 20

256 3.995873E-13 6.811824E-13 52.704175s 18

512 4.320490E-13 1.262332E-12 238.550729s 18

Exp 2 For (3.4), n = 6(t+ 1)2

t L ∥∇L∥∞ Time Iteration

16 1.875412E-15 3.118444E-15 2.047900s 19

32 3.570558E-14 4.459392E-14 1.295156s 22

64 1.049723E-13 1.410922E-13 18.936084s 29

128 2.005977E-13 3.013737E-13 138.984551s 31

256 2.633198E-13 4.254067E-13 761.470559s 30

512 3.420550E-13 5.841217E-13 12563.455464s 46

Exp 3 For (3.3), n = ⌈1.2(t+ 1)2⌉
t L ∥∇L∥∞ Time Iteration

16 3.993703E-14 1.353421E-14 9.872654s 32

32 2.262766E-12 9.221247E-13 14.793752s 23

64 1.574769E-11 9.349000E-12 509.541738s 23

128 1.626569E-11 7.383318E-12 1095.151538s 23

256 2.613153E-11 1.885719E-11 3440.798370s 20

512 5.795588E-11 2.279233E-11 33192.043693s 22

reduced from 4 to 1.2, we can still find rules with losses L very close to 0. Nonetheless,

the orders in the magnitudes rise to 1E-11 for most t and the time consumed is

increased, especially for large t.

Remark 3.3. The effect of lowering c is more obvious for (3.4), where quadrature

weights are required to be non-negative. When c is reduced from 6 to 4, in all 4

attempts in Table 2, we see that not only the time consumed is greatly increased,

but also failures (3 out of 4 total trials) in the optimizations for t = 512, in which

the final losses L ≈ 1E-2 are far from 0.

Remark 3.4. Compared with Exp 1, the result in Exp 2 corresponds to a large

constant c. Compared with Exp 3, Table 2 displays more drastic changes. Note that

the constants c in Exp 1 and Table 2 are identical. Therefore, in contrast to (3.3),

we can say that (3.4) is more difficult to be solved numerically. This is consistent

with Lemma 4.3 in Section 4.3, in which the existence of exact quadrature rules
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with non-negative weights requires a stronger condition of η ∈ (0, 1/2), suggesting

that the number of points should be larger.

Remark 3.5. Our experiments have shown some discouraging results by which the

idea of setting a small fixed constant Cd in n = Cdt
d for all t is empirically denied.

In detail, we cannot choose Cd by trial and error on small t and then adopting the

smallest possible Cd. Though Table 1 show successful findings for the given t, we

expect that when t is large enough, failures in the optimizations will arise as those

in Table 2. For fixing a constant Cd, more reasonable choices would be n
lnn = Cdt

d

and n = Cdt
d ln t as discussed in Remarks 2.4 and 2.5, respectively.

4. Proofs of the Main Theorems

In this section, we provide detailed proofs of our main results in Theorem 2.1,

Theorem 2.2, and Theorem 2.3. We first prove the results concerning the measure

and the diameter of Voronoi cells on the sphere in Section 4.1, Section 4.2, respectively.

Similar results for Voronoi cells on Euclidean spaces can be found in [8]. We then

adopt the results on M–Z inequalities to our setting in Section 4.3 and derive the

main results by combining those results together in Section 4.4.

4.1. The measure of Voronoi cells

Recall that X1, X2, . . . , Xn are n independent, identically and uniformly distributed

random vectors taking values in Sd. The µd-measure of the (random) Voronoi cell

of x (or X1) with respect to the Voronoi tessellation of x (or X1) and X2, . . . , Xn

is denoted as Mn(x). The expectation E[Mn(x)] is taken with respect to the joint

distribution of X2, . . . , Xn and the expectation E[Mn(Xi)] is taken with respect to

the joint distribution of X1, X2, . . . , Xn.

The proof of Theorem 2.1 can be done by proving the following two lemmas.

Lemma 4.1. For all i ∈ {1, . . . , n}, we have

nE[Mn(Xi)] = 1, n2E[Mn(Xi)
2] < 2, and n2Var[Mn(Xi)] < 1.

Proof. For the first moment, without loss of generality, we first show that

nE[Mn(X1)] = 1. This directly follows from the fact that
∑n

i=1 Mn(Xi) = 1 and

that Mn(Xi), i ∈ {1, . . . , n} are identically distributed.

As for the second moment, we fix x ∈ Sd and observe that

E[Mn(x)
2] = P({X ∈ C1,n, X ′ ∈ C1,n|X1 = x})

= P({∩n
i=2{Xi /∈ BX,ρ(X,x) ∪BX′,ρ(X′,x)}})

= E[(1− Z2(x))
n−1],

where

Z2(x) = µd

(
BX,ρ(X,x) ∪BX′,ρ(X′,x)

)
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Table 2. Numerical Results of Solving (3.4) for n = 4(t+ 1)2

Trial 1

t L ∥∇L∥∞ Time Iteration

16 2.303655E-15 2.390542E-15 3.097006s 20

32 3.185510E-14 4.099474E-14 1.089420s 24

64 1.969465E-13 2.341838E-13 56.693948s 43

128 2.962170E-13 3.981251E-13 299.824356s 52

256 3.819095E-13 7.150612E-13 14576.090757s 150

512 4.066202E-03 5.510995E-02 ≈59h 201

Trial 2

t L ∥∇L∥∞ Time Iteration

16 3.500963E-15 7.052921E-15 0.709574s 21

32 2.767770E-14 2.929239E-14 1.089420s 22

64 1.647513E-13 1.777890E-13 25.140223s 33

128 3.785107E-13 6.031171E-13 1088.606990s 92

256 4.167524E-13 8.449096E-13 2856.551934s 61

512 1.036127E-03 1.675591E-02 ≈46h 201

Trial 3

t L ∥∇L∥∞ Time Iteration

16 2.401973E-15 3.126254E-15 0.590745s 19

32 3.123671E-14 3.260830E-14 1.988796s 31

64 1.889524E-13 2.290627E-13 76.218829s 51

128 2.553135E-13 3.624777E-13 169.328444s 40

256 4.349658E-13 1.763420E-12 4003.917936s 72

512 5.023403E-13 7.931863E-13 ≈22h 169

Trial 4

t L ∥∇L∥∞ Time Iteration

16 1.744179E-15 2.584496E-15 0.614434s 19

32 6.004930E-14 6.404889E-14 2.000308s 34

64 1.606202E-13 2.159116E-13 14.824280s 34

128 3.207168E-13 3.248754E-13 172.495088s 52

256 4.041109E-13 6.541325E-13 1881.816718s 81

512 2.329341E-03 3.467551E-02 ≈59h 201

with X and X ′ being independent and identically distributed with respect to µd.

Note that X and X ′ are also independent of X1, . . . , Xn. Then, we have

n2E[Mn(x)
2] = n2E[(1− Z2(x))

n−1] = n2

∫ 1

0

P({(1− Z2(x))
n−1 ≥ s}) ds.
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By a change of variables with z = 1− s
1

n−1 , we have∫ 1

0

P({(1− Z2(x))
n−1 ≥ s}) ds = (n− 1)

∫ 1

0

P({Z2(x) ≤ z})(1− z)n−2 dz

Note that for a uniformly distributed Y , we have

Z(x) = µd(BY,ρ(Y,x)) = µd(Bx,ρ(Y,x))

and that µd(Bx,ρ(Y,x)) is uniformly distributed on [0, 1]. Now, for the integration∫ 1

0
P({Z2(x) ≤ z})(1− z)n−2 dz, by the independence of X and X ′, we have∫ 1

0

P({Z2(x) ≤ z})(1− z)n−2 dz

≤
∫ 1

0

P
(
{µd

(
BX,ρ(X,x)

)
≤ z} ∩ {µd

(
BX′,ρ(X′,x)

)
≤ z}

)
(1− z)n−2 dz

=

∫ 1

0

P
(
{µd

(
Bx,ρ(X,x)

)
≤ z} ∩ {µd

(
Bx,ρ(X′,x)

)
≤ z}

)
(1− z)n−2 dz

=

∫ 1

0

P
(
{µd

(
Bx,ρ(X,x)

)
≤ z}

)2
(1− z)n−2 dz

=

∫ 1

0

z2(1− z)n−2 dz =
2

n(n− 1)(n+ 1)
.

Consequently, we obtain

n2E[Mn(x)
2] = n2(n− 1)

∫ 1

0

P({Z2(x) ≤ z})(1− z)n−2 dz ≤ 2

1 + 1
n

< 2.

Integrating both sides of n2E[Mn(x)] < 2 with respect to X1 gives

n2E[Mn(X1)
2] < 2.

The result

n2Var[Mn(Xi)] < 1

follows directly from Var[Mn(Xi)] = E[Mn(Xi)
2] − E[Mn(Xi)]

2. For the cases of

X2, . . . , Xn, they can be proved analogously.

Lemma 4.2. For any c > 1, with probability at least 1− 1
c2 , we have

max
i

∣∣Mn(Xi)− E[Mn(Xi)]
∣∣ = max

i

∣∣∣Mn(Xi)−
1

n

∣∣∣ < c√
n
. (4.1)

Proof. Denote σ :=
√
Var(Mn(Xi)), then σ2 < 1

n2 by Lemma 4.1. Using the

Chebyshev inequality

P(|X − EX| ≥ sσ) ≤ 1

s2
, s > 0,
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and letting sσ = c/
√
n, we have

P
({∣∣∣∣Mn(Xi)−

1

n

∣∣∣∣ ≥ c√
n

})
≤ nσ2

c2
<

1

nc2

for all i ∈ {1, . . . , n}, which implies

P
({

max
i

∣∣∣∣Mn(Xi)−
1

n

∣∣∣∣ ≥ c√
n

})
= P

(
n⋃

i=1

{∣∣∣∣Mn(Xi)−
1

n

∣∣∣∣ ≥ c√
n

})

≤
n∑

i=1

P
({∣∣∣∣Mn(Xi)−

1

n

∣∣∣∣ ≥ c√
n

})
<

1

c2
.

This completes the proof.

4.2. The diameters of Voronoi cells

Recall that Dn(x) denote the diameter of the Voronoi cell associated with x with

respect to the Voronoi tessellation of x, X2, . . . , Xn. Thus, the probability of the

events of Dn(x) involves the joint distribution of X2, . . . , Xn while for Dn(X1), the

probability of the events of Dn(X1) involves the joint distribution of X1, X2, . . . , Xn.

The diameters Dn(X2), . . . , Dn(Xn) are similarly defined.

Below we need to use the so-called “geodesic cones” on Sd. Let u⃗ be a unit-length

vector in TxSd, the tangent space of x. For each y, choose a unit-speed geodesic

α that connects x and y and satisfies α(0) = x. Thus we have a velocity vector

v⃗ := α̇(0). Define the geodesic cone C(x, u⃗) to be the set of points in Sd such that the

angle θ between u⃗ and v⃗ satisfies θ ≤ π
8 . Such cones C at x are considered to have

an “angle” π
4 . Take x as the north pole in S2 for example, each area consecutively

covering longitude of 45 degree is a cone with angle π
4 .

We next provide the proof of Theorem 2.2 on the diameter of the Voronoi cells.

Proof. [Proof of Theorem 2.2] We first show that

P ({Dn(Xi) > δ}) ≤ c1,d (1− c2,d,δ)
n−1

, i ∈ {1, . . . , n}.

As in the proof of Lemma 4.1, we fix x ∈ Sd. Let γd be the minimal numbers of

geodesic cones C1, . . . ,Cγd
of angle π

4 at x such that their union covers Sd. For each
j = 1, . . . , γd, let Rn,j be the distance between x and the nearest neighbor among

X2, . . . , Xn belonging to Cj . Define Rn,j = ∞ if no such point exists.

We bound the diameter of the Voronoi cell associated with x by observing that

Dn(x) ≤ max
j=1,...,γd

1√
2
Rn,j

To see this, consider an arbitrary point y ∈ C1,n and let Cj be a cone (among the

covering cones) containing y. If ξj is the nearest neighbor of x among X2, . . . , Xn
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belonging to Cj , then ρ(x,y) ≤ ρ(y, ξj). We obtain a geodesic triangle by connecting

x,y and ξj using minimal geodesics. Let s1, s2, s3 denote the sides of the geodesic

triangle that connects x and y, x and ξj , y and ξj , respectively. Let l1, l2, l3 denote

the length of s1, s2, s3. Note that the angle α between s1 and s2 is bounded by π
4

and we have

l1 = ρ(x,y), l2 = ρ(x, ξj) = Rn,j , l3 = ρ(y, ξj).

By the Toponogov’s theorem (cf. [32, Chapter 11] or [5, Theorem 2.1]), we have the

Law of Cosines on Sd:

l23 ≤ l21 + l22 − 2l1l2 cosα.

Hence we have 2l1l2 cosα ≤ l21− l23+ l22. By that l1 ≤ l3, we deduce that 2l1l2 cosα ≤
l22. Consequently, from

ρ(x,y) = l1 ≤ l2
2 cosα

≤ Rn,j√
2
,

we conclude that Dn(x) = supy∈C1,n
ρ(x,y) ≤ maxj=1,...,γd

1√
2
Rh,j .

Now for any δ > 0, we have

{Dn(x) > δ} ⊂
{

max
j=1,...,γd

Rn,j >
√
2δ

}
⊂

γd⋃
j=1

{
Cj ∩Bx,

√
2δ has no point among X2, . . . , Xn

}
.

Let Pj be the event
{
Cj ∩Bx,

√
2δ has no point among X2, . . . , Xn

}
. Then, we have

P(Pj) =
(
1− µd

(
Cj ∩Bx,

√
2δ

))n−1

. Hence, we deduce that

P ({Dn(x) > δ}) ≤
γd∑
j=1

P (Pj) =

γd∑
j=1

(
1− µd

(
Cj ∩Bx,

√
2δ

))n−1

.

Let c1,d := γd and c2,d,δ := µd

(
C1 ∩Bx,

√
2δ

)
. Noting that c1,d, c2,d,δ are independent

of x, we obtain

P ({Dn(x) > δ}) ≤ c1,d (1− c2,d,δ)
n−1 ∀x ∈ Sd.

Integrating on both sides with respect to X1 gives

P ({Dn(X1) > δ}) ≤ c1,d (1− c2,d,δ)
n−1

For X2, . . . , Xn, this can be similarly proved.

Now, the result

P({∥R(mn,d)∥ > δ}) ≤ nc1,d (1− c2,d,δ)
n−1
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obviously holds. In fact,

P ({∥R(mn,d)∥ > δ}) = P
({

max
i

Dn(Xi) > δ
})

= P

(
n⋃

i=1

{Dn(Xi) > δ}

)

≤
n∑

i=1

P ({Dn(Xi) > δ}) ≤ nc1,d (1− c2,d,δ)
n−1

.

This completes the proof.

4.3. Marcinkiewicz–Zygmund inequalities and the existence of

quadrature rules

Sufficient conditions for the existence of quadrature rules appear in several works

[12,28,29,31]. The existence is guaranteed by satisfying the Marcinkiewicz–Zygmund

(M–Z) inequalities, which in turn is implied by the conditions of the partition norm.

Therefore, we organize the lemmas by first stating the existence of quadrature rules

from the implication of the M–Z inequalities to, and then the M–Z inequalities

from the bounded partition norm. Moreover, we particularly select conditions with

explicitly defined constants, which serve our purpose of providing the concrete

probability estimates. Therefore, to obtain a summary of related results in different

works, we follow [28,29,31] and provide the following lemma, in which the settings

are slightly generalized so as to facilitate the discussions related to [10].

Lemma 4.3 Let x1, . . . ,xn be n points in Sd and w1, . . . , wn be n positive real

numbers.

(a) For η ∈ (0, 1), if the M–Z inequality

(1−η)

∫
Sd

|P (x)|dµd(x) ≤
n∑

i=1

|P (xi)|wi ≤ (1+η)

∫
Sd

|P (x)|dµd(x) (4.2)

holds for all P ∈ Πd
t , then there exist quadrature weights a1, . . . , an ∈ R

such that ((ai,xi))
n
i=1 is a t-exact quadrature rule for Sd satisfying

|ai| ≤
wi

1− η
, i ∈ {1, . . . , n}. (4.3)

(b) For η ∈ (0, 1
2 ), if

1− 2η

1− η

n∑
i=1

P (xi)wi ≤
∫
Sd

P (x) dµd(x) ≤
1

1− η

n∑
i=1

P (xi)wi. (4.4)

holds for all P ∈ {P |P ∈ Πd
t , P (xi) ≥ 0, i = 1, . . . , n}, then there exist

positive quadrature weights b1, . . . , bn ∈ R such that ((bi,xi))
n
i=1 is a t-exact

quadrature rule for Sd satisfying

1− 2η

1− η
wi ≤ bi ≤

1

N⌊ t
2 ⌋
, i ∈ {1, . . . , n}. (4.5)
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Proof. Define a linear map

F : Πd
t → Rn, F (P ) := (P (x1), . . . , P (xn)).

Let the spaces Πd
t and Rn be equipped with the norms∫

Sd
|P (x)|dµd(x) for P ∈ Πd

t and

n∑
i=1

|vi|wi for v = (v1, . . . , vn) ∈ Rn, (4.6)

respectively. Let V ⊆ Rn denote the range of F . By (4.2), F is injective. Thus,

the inverse F−1 : V → Πd
t exists. Moreover, the operator norm ∥F−1∥ satisfies

∥F−1∥ ≤ (1− η)−1. Let f denote the linear functional on Πd
t by

f(P ) :=

∫
Sd

P (x) dµd(x), ∀P ∈ Πd
t .

By the Hölder’s inequality, we have ∥f∥(Πd
t )

∗ ≤ 1. Let f̃ := f(F−1(v)),v ∈ V be a

linear functional on V . We have ∥f̃∥V ∗ ≤ (1− η)−1. By the Hahn-Banach theorem,

f̃ has a norm-preserving extension to a linear function f̃ext on Rn. Therefore, there

exists (a1, . . . , an) ∈ Rn such that for any v := (v1, . . . , vn) ∈ Rn, we have

f̃ext(v) =

n∑
i=1

aivi, ∥ai∥(Rn)∗ ≤ (1− η)−1.

Note that ∥ · ∥(Rn)∗ is induced by the norm in (4.6). Thus,

∥ai∥(Rn)∗ ≤ (1− η)−1 = max
i

|ai|w−1
i ≤ (1− η)−1.

By construction, f(P ) = f̃(v) = f̃ext(v), where v = F (P ). This shows that

((ai,xi))
n
i=1 is a t-exact quadrature rule of Πd

t with weights satisfying (4.3).

When η ∈ (0, 1
2 ), let R

n
+ denote the positive cone {v = (v1, . . . , vn) ∈ Rn | vi ≥ 0}

and define the linear functional g̃ on V

g̃(v) = f̃(v)− 1− 2η

1− η

n∑
i=1

viwi.

For v ∈ V ∩Rn
+, by (4.4), g̃ is positive on V ∩Rn

+. Note that (1, . . . , 1) ∈ V since the

constant polynomial is in Πd
t , and it is an interior point of Rn

+. By the Krein-Rutman

theorem [17], there exists a positive linear functional g̃ext that extends g̃ on Rn.

Hence, there exist weights ci ≥ 0, i ∈ {1, . . . , n} such that g̃ext(v) =
∑n

i=1 civi.

Therefore, we have positive weights

bi := ci +
1− 2η

1− η
wi, bi ≥

1− 2η

1− η
wi, i ∈ {1, . . . , n}

such that ((xi, bi))
n
i=1 is an exact quadrature rule of Πd

t . To derive an upper bound

for bi, i ∈ {1, . . . , n}, we fix i and set

P (x) :=

N⌊ t
2
⌋∑

j=1

Yj(x)Yj(xi),
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where Yi are the spherical harmonics in Πd
⌊ t
2 ⌋
. Due to the orthogonality of Yi and

that P 2 ∈ Πd
t , we have∫

Sd
|P (x)|2 dµd(x) = P (xi) =

n∑
j=1

bjP
2(xj) ≥ biP

2(xi).

Note that P (xi) = N⌊ t
2 ⌋ (cf. [37, (1)]). Thus, bi ≤ 1

N⌊ t
2
⌋
.

The following lemma, which is originally described for general compatible parti-

tions, are adapted to the special case of the Voronoi tessellation.

Lemma 4.4. Let x1, . . . ,xn be n distinct points in Sd with d ∈ N. Let τd :=

6(3
d
2 π + 2d+ 3).

(a) For η ∈ (0, 1), if ∥R(mn,d)∥ ≤ η
τd(t+d2) , then the M–Z inequality in (4.2)

holds for all P ∈ Πd
t with wi = µd(Ci,n), i ∈ {1, . . . , n}.

(b) For η ∈ (0, 1/2), if ∥R(mn,d)∥ ≤ η
τd(t+d2) , then the inequality (4.4) holds

for all P ∈ {P |P ∈ Πd
t , P (xi) ≥ 0, i = 1, . . . , n} with wi = µd(Ci,n), i ∈

{1, . . . , n}.

Proof. (a) directly comes from [10, Theorem 4.1]. To prove (b), it is sufficient to

prove
n∑

i=1

∫
Ci,n

|P (x)− P (xi)|dµd(x) ≤ η

∫
Sd

|P (x)|dµd(x), ∀P ∈ Πd
t , (4.7)

since by noting that (a) is true in this case and that by assumption P (xi) ≥ 0, i =

1, . . . , n, we have∣∣∣∣∣
∫
Sd

P (x) dµd(x)−
n∑

i=1

P (xi)wi

∣∣∣∣∣ ≤
n∑

i=1

∫
Ci,n

|P (x)− P (xi)|dµd(x)

≤ η

∫
Sd

|P (x)|dµd(x) ≤
η

1− η

n∑
i=1

P (xi)wi,

which implies (4.4). In fact, (4.7) is an intermediate result shown in the proof

of [10, Theorem 4.1] when p = 1.

Now we can provide the proof of Theorem 2.4.

Proof. [Proof of Theorem 2.4]. The result in [10, Theorem 5.1] and its proof show

that when satisfying (2.4), with probability at least 1− 1
n , the sampled points satisfy

the M–Z inequality (4.2) with wi ≤ 4 lnn
n . Therefore, by Lemma 4.3 (a), we have the

existence of the quadrature weights with the same probability lower bound stated

in (i) of Theorem 2.4.

As for (ii) of Theorem 2.4, note that the proof of [10, Theorem 5.1] is based

on the event such that each interior of the cells of an equal-area partition contains
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at least one sampled point. We associate each interior with one sampled point.

Moreover, we assign each associated sampled point a weight equal to the measure

of the cell. For the rest of the sampled points, we assign them a zero weight. (ii) of

Theorem 2.4 can be deduced by using similar arguments as in (b) of Lemma 4.4

and combining it with (b) of Lemma 4.3. Note that the lower bound of the weights

from (b) of Lemma 4.3 is discarded due to the possibility of having points assigned

with zero weight.

Remark 4.1. As pointed out in [29], the Krein-Rutman extensions of non-negative

functionals are not guaranteed to be norm-preserving, and thus one should not

directly apply the statements related to quadrature rules with positive weights

in [28]. On the other hand, in [31, Section 4.2], theorems related to the existence

of quadrature rules with positive weights are given, in which the upper bounds of

weights are derived using other arguments. In Lemma 4.3, we follow [31] instead

of [28] to obtain the bounds of non-negative quadrature weights.

Remark 4.2. Our definition of the M–Z inequality (4.2) corresponds to case p = 1

in which L1 and (weighted) l1 norms are involved. The general definition of the

M–Z inequality replaces the integrations with Lp norms and the discrete sum with

(weighted) lp norms, p ∈ [1,∞] (cf. [10,28]). Assuming that x1, . . . ,xn satisfy the

M–Z with p > 1, by following [28], one can obtain bounds for the weights similar

to those of ai in Lemma 4.3, but depicted with (weighted) lp norms. However, as

mentioned in [10,11], the applications of the Riesz-Thorin interpolation in [19,28]

are not fully justified, and thus one has to be cautious about the M–Z inequalities

with p ∈ (1,∞). We refer to [10], which provides an alternative proof of the M–Z

inequalities with rigorous applications of the Riesz-Thorin interpolation.

Besides [10, Theorem 4.1], by [12, Theorem 4.2, Remark 4.3], the upper bound

for ∥R(mn,d)∥ in Lemma 4.4 can be replaced by

∥R(mn,d)∥ ≤ η

τ̃dt
,

τ̃ :=

{
(2
√
3)d(5d+ 1), d ≥ 3,

111, d = 2.

For d = 2, the original upper bound is approximately

η

98.55(t+ 4)
.

Compared with the alternative bound η
111t , the original bound gives a smaller

denominator for sufficiently large t. For d > 2, the original bound also seems better

since the order of d in the form 6(3
d
2 π + 2d+ 3)t is smaller in contrast to the order

in (2
√
3)d(5d+ 1)t. However, the addendum 6(3

d
2 π + 2d+ 3)d2 in the denominator

should also be considered.



October 27, 2025 12:44 WSPC-AA-D-25-00003

22

4.4. Quadrature weights for uniform sampled points

Note that in Lemma 4.3 the points are assumed to be distinct. On the other hand,

it is possible that Xi = Xj , i ̸= j. Therefore, when combining the statements

from Sections 4.1, 4.2, and 4.3, it should be understood that the results are first

established for the distinct values of the random vectors, i.e. the set formed by the

distinct values of X1, X2, . . . , Xn. Then, for Xi, Xj , Xk, . . . corresponding to the

same Voronoi cell, we can simply set one point to have non-zero weight and other

points’ weights to be zero, or an average weight for each point. It is obvious that

choosing either way will not affect the validity of Theorem 2.3.

Now we are ready to present the proof of Theorem 2.3. This immediately follows

from Lemma 4.3, Lemma 4.4, Theorem 2.1 and Theorem 2.2. We provide details

below.

Proof. [Proof of Theorem 2.3] We first prove Item (i). For any c > 1 and η ∈ (0, 1),

we have δ = η
τd(t+d2) . Denote the events

P1 := {∥R(mn,d)∥ ≤ δ} and P2 := {max
i

|Mn(Xi)− E[Mn(Xi)]| <
c√
n
}.

Their complements are denoted as

P̄1 := {∥R(mn,d)∥ > δ} and P̄2 := {max
i

|Mn(Xi)− E[Mn(Xi)]| ≥
c√
n
}.

Then, by Theorem 2.1 and Theorem 2.2, we have

P(P̄1 ∪ P̄2) ≤ P(P̄1) + P(P̄2) ≤ nc1,d (1− c2,d,δ)
n−1

+ c−2,

which implies that

P(P1 ∩ P2) = 1− P(P̄1 ∪ P̄2) ≥ 1− nc1,d (1− c2,d,δ)
n−1 − c−2.

Hence, with probability at least 1− nc1,d (1− c2,d,δ)
n−1 − c−2, both events P1 and

P2 hold.

Now, from the event P1 and Lemma 4.4, we see that the M–Z inequality in (4.2)

holds for any P ∈ Πd
t and thus by Part (a) of Lemma 4.3, there exist quadrature

weights a1, . . . , an ∈ R such that ((ai,xi))
n
i=1 is a t-exact quadrature rule for Sd

satisfying (4.3). Moreover, from the event P2, we see that µd(Ci,n) = Mn(Xi) ≤
maxi Mn(Xi) <

1
n + c√

n
, which leads to the result in (2.2).

Next, we prove Item (ii). For the result in (2.3), we need to use the result of

Part (b) in Lemma 4.3. To this end, for any c > 1 and η ∈ (0, 1
2 ), we still set δ to be

δ := η
τd(t+d2) . The event P3 := {∥R(mn,d)∥ > δ} is defined with respect to such a

δ. By Theorem 2.2, with probability at least 1− nc1,d (1− c2,d,δ)
n−1

, the event P3

holds. Then, by Lemma 4.4 with η ∈ (0, 1
2 ), the M–Z inequality in (4.2) holds for

any P ∈ Πd
t . Hence, by Part (b) of Lemma 4.3, we see that there exist quadrature

weights b1, . . . , bn ∈ R such that {(bi,xi)}ni=1 is a t-exact quadrature rule for Sd
satisfying (4.5), which directly implies 0 ≤ bi ≤ 1

N⌊ t
2
⌋
for all i ∈ {1, . . . , n}. This

completes the proof of Item (ii) and the proof of the theorem.
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Remark 4.3. As for the non-negative weights (bi)
n
i=1, we consider only the event

P3 since Lemma 4.3, Lemma 4.4, Theorem 2.2 together implies the existence of

quadrature rule and also (2.3), that is, each bi satisfies

1− 2η

1− η
µd(Ci,n) ≤ bi ≤

1

N⌊ t
2 ⌋
.

The event P2 in this case is not considered since it can only imply a lower bound

for bi which, by Theorem 2.1, is given by

bi ≥
1− 2η

1− η
µd(Ci,n) ≥

1− 2η

1− η
· 1− c

√
n

n
.

It is negative under our assumptions and is therefore discarded. On the other hand,

as mentioned earlier it is possible that some of the sample points Xi are identical

and thus the weights are either be divided or set to zero. If a positive lower bound

for bi is given, then either way of adjusting the weights will result in having weights

smaller than the given bound. Therefore, we do not consider providing such positive

lower bounds. However, if we assume that the values of Xi are distinct, then it is

possible to derive such positive lower bounds by applying the Cantelli’s inequality

which provides one-sided tail bounds.

5. Conclusion and Final Remarks

We have provided concrete probability lower bounds on obtaining exact quadrature

rules with bounded weights given n points uniformly sampled on the sphere. The

estimates are either directly obtained from the established results in the literature

or derived from the probability quantities of the Voronoi cells, which are part of

our main contributions. These results in turn provide upper bounds on the number

of points to obtain a t-exact quadrature rule on spheres with high probability.

Nonetheless, the lower bounds are pessimistic compared with the numerical findings.

In contrast, finding possible relations between the number of points n and the degree

t might provide more practical significance, for it allows tuning the specific constants

in the relations instead of directly adjusting the number n. Our estimates based on

the Voronoi tessellations provide a general probability lower bound that allows a

unified way to test the validity of such relations.

In particular, we investigated the problem of setting the number of points n to

be n = Cdt
d, where Cd is independent of t. Simple qualitative analysis based on

our probability lower bound suggests that the aforementioned problem is possibly

intractable for large t in practice, and our experiments did verify this conjecture.

Note that the results are affected by the choices of optimization settings and

numerical algorithms, for which we might further investigate using high-performance

computing resources to conduct a more thorough test. On the other hand, our lower

bounds depict the requirement to satisfy certain sufficient conditions that imply

the existence of the t-exact quadrature rules. The failure to satisfy the sufficient

conditions does not preclude the existence of the rules, as it has not been established
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that these conditions are necessary. Interestingly, the results related to the relation

between n and t conform to the conditions, at least empirically, to a certain extent.

Finally, we also showed that by adding logarithmic factors to the relation

n = Cdt
d, the new relations hold with high probability. Despite being consistent

with the results derived from the literature, we did not provide better relations.

Nonetheless, our results give a different perspective, which provides some insights

into the possibility of having better relations. In detail, we are interested in whether

we could replace the logarithmic factors with functions of smaller order. From

Remark 2.4 and 2.5, we see that the logarithmic factors come from the first n of

nc1,d (1− c2,d,δ)
n−1

. This n appears due to trivially handling the events of n Voronoi

cells. Similar comments are also mentioned in Remark 2.6. Indeed, the n Voronoi

cells are not independent, and we might reduce the first n to nα, 0 < α < 1 while

keeping the exponential tails of the Voronoi cells by exploiting geometric relations

among the cells. However, we still can only obtain logarithmic factors since α is

absorbed into the constants. Vaguely speaking, it seems not likely to have better

relations. Nonetheless, this remains an interesting question to explore.
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