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In this paper, we provide detailed discussions on the probability estimates of quadrature
rules from uniformly sampled points on spheres. Besides gathering relevant lemmas in
the literature to derive probability estimates on the existence of exact quadrature rules
for spherical harmonics, we provide additional estimates with finer characterizations
based on probabilistic quantities related to the measure and the diameter of Voronoi
cells. Specifically, our estimates provide additional affirmative answers to certain relations
between the number of sampled points and the degree of spherical harmonics. We further
investigate the problem of setting the number of points to be of order t¢. Simple analysis
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and should increase as t increases. This is empirically verified in our experiments.
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1. Introduction and motivation

Various methods for function approximation on d-dimensional unit sphere S such as
hyperinterpolation [34], multi-scale analysis [13], localized systems [22,31], sketching
for noisy data fitting [25], and spherical framelets [23, 35], are based on exact
quadrature rules for spherical harmonics. Apart from the numerical applications,
recent works in machine learning on spheres (see e.g., [9]), which generalize analysis
on Euclidean spaces (see e.g., [2_7])7 are also deeply related to exact quadrature
rules on spheres. Intuitively, points in quadrature rules serve as sampling locations.
However, unlike 1- and 2-dimensional signals defined on regular grids, commonly
used quadrature rules on the d-dimensional unit sphere S := {x € R+ : || = 1},
e.g., the Gauss-Legendre tensor product rule [16], generally do not support the
direct up- and down-sampling operations [7,15,26]. This is due to the non-nested
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property of the quadrature rules, i.e., the points in the quadrature rule for low-
degree spherical harmonics are not contained in the quadrature rule for high-degree
spherical harmonics. More precisely, for n numbers wi,...,w, € R and n points
T1,..., Ty € Sd, if

/S P(x) dpta(x) = > wiP(;),
i=1

holds for any (d+1)-variate polynomial P (equivalent to any spherical harmonic) with
total degree up to t € Ny := NU {0}, where pq4 is the uniform probability measure
on S¢, then we call the finite sequence &; := ((w;,x;))"; a t-ezact quadrature rule
(for S?), in which the numbers w1, ..., w, are called quadrature weights and the
points x1,...,x, are called quadrature nodes. Moreover, if two finite sequences
Xy, = ((wi, ), and Xy, = ((@0s, )7 (ie., (z;)7, is a subsequence of
(x;)74™), are t1-exact and te-exact (t; < ta), respectively, then the two quadrature
rules are said to be nested. One can have a sequence Xy, , X},, ..., X, ... of nested

quadrature rules, similarly, if Ay, and A&}, | are nested for ¢ =1,2,---.

i+1

In practice, when approximating functions using spherical harmonics from low
degree to high degree, e.g., in numerical integration, multiple quadrature rules have
to be adopted. The computation and storage burden are directly related to the total
number of nodes in such quadrature rules. If the quadrature rules are non-nested,
then the computation and storage burden could be quite large, not to mention
the inconvenience in the down- and up-sampling operations for spherical signal
processing. Therefore, it is desirable to have nested quadrature rules for which the
number of points is as small as possible.

One special case of the t-exact quadrature rules is the so-called spherical ¢-
designs [1], where each of the n points x1,..., @, € S? has the same (quadrature)
weight w; = % Since the weights are the same, one only needs to consider the
storage of the points. The well-known conjecture regarding the optimal order of
spherical t-designs is resolved in [2], which proves that for any ¢ € Ny, there exists
a spherical t-design such that its number of nodes is Cyqt? and the constant Cy
depends only on d. Hence, spherical ¢-designs are nice quadrature rules having a
simple quadrature weight with the optimal number of nodes (in a certain sense). It
is thus desirable to consider spherical designs with the extra desirable property of
nesting. Our recent work [37] addresses such nested spherical designs and proves
several fundamental results on their existence and estimates. To elaborate, given a
spherical t1-design with points x4, ..., x,, it is confirmed that one can append extra
points y1, . .., Ym such that all the points form a spherical ¢t-design (¢ > t1). Though
spherical designs enjoy many nice properties, it is, however, rather time-consuming
to obtain spherical ¢-designs with large degree ¢. It is shown in [36] that for S? and
t > 1000 it takes months to complete the corresponding numerical optimizations.
Moreover, in [37], we proved that the spherical ¢-design that extends a spherical
ti-design could be of order t2¢*1. Thus, in terms of the number of points, nested
spherical designs in general could be too large. For practical considerations, we need
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to consider other types of quadrature rules that allow nested structure with easy
derivation, efficient computation, and effective applications.

Other than the spherical t-designs that are with fixed constant weights, one
simple and practical way is to consider the derivation of t-exact quadrature rules
from uniformly sampled points on S with nearly constant weights. In fact, by the
law of large numbers, given n points &1,...,&, € S? sampled from the uniform
distribution pg, we have (with n sufficiently large)

/Sd P(z) dja(z) ~ % > P,

It is thus very natural to expect that one can obtain a quadrature rule by slightly
adjusting the weight % for each point. Most importantly, by continuing the uniform
sampling process, it is straightforward to obtain sequences of uniformly sampled
points that are nested. Nonetheless, compared to the spherical t-designs, the weights
here still require extra storage.

Since there is no obstacle in obtaining nested sequences of uniformly sampled
points, the problem of finding nested quadrature rules is reduced to showing the
existence of quadrature weights to form a quadrature rule from a given uniformly
sampled point set. On the other hand, due to the presence of noise in spherical
signal processing, it is also important to consider quadrature rules with bounded
weights. Thus, we are interested in answering the following problems:

Q1) Given n uniformly sampled points on the sphere, what is the probability
(lower bound) to obtain a t-exact quadrature rule with bounded weights?

Q2) Suppose that for some constant Cy > 0, it is enough with C4t¢ number of
uniformly sampled points on the sphere to obtain a ¢;-exact quadrature rule
with bounded weights. Then, for any ¢ > t;, are Cyqt? uniformly sampled
points enough to guarantee the existence of a t-exact quadrature rule with
high probability?

Q3) If the relation n = Cy4t? is not sufficient to guarantee the existence of a
t-exact quadrature rule with high probability, is there any other relation
between the number of sampled points n and the degree ¢ that does?

There are three closely related works [10,14,22], in which results related to
the M—Z inequalities or exact quadrature rules on uniformly sampled points are
given. In [22], a method for finding quadrature rules on S? is proposed. Given a
set {x;}7, of points on the sphere, finding the quadrature weights {a;}? ; can be
reduced to solve a system of linear equations that involves a positive definite Gram
matrix, which is induced by an alternative inner-product for the spherical harmonics.
An estimate on the numbers of required points is also given in [22], which is of
order O(t%logt) for S? (though the numerical experiments in [22] shown that at
most 4(t + 1)? points are needed with ¢ < 140). Moreover, on such a point set, the
computed quadrature weights have high probability to be of order O(%) However,
since the points are random, there should also be an estimate on the probability of
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such a point sequence satisfying the M-Z inequalities, which is missing in [22]. On
the other hand, in [14], by utilizing numerical optimizations, the empirical study
shows successful results for t-exact quadrature rules on S? with the number of
uniformly sampled points of order (¢ 4 1)2. However, as opposed to [22], there is no
theoretical guarantee on the number of required points. Finally, in [10], it is shown
that for sufficiently large n, with probability at least 1 — %, the sampled points
satisfy the M-Z inequalities. Therefore, the existence of exact quadrature rules with
the same probability estimate easily follows.

To answer question Q1, we first summarize relevant results in the current
literature and provide estimates that are straightforward to obtain by following
our summarized framework. In detail, our summarized framework consists of the
implication from the deterministic statements of the Marcinkiewicz—Zygmund (M-
Z) inequalities to the existence of exact quadrature rules [12,28,29,31], and the
implication from probabilistic quantities to the M-Z inequalities. We also give
additional probability estimates based on the probabilistic quantities related to the
measure and diameter of Voronoi cells induced by the sampled points, for which we
follow [8] to obtain generalized results on S¢. Based on these quantities, we obtain a
more specific probability estimate of satisfying the M—Z inequalities. Consequently,
we obtain additional estimates on the probability lower bound of the existence of
t-exact quadrature rules with finer characterizations. In numerical applications, our
results together with those derived from the literature provide upper bounds on the
number of points that allow finding ¢t-exact quadrature rules with high probability.

On the other hand, the question Q2 is motivated by the optimal order of spherical
t-designs. In practice, to obtain nested rules of order % via uniformly sampled points,
we may first obtain a ¢;-exact quadrature rule with C4t¢ points, and the constant Cy
is as small as possible. Then, after sampling extra points, we can numerically check
whether it is possible to find a t-exact rule (¢ > t;) with Cy4t? points. By simply
taking the limit with respect to t in our estimates, the answer to Q2 is possibly
negative since the lower bound diverges to —oco and we thus lose the probability
guarantee. Moreover, a smaller constant will speed up this process. Therefore,
it is suggested that the aforementioned procedure will not be successful. This is
empirically tested in numerical experiments in which setting a smaller constant
leads to drastic changes in the time consumed and outcomes of optimizations for
relatively large t. Therefore, when dealing with very large ¢, instead of setting a
fixed constant Cy, one might have to increase the number C in n = Ct? as t grows
to ensure an efficient optimization with acceptable results.

Finally, question Q3 aims to find other possible relations between the number of
sampled points n and the degree t of spherical harmonics. Based on our estimates,
we show that both relations

ot = Cgt?Int

Inn
guarantee the existence of exact quadrature rules with high probability, which is
consistent with the results derived from the literature. Moreover, as we show later,
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our estimates give asymptotically higher probability under such relations.

The paper is organized as follows. In Section 2, we state our main results together
with the estimates derived from the literature. In Section 3, numerical results of
finding quadrature rules on S? are demonstrated. The lemmas, theorems, and proofs
of our main result are postponed to Section 4. Finally, we give conclusions and
further remarks in Section 5.

2. Main Results

In this section, we introduce our main results on the measure and the diameter of
Voronoi cell with respect to a sequence of uniform sampled points on the sphere as
well as the existence of quadrature weights for such a sequence. Proofs of our main
results will be postponed to Section 4.

The usual surface measure my on S¢ satisfies

. o (d+1)/2
W"‘éd””_lwd+npy

where I' is the Gamma function, e.g., wy = 4x. For the uniform distribution g
on S¢, we have j14(A) = w; 'm4(A) for a measurable set A on S%. In the following,
unless explicitly stated, we assume that all functions are real-valued. The LP-
norm of a measurable function on S? is defined with respect to the measure my:
I 1lp =1 lpma = (fga | - [P dma)*/? for 1 < p < 0o and || - || is the essential
supremum. The space LP(S% m,) is then the usual L,-space with respect to such a
LP-norm.
The Laplace-Beltrami operator on S? is defined as:

Af = —div(VF)

where f € C*(S?) and div,V are the divergence and function gradient on S.
The eigenfunctions of A, or so called spherical harmonics, are the restrictions of
real-valued homogeneous harmonic polynomials on S¢. These eigenfunctions form an
orthonormal basis for L2(S?, mg). Its distinct eigenvalues are A} := (¢ +d — 1), €
No := NU {0}, where ¢ corresponds to the degree of the polynomial. For each A},
the dimension of the associated eigenspace HY is

Wid—1[l+d—1

e if 0> 1

dimy — €+d—1< ¢ )1 =
1 i 0=0.

We denote the sorted eigenvalues counted with multiplicities as A\ and an orthonor-
mal basis in H? as {Yyr : £ € Ng,k = 1,...,dimg}. The space II¢ of polynomials
on the sphere S¢ up to degree t is then given by the direct sum of H?,Z <t
ie., ¢ .= @,_,HI. We denote the dimension of TI¢ as N; = Y_,_, dim. The
N; spherical harmonics that form an orthonormal basis for I1¢ can be sorted as
{yi:i=1,...,N¢}. For more details, we refer to, e.g., [6,30].
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The geodesic distance of two points &,y on S? is p(x, y) := arccos(z - y). Denote
B, :={y € S%: p(z,y) < r} as the spherical cap with radius » > 0 and center
x € S Given n points x1,...,x, € S?%, define the Voronoi tessellation My q as
My :={C1n,--.,Cnn}, where

Ciyn;:{w68d|p(:c,:ci)< (:c,:nj)}7 ie{l,...,n}.

As mentioned in [18], the Voronoi cells C; ,,, i = 1,...,n, are spherical polytopes
covering S. If «1, ..., x, are distinct, then each z; is associated with C;.n and lies
in the non-empty and disjoint interior of C; ;. The partition norm of m,, 4 is defined

as

min
Jz{lavn}\{z}p

IR(mp.q)| = max diam(C; ,), diam(C; ) := i :Lelg plx,y).

Let X7, Xo,...,X, be n independent, identically, and uniformly distributed
random vectors taking values in S?. Given a point € S? (or X1), we denote
the pg-measure of the (random) Voronoi cell of & (or X;) with respect to the
Voronoi tessellation of  (or X;) and Xo,..., X, as M, («). In what follows, the
expectation E[M,, (x)] is taken with respect to the joint distribution of Xo,..., X,
while E[M,,(X7)] is taken with respect to the joint distribution of X, Xo, ..., X,,.
The expectation E[M,,(X;)],i € {1,...,n} can be similarly defined, which are also
taken with respect to the joint distribution of X7, X5, ..., X,,. We have omitted the
dependencies for brevity. The variance of M, (X;) is denoted as Var[M,,(X;)]. The
following result gives the estimates related to the moment information of M, (X;).

Theorem 2.1. Let X7, Xs,..., X, ben independent, identically, and uniformly
distributed random vectors taking values in S, and Ciny---,Cnn be the Voronoi
cells determined by X1, ..., X,. Let My, (X;) denote the pg-measure of the Voronoi
cell associated with X; for i = 1,...,n. Then, for all i € {1,...,n}, we have
E[M,(X;)] = 1, E[M,(X:)?] < -5, and Var[M,(X;)] < 5. Moreover, for any

n2’
c > 1, with probability at least 1 — c%, we have

1 c
maix| M, (X;) — E[M, (X)]| = m?x’Mn(Xi) Al <7

We use D,,(x) to denote the diameter of the Voronoi cell associated with x
with respect to the Voronoi tessellation of @, X, ..., X,. Thus, the probabilities of
events of D, (x), e.g., {Dy(x) > 0}, involve the joint distribution of X, ..., X,,. For
D,,(X1), the probabilities of the events of D, (X1), e.g., {D,(X1) > d}, involve the
joint distribution of X1, Xs, ..., X,. Similarly, D, (X32),..., D,(X,) can be defined
likewise. We use P(P) to denote the probability of an event P. We have the following
result show that the diameters of the Voronoi cells possess an exponential tail, which
further implies the probability of the tail event {||R(m,, 4)| > 6}.

Theorem 2.2. Let X1, Xs,..., X, ben independent, identically, and uniformly
distributed random vectors taking values in S, and Ciny---,Cnn be the Voronoi
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cells determined by X1,...,X,. Let D,(X;) denote the diameter of the Voronoi
cell associated with X; fori=1,...,n and ||R(my,,q)| be the partition norm of the
Voronoi tessellation my, g = {C1,n,...,Cnn}. Then, for each § > 0, there exist two
constants c1,q4 > 0 and cz 4,5 > 0 such that

P({Dn(X;) > 0}) <crg(1—coas)” " Vie{l,...,n}
and

P({||R(mp.a)|| > 6}) < neva(l—caas)" (2.1)
where the constants c1,q depends on d and c 45 depends on d, 0.

With the above results and the results on the existence of quadrature rules
derived from the Marcinkiewicz—Zygmund (M-Z) inequalities (details are given in
Section 4.3), we have the following theorem which provides the probability estimate
on the existence of t-exact quadrature rules deriving from a finite sequence of
uniformly sampled points on the sphere S.

Theorem 2.3. Suppose integers d € N and t > 1. Let 74 := 6(3%7r + 2d + 3).
Let X1, Xs, ..., X, ben independent, identically, and uniformly distributed random
vectors taking values in S%. Then the following statements hold.

(i) For any ¢ > 1 and n € (0,1) with probability at least 1 —

neyq (1 — cz,dy(;)nfl - 0%7 there exist quadrature weights aq,...,a, € R
such that ((a;, X;))_, forms a t-exact quadrature rule satisfying
cy/n+1 _ .
la;| < fT(l_n) Lodie{1,...,n}. (2.2)

(ii) For any n € (0, %), with probability at least 1 —ncy 4 (1 — 627,175)”_1, there
exist quadrature weights by, ..., b, € R such that ((b;, X;))P_ is a t-ezact
quadrature rule satisfying

1
0<b; < . ie{l,....n), (2.3)
Nt

L the constant ci 4 depends on d, and the constant ca 45 depends

— n
where § 1= o (R

ond,d.

We shall provide the proofs of the main results in Section 4. In comparison,
we provide alternative estimates that directly follows from [10, Theorem 5.1] and
Lemma 4.3 Section 4.

Theorem 2.4. Suppose integers d € N andt > 1. Let 74 := 6(3%7r +2d+3) and

1

ag:=38 (“’—dd) . Let X1, Xo, ..., X, ben independent, identically, and uniformly

Wd—1

distributed random vectors taking values in S. Let n € (0,1), if

1
N
67400 (ﬁnn) (t+d%) <n, (2.4)

then the following statements hold.
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(i) With probability at least 1 — %, there exist quadrature weights a1, ...,a, € R
such that ((a;, X;))_, forms a t-exact quadrature rule satisfying

|a;| < (L=n)Y ie{l,...,n}, (2.5)
(i) If n € (0, %), then with probability at least 1 — %, there exist quadrature
weights by,...,b, € R such that ((b;, X)), is a t-exact quadrature rule
satisfying
1
0<b; < . ie{l,....n}, (2.6)
Nig)

We give below some remarks with quantitative and qualitative analysis based on
the above main results.

Remark 2.1. The constants c;,4 and cp 4,5 in Theorem 2.2 can be explicitly

computed or estimated, e.g., for %, ¢; 4 = 8 and 245 = 5= - ma (B, /55) =
&+ (1= cos(v/20)), where ma(B,, /35) is the ma-measure of a spherical cap with ra-
dius /26. The definitions of the constants will be presented in the proof of Theorem

22

Remark 2.2. By Theorem 2.3, given a fixed number of points, n and bounds
on quadrature weights, we can explicitly compute the probability estimate of the
existence of quadrature rules under prescribed conditions, since all the constants are
explicitly defined. However, this estimate is still pessimistic due to that the constant
74 in Lemma 4.4 (see Section 4.3) is not well-estimated and the upper bound of the
tail event in Theorem 2.2 is over-estimated. Take S? and n = % for example, when

t =10 and n = 4(t + 1)?, § ~ 1/689.85 and we have

lfcos( V2 ) =

16

neyg(1—coas)” <3872 (1 -

and

In {nch (1- cQ,d,a)"‘l] ~ In3872 + 4831n (1 — ¢p.4.5) ~ In 8.262,

where cg 4,5 involves the area of a spherical cap with radius V26, which is 27(1 —
cos(v/28)) [24]. The absolute value of the second addendum is approximately less
than 1E-7, and thus the whole term is denominated by In 3872. In this case, the
probability lower bound 1 —nc; 4 (1 — czwdy(;)"fl becomes negative and therefore we
lose the probability guarantee. On the other hand, given the same values of ¢, n and
7, the right hand side of (2.4) is far greater than 7. Thus, we also can not obtain
probability guarantee from Theorem 2.4. However, as in the experimental results
mentioned in [22] and also ours shown later in Section 3, the number 4N; = 4(t + 1)2
of points on the 2-sphere is enough for finding quadrature rules for ¢ up to 512.
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Therefore, there are empirically very large gaps between the estimates and the
numerical findings.

Remark 2.3. Though the estimates are not empirically ideal, we can still provide
qualitative assertions based on Theorem 2.3. To investigate Q2 mentioned in Section
1, we first fix the dimension d, the constant n and the constant ¢ in Theorem 2.3.
Then, let n = Cqt? for each t € N. Since j14(Bg 1) ~ (1/t)¢ for any = € S¢ and
t € N [16], we have

lim (1 —neyg(1—cogs)” = 2) = —00 & tlim t(1 — C’t_”l)tol_1 =00, (2.7)

t—o00 —00

where C' is some constant not depending on ¢. The right hand side is obvious since
(1- C’L‘_d)td_1 converges to e~¢ and t? diverges. Therefore, it is suggested that
we might not be able to set n = Cyqt? with small Cy if we attempt to find exact
quadrature rules successfully for large ¢. This will be empirically validated in the
following experiments in Section 3.

Remark 2.4. For fixed 7, by (2.4) in Theorem 2.4, when n and ¢ satisfy the relation

n

where Cy is some positive number independent of ¢. there exist exact quadrature
rules for II¢ with probability 1 — % We would like to compare the probability
estimates from Theorem 2.3 under the same relation. We first show that

)n—l )n—l

. ne1g(l—coas .o nerg(l—coas
lim = lim

= 0 given = Cyt. (2.9)

n
Inn
For simplicity, we denote ¢; := ¢ 4 and c3 := Cy. As in the previous remark, by the
definition of § and that p1q(Bg-1) ~ (1/t), it is equivalent to show that

d

1— t_d n—1
lim nei( et = 0 given L cst”,
Inn

n—00 ]_/n

where ¢, is some positive constant independent of ¢. Take the logarithm of n?c; (1 —
cot=4)"~1 and combine with ¢ = c3Inn/n, then it is equivalent to show that

1
2Inn +nln <1 0203nn> — —00, MN — 0.
n

When n is sufficiently large, by the inequality In(1 + z) < z,z > —1 we have
1
2lnn +nln (1 — 02631171) <2lnn — cyc3lnn.
n

Note that by definition ¢ = Cy and thus ¢z is undetermined and adjustable.
Therefore, (2.9) is true when cac3 > 2. Therefore, in terms of the probability
estimates of the existence of quadrature rules with non-negative weights, under
the relation (2.8), Theorem 2.3 provides a lower bound with asymptotically faster
convergence to 1, and overall high probability guarantee for sufficiently large t.
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Remark 2.5. Similarly, we would like to investigate the relation
n = Cgt?lnt, (2.10)

in which the logarithm factor is related to ¢ instead. To show that the estimates in
Theorem 2.3 give high probability guarantees for sufficiently large ¢, we prove that

tlim nei(1—cpt™H" 1 =0, n=cst?lnt (2.11)
—o0

where c¢1, ¢, c3 are defined as in the previous remark. Substitute n with c3t?Int,
then it is equivalent to show that

dInt + In(Int) + est?(Int) In(1 — eot™%) = —o0, t — .

Note that lim; o t?In(1 — cot~?%) = —cy. Therefore, when ¢ is sufficiently large, we
have

1
dlnt + In(Int) + cs(Int) (td In(1 — C2t7d)) <(d+1)Int - 50263 Int.
Thus, when 1cscs > d + 1, we have (2.11).

Remark 2.6. Despite the estimate 1 — ney g(1 — ¢2,46)" " from Theorem 2.3
possessing faster convergence, there are still some drawbacks compared with (2.5)
of Theorem (2.4). By (2.2), the amount needed for adjusting 1 %o obtain a t-exact
quadrature rule is of order O(ﬁ) However, (2.5) provides a lower order, which is
O(™2). Moreover, our estimates have an extra term —-%, which limits the overall
probability estimate. These drawbacks are induced by the randomness of the Voronoi
cells. In contrast, [10, Theorem 5.1] involves deterministic and equal-area partitions,
which are free from such randomness. It can be seen from the proofs in Section 4.1
that the order O(ﬁ) is largely due to trivially handling the n events of the Voronoi

cells. It would be ideal to show an order smaller than O(22) or even to be O(1).

Remark 2.7. Since the mesh norm (also called covering radius) of a point set on
the sphere is comparable to the partition norm induced by the associated Voronoi
tessellation [19], an alternative way to obtain probability estimates is to estimate
the mesh norm with respect to the sampled points. One can follow [33, (5.1), (5.2)]
which are stated for a certain class of smooth manifolds, and obtain estimates that
essentially differ from the right hand side of (2.7) by multiplying —(1 — Ct?). In
contrast, our approach is more constructive and provides explicit constants.

3. Numerical Experiments

We also would like to mention some details of finding exact quadrature rules on S?
from [14]. Such rules were obtained numerically by applying fast spherical Fourier
and adjoint transforms [20,21] and solving the following optimization problem:

m>i%||Y*w — V4meg||2 (3.1)
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where Y € CNe Y, = §;(X;) (§; are complex-valued spherical harmonics),
w,eq € R™ with eq := [1,0,...,0]T. A 500-exact rule using 10 sampled points with
residual 4.843589E-13 was found. We follow [14] and consider the equivalent problem
of finding quadrature rules for I17:

m%l L:=||Aw — Vdmeq||2 (3.2)
weR™

where A := A, Ay]T € RFD* X1 with

(t+1)(t42)
2

Ay = Re(VH(X3))izo,... ni=0,....t.0<k<i € R™™ ;
~ t(t+1)

Ay = Im(YE(X0))iz1, =1, 4 —1<k<—1 € RPT2
Here we use Y} to denote the complex valued spherical harmonics in S? [30]. The
operations Re(f),Im(f) are the real and imaginary part of a complex number
(function) f, respectively.

Incorporating the lower bounds and upper bounds in (2.2) and (2.3), we therefore
consider the following constrained convex optimizations adapted from (3.2):

min _ ||Aw — V4weg||2, (3.3)
Li<w<R;
min || Aw — Vdweg||2, (3.4)
0<w< Ry
where
9v/n +1 1 wa
Lii=—w———-2(c=9,n=— = —L1, Ry := .
1 w2 n (C » N 2>7R1 1,412 NL%J

The problems (3.3) and (3.4) are then numerically solved using the MATLAB
Optimization Toolbox with algorithm trust-region-reflective [3,4] (see also [36])
and custom functions for computing the gradient VL and Hessian of £.* Such
functions adopted the fast spherical Fourier and adjoint transforms in [20,21]. All
experiments were done on a desktop PC with an Intel Core i7-12700KF CPU and
16GB of RAM. The maximum number of iterations is set to be 201.

Since (t+1)2 ~ 2, it is equivalent to set n = ¢(t + 1)? where c is the constant to
be tested. We set t € {16, 32,64,128,256,512}. The initial value of each component
of w to be 2T. The results associated with (3.3) and (3.4) are shown in Table 1 and
2.

We give some detailed comments from our numerical results .

Remark 3.1. Exp 1 and Exp 2 in Table 1 show that for both (3.3) and (3.4), a
large enough fixed constant ¢ enables the successful findings of t-exact quadrature
rules with a fixed range of ¢.

Remark 3.2. However, by lowering the constant ¢, the performance behaves
differently. Exp 1 and Exp 3 in Table 1 show the difference for (3.3). When c is

aSee https://github.com/zrgcityu/usq-code for implementation details
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Table 1. Numerical Results of 3 Settings [objective, n]: Exp 1 [(3.3), n = 4(t + 1)?], Exp 2 [(3.4),

WSPC-AA-D-25-00003

n=6(t+1)?], Exp 3 [(3.3), n = 1.2(t + 1)2].

Exp 1 For (3.3), n = 4(t + 1)

t L IVL s Time Tteration
16 3.134581E-15  3.063353E-15  1.788075s 15

32 3.291015E-14  3.388295E-14  0.807776s 16

64 1.841470E-13 1.872858E-13  6.399274s 17

128 2.637861E-13  3.969358E-13  18.665806s 20

256 3.995873E-13 6.811824E-13  52.704175s 18

512 4.320490E-13  1.262332E-12  238.550729s 18

Exp 2 For (3.4), n = 6(t + 1)*

t L IVL| Time Iteration
16 1.875412E-15  3.118444E-15  2.047900s 19

32 3.570558E-14  4.459392E-14  1.295156s 22

64 1.049723E-13 1.410922E-13  18.936084s 29

128 2.005977E-13  3.013737E-13  138.984551s 31

256 2.633198E-13 4.254067E-13  761.470559s 30

512 3.420550E-13  5.841217E-13  12563.455464s 46

Exp 3 For (3.3), n = [1.2(t + 1)?]

t L VL oo Time Tteration
16 3.993703E-14  1.353421E-14  9.872654s 32

32 2.262766E-12  9.221247E-13  14.793752s 23

64 1.574769E-11  9.349000E-12  509.541738s 23

128 1.626569E-11 7.383318E-12  1095.151538s 23

256 2.613153E-11 1.885719E-11  3440.798370s 20

512 5.795588E-11  2.279233E-11  33192.043693s 22

reduced from 4 to 1.2, we can still find rules with losses £ very close to 0. Nonetheless,
the orders in the magnitudes rise to 1E-11 for most ¢ and the time consumed is
increased, especially for large .

Remark 3.3. The effect of lowering ¢ is more obvious for (3.4), where quadrature
weights are required to be non-negative. When ¢ is reduced from 6 to 4, in all 4
attempts in Table 2, we see that not only the time consumed is greatly increased,
but also failures (3 out of 4 total trials) in the optimizations for ¢ = 512, in which
the final losses £ = 1E-2 are far from 0.

Remark 3.4. Compared with Exp 1, the result in Exp 2 corresponds to a large
constant ¢. Compared with Exp 3, Table 2 displays more drastic changes. Note that
the constants ¢ in Exp 1 and Table 2 are identical. Therefore, in contrast to (3.3),

we can say that (3.4) is more difficult to be solved numerically. This is consistent
with Lemma 4.3 in Section 4.3, in which the existence of exact quadrature rules
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with non-negative weights requires a stronger condition of n € (0,1/2), suggesting
that the number of points should be larger.

Remark 3.5. Our experiments have shown some discouraging results by which the
idea of setting a small fixed constant Cy in n = Cyt? for all ¢ is empirically denied.
In detail, we cannot choose Cy by trial and error on small ¢ and then adopting the
smallest possible Cy. Though Table 1 show successful findings for the given ¢, we
expect that when ¢ is large enough, failures in the optimizations will arise as those
in Table 2. For fixing a constant Cy, more reasonable choices would be - = Cyt?

— In
and n = Cyt?Int as discussed in Remarks 2.4 and 2.5, respectively.

4. Proofs of the Main Theorems

In this section, we provide detailed proofs of our main results in Theorem 2.1,
Theorem 2.2, and Theorem 2.3. We first prove the results concerning the measure
and the diameter of Voronoi cells on the sphere in Section 4.1, Section 4.2, respectively.
Similar results for Voronoi cells on Euclidean spaces can be found in [8]. We then
adopt the results on M-Z inequalities to our setting in Section 4.3 and derive the
main results by combining those results together in Section 4.4.

4.1. The measure of Voronoi cells

Recall that X7, X5, ..., X,, are n independent, identically and uniformly distributed
random vectors taking values in S?. The pg-measure of the (random) Voronoi cell
of & (or X7) with respect to the Voronoi tessellation of « (or X;) and Xs,..., X,
is denoted as M, (x). The expectation E[M, (x)] is taken with respect to the joint
distribution of Xa,..., X, and the expectation E[M,(X;)] is taken with respect to
the joint distribution of Xy, X5,..., X,,.

The proof of Theorem 2.1 can be done by proving the following two lemmas.

Lemma 4.1. Foralli € {1,...,n}, we have

nE[M, (X)) =1, n’E[M,(X;)?] <2, and n*Var[M,(X;)] <1.

Proof. For the first moment, without loss of generality, we first show that
nE[M, (X1)] = 1. This directly follows from the fact that ) ., M,(X;) = 1 and
that M, (X;),i € {1,...,n} are identically distributed.
As for the second moment, we fix & € S? and observe that
E[M, (z)?] = P{X € Cin, X' € C1 0| X1 = x})
= P{Mi2o{Xs ¢ Bx p(x.2) YU Bx’ p(x',2)}})
=E[(1 ~ Zz(z))" "],

where

Z2(w) = Hd (BX,p(X,m) U BX’,p(X/,m))
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Table 2. Numerical Results of Solving (3.4) for n = 4(t + 1)?

Trial 1

t L IVL| oo Time Iteration
16 2.303655E-15  2.390542E-15  3.097006s 20

32 3.185510E-14  4.099474E-14  1.089420s 24

64 1.969465E-13  2.341838E-13  56.693948s 43

128 2.962170E-13  3.981251E-13  299.824356s 52

256 3.819095E-13  7.150612E-13  14576.090757s 150

512 4.066202E-03  5.510995E-02 ~59h 201
Trial 2

t L VL] Time Tteration
16 3.500963E-15 7.052921E-15 0.709574s 21

32 2.767770E-14  2.929239E-14  1.089420s 22

64 1.647513E-13  1.777890E-13  25.140223s 33

128 3.785107E-13 6.031171E-13 1088.606990s 92

256 4.167524E-13  8.449096E-13  2856.551934s 61

512 1.036127E-03 1.675591E-02 ~46h 201
Trial 3

t L IVL| oo Time Iteration
16 2.401973E-15 3.126254E-15 0.590745s 19

32 3.123671E-14  3.260830E-14  1.988796s 31

64 1.889524E-13  2.290627E-13  76.218829s 51

128 2.553135E-13  3.624777E-13  169.328444s 40

256 4.349658E-13  1.763420E-12  4003.917936s 72

512 5.023403E-13  7.931863E-13 ~22h 169
Trial 4

t L IVL| oo Time Iteration
16 1.744179E-15  2.584496E-15 0.614434s 19

32 6.004930E-14  6.404889E-14  2.000308s 34

64 1.606202E-13  2.159116E-13  14.824280s 34

128 3.207168E-13  3.248754E-13  172.495088s 52

256 4.041109E-13  6.541325E-13 1881.816718s 81

512 2.329341E-03 3.467551E-02 ~59h 201

with X and X’ being independent and identically distributed with respect to pg.
Note that X and X’ are also independent of X1, ..., X,,. Then, we have

1
WE[M,(2)?] = nE[(1 - Zy(a))" "] = n’ / P({(1 - Zo(x))" " > s}) ds.
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By a change of variables with z =1 — sﬁ, we have

/0 P({(1 — Zo(x))"! > s})ds = (n — 1) / P({Zs(@) < 2})(1 - 2)" 2 d

Note that for a uniformly distributed Y, we have

Z(x) = pa(By,p(v,e)) = Hd(Bz p(v,z))
and that y1q(Bg (v,2)) is uniformly distributed on [0, 1]. Now, for the integration
fol P({Zy(x) < 2})(1 — 2)"~2dz, by the independence of X and X', we have

/01 P({Zs(z) < 2})(1 —2)" % dz
S/OllP’({ud (Bx px.ay) < 2} 0 {jia (Bxropixray) < 2}) (1— 2)" 2 dz
:/OllP’({ud (Bapx.ey) < 2} 0 {tta (Bapxr ) < 2}) (1— 2)"2dz
= /01 P ({1a (Bapixa) < 2})° (1 - 2)" 2 dz

1
2
:/ 22(1—2)"%dz =
0

nn—1)(n+1)

Consequently, we obtain

wB{M, (@] = (= 1) [ P Za@) < 1= 2 e < oy <2

Integrating both sides of n?E[M,,(x)] < 2 with respect to X; gives
n?E[M, (X1)?] < 2.
The result
n*Var[M,, (X;)] < 1
follows directly from Var[M, (X;)] = E[M,(X;)?] — E[M, (X;)]?. For the cases of
Xo, ..., X,, they can be proved analogously. O

Lemma 4.2. For any c > 1, with probability at least 1 — C%, we have

max| M, (X;) — E[Mq (X;)]| = miaX‘Mn(Xi) . % < %

Proof. Denote o := y/Var(M,(X;)), then 02 < - by Lemma 4.1. Using the
Chebyshev inequality

(4.1)

1
P(X —EX|>s0) < —, s>0,
S

27
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and letting so = ¢/+/n, we have

({22 5

for all i € {1,...,n}, which implies

1 c " 1 c
P M,(X;))——|2—F—=,])=P M, (X)) —=|>—
(o3[ 23) =2 (O {5 = 72})
- 1 c
< P Mn Xz - 27
<3r({peo—3[= 7))
1
<07.
This completes the proof. O

4.2. The diameters of Voronoi cells

Recall that D, (x) denote the diameter of the Voronoi cell associated with x with
respect to the Voronoi tessellation of @, X5, ..., X,,. Thus, the probability of the
events of D,,(x) involves the joint distribution of Xo, ..., X, while for D, (X;), the
probability of the events of D,,(X1) involves the joint distribution of X7, Xs, ..., X,,.
The diameters D, (X32),...,D,(X,) are similarly defined.

Below we need to use the so-called “geodesic cones” on S¢. Let % be a unit-length
vector in T,S%, the tangent space of x. For each y, choose a unit-speed geodesic
a that connects  and y and satisfies «(0) = «. Thus we have a velocity vector
7 := &(0). Define the geodesic cone €(z, i) to be the set of points in S? such that the
angle 6 between u and ¥ satisfies 6 < %. Such cones € at x are considered to have
an “angle” 7. Take x as the north pole in S? for example, each area consecutively
covering longitude of 45 degree is a cone with angle 7.

We next provide the proof of Theorem 2.2 on the diameter of the Voronoi cells.

Proof. [Proof of Theorem 2.2] We first show that
P({Dn(X;) > 0}) <cra(1—coas)” ™", i€{l,...,n}

As in the proof of Lemma 4.1, we fix € S%. Let 74 be the minimal numbers of
geodesic cones €y, ...,&,, of angle T at & such that their union covers S?. For each
Jj=1,...,7q, let R, ; be the distance between x and the nearest neighbor among
Xo,..., X, belonging to €;. Define R,, ; = oo if no such point exists.

We bound the diameter of the Voronoi cell associated with & by observing that

1
D,(x) < max —R,;
( )_jzl,...},(w\/ﬁ 7

To see this, consider an arbitrary point y € C1, and let €; be a cone (among the
covering cones) containing y. If £; is the nearest neighbor of  among X»,..., X,
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belonging to €;, then p(x,y) < p(y, §;). We obtain a geodesic triangle by connecting
x,y and &; using minimal geodesics. Let s1, s2, s3 denote the sides of the geodesic
triangle that connects & and y,  and &;, y and &;, respectively. Let {1, [, [3 denote
the length of s1, 52, s3. Note that the angle a between s; and s3 is bounded by 7
and we have

= p(m,y), lp = p($,£j) = Rn,j7 I3 = P(’!Lﬁj)-

By the Toponogov’s theorem (cf. [32, Chapter 11] or [5, Theorem 2.1]), we have the
Law of Cosines on S%:

12 <12 +1% - 20115 cos a.
Hence we have 2{1l5 cosa < l% — l§ +l§. By that [; <3, we deduce that 21115 cos o <
12. Consequently, from

lo R, ;

— l < < 5]

P, y) "= 2cosa T V2

we conclude that D, (x) = supyec, , p(T,y) < max;j—1,. -, %Rh’j.
Now for any 0 > 0, we have

{D,(z) > 8} C { max R, ; > \/55}

J=1,-,7d

Yd
C U {Qj N B, /55 has no point among Xo, ... ,Xn} .
j=1

Let P; be the event {Cj N BmM% has no point among Xo, ... ,Xn}. Then, we have
n—1
P(P;) = (1 — (Q:j N Bw7\/§5)> . Hence, we deduce that
Yd Yd n—1
P({Du(z) > ) <3 P(P) =Y (1- 1 (€0 By z)) -

Jj=1 Jj=1

Let ¢1,g :=vqand 2 4,6 := 1a (@1 NnB, \/56)' Noting that ¢; 4, ¢2,4,6 are independent

of &, we obtain
P({Dy(x) > 6}) < cra(l —coas)” " VaeSh
Integrating on both sides with respect to X; gives
P({Dn(X1) > 0}) < cra(l—coae)"

For Xs, ..., X,, this can be similarly proved.
Now, the result

P({||R(mna)l| > 6}) < neva (1= ezas)"
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obviously holds. In fact,

P ({|R(mp.a)|| > 6}) =P ({max Do(X;) > 5})
(o >5})
i i) >0}) <ncra(l—coas)"”

This completes the proof. O

4.3. Marcinkiewicz—Zygmund inequalities and the existence of
quadrature rules

Sufficient conditions for the existence of quadrature rules appear in several works
[12,28,29,31]. The existence is guaranteed by satisfying the Marcinkiewicz—Zygmund
(M-Z) inequalities, which in turn is implied by the conditions of the partition norm.
Therefore, we organize the lemmas by first stating the existence of quadrature rules
from the implication of the M—Z inequalities to, and then the M—Z inequalities
from the bounded partition norm. Moreover, we particularly select conditions with
explicitly defined constants, which serve our purpose of providing the concrete
probability estimates. Therefore, to obtain a summary of related results in different
works, we follow [28,29,31] and provide the following lemma, in which the settings
are slightly generalized so as to facilitate the discussions related to [10].

Lemma 4.3 Let x1,...,x, be n points in S* and w,...,w, be n positive real
numbers.

(a) Forn e (0,1), if the M-Z inequality
(1-1) /S AP(@)|dpa(a) < 3 PG s < (140) /S P(@)] dugfe) (4.2

holds for all P € TI¢, then there exist quadrature weights ay,...,a, € R
such that ((a;, ;)" is a t-ezact quadrature rule for S satisfying

las| < % ie{l,... n. (4.3)

P(x) dpg(x) < ﬁ Z P(x;)w;. (4.4)

1-— n =1 sd
holds for all P € {P|P € TI¢, P(z;) > 0,i = 1,...,n}, then there exist
positive quadrature weights by, ..., b, € R such that ((b;, ;) is a t-exact
quadrature rule for ST satisfying
1-2 1
Tw; < b; < . ie{l,...nh (4.5)

1=n Nig
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Proof. Define a linear map
F:1¢ - R" F(P):=(P(xy),...,P(x,)).

Let the spaces II¢ and R™ be equipped with the norms
/ |P(x)|dug(x) for P € II¢ and Z |v;|w; for v = (v1,...,v,) €ER™,  (4.6)
§¢ i=1

respectively. Let V' C R™ denote the range of F. By (4.2), F is injective. Thus,
the inverse F~! : V — II¢ exists. Moreover, the operator norm |F~!| satisfies
|F~Y < (1 —n)"!. Let f denote the linear functional on II¢ by

f(P):= [ P(x)dug(z), VP eIl
Sd
By the Holder’s inequality, we have || f|| )« < 1. Let f=f(F'(v),veVbea
linear functional on V. We have || f]|y- < (1 —)~!. By the Hahn-Banach theorem,

f has a norm-preserving extension to a linear function f.,; on R™. Therefore, there
exists (a1, ...,a,) € R™ such that for any v := (v1,...,v,) € R, we have

fewt(v) = Zaﬂ]i, llaill@ry- < (1 — n)~t.
i=1

Note that || - ||gn)~ is induced by the norm in (4.6). Thus,
lail ey < (1=n)7" = max|a;|w; " < (1-n)7"
By construction, f(P) = f(v) = fext(v), where v = F(P). This shows that
((ai, ;) is a t-exact quadrature rule of II{ with weights satisfying (4.3).
When 7 € (0,1), let R denote the positive cone {v = (v1,...,v,) € R" |v; > 0}
and define the linear functional g on V'

For v € VNRY, by (4.4), g is positive on VMR’ . Note that (1,...,1) € V since the
constant polynomial is in I1¢, and it is an interior point of R? . By the Krein-Rutman
theorem [17], there exists a positive linear functional ge,; that extends g on R™.
Hence, there exist weights ¢; > 0,4 € {1,...,n} such that Geu(v) = Y i, civ;.
Therefore, we have positive weights

1-2 1-2
b; == c¢; + nwi, b; > nwi, iE{l,...,n}
1 - =1
such that ((z;,b;))", is an exact quadrature rule of II¥. To derive an upper bound
for b;,i € {1,...,n}, we fix ¢ and set
N

L35

P(x) =) Yj(@)Y;(x),

j=1

Wl
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where Y, are the spherical harmonics in Hfz |- Due to the orthogonality of Y; and
2
that P? € TI¢, we have

| IP@F dia@) = Pl = Y4, (w) = biP (@),

Jj=1

O

Note that P(x;) = N« (cf. [37, (1)]). Thus, b; < '

Y

The following lemma, which is originally described for general compatible parti-
tions, are adapted to the special case of the Voronoi tessellation.

Lemma 4.4. Let x1,...,x, be n distinct points in S* with d € N. Let 74 =
6(327 + 2d + 3).

a) Forn e (0,1), ¢ My, 4 Sﬁ,tente ~Z 1nequality in (4.

F 0,1), if [R — ity - then the M-Z I 42
holds for all P € TI{ with w; = pa(C;, n) ie{l,...,n}.

(b) For n € (0,1/2), if |R(my.q)|| < W then the inequality (4.4) holds
for all P € {P|P € I, P(x;) > 0,i = 1,...,n} with w; = pa(Cin),i €

{1,...,n}.

Proof. (a) directly comes from [10, Theorem 4.1]. To prove (b), it is sufficient to
prove

Z/ Pl duata) <o [ |P@Idpate), 9P, (4)

since by noting that (a) is true in this case and that by assumption P(z;) > 0,4 =
1,...,n, we have

/SP(a:)d,ud(a:) Z (zi)w;

=1

< Z / P(x)| dpa()

|P(z)| dpg(x Z (ai)w;,

Sq —

which implies (4.4). In fact, (4.7) is an intermediate result shown in the proof
of [10, Theorem 4.1] when p = 1. |

Now we can provide the proof of Theorem 2.4.

Proof. [Proof of Theorem 2.4]. The result in [10, Theorem 5.1] and its proof show
that when satisfying (2.4), with probability at least 1 — -, the sampled points satisfy
the M-Z inequality (4.2) with w; < 422 Therefore, by Lemma 4.3 (a), we have the
existence of the quadrature weights with the same probability lower bound stated
n (i) of Theorem 2.4.

As for (ii) of Theorem 2.4, note that the proof of [10, Theorem 5.1] is based
on the event such that each interior of the cells of an equal-area partition contains
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at least one sampled point. We associate each interior with one sampled point.
Moreover, we assign each associated sampled point a weight equal to the measure
of the cell. For the rest of the sampled points, we assign them a zero weight. (ii) of
Theorem 2.4 can be deduced by using similar arguments as in (b) of Lemma 4.4
and combining it with (b) of Lemma 4.3. Note that the lower bound of the weights
from (b) of Lemma 4.3 is discarded due to the possibility of having points assigned
with zero weight. O

Remark 4.1. As pointed out in [29], the Krein-Rutman extensions of non-negative
functionals are not guaranteed to be norm-preserving, and thus one should not
directly apply the statements related to quadrature rules with positive weights
in [28]. On the other hand, in [31, Section 4.2], theorems related to the existence
of quadrature rules with positive weights are given, in which the upper bounds of
weights are derived using other arguments. In Lemma 4.3, we follow [31] instead
of [28] to obtain the bounds of non-negative quadrature weights.

Remark 4.2. Our definition of the M-Z inequality (4.2) corresponds to case p = 1
in which L; and (weighted) l; norms are involved. The general definition of the
M-Z inequality replaces the integrations with L, norms and the discrete sum with
(weighted) I, norms, p € [1,00] (cf. [10,28]). Assuming that xy,...,x, satisfy the
M-Z with p > 1, by following [28], one can obtain bounds for the weights similar
to those of a; in Lemma 4.3, but depicted with (weighted) /, norms. However, as
mentioned in [10,11], the applications of the Riesz-Thorin interpolation in [19, 28]
are not fully justified, and thus one has to be cautious about the M-Z inequalities
with p € (1,00). We refer to [10], which provides an alternative proof of the M-Z
inequalities with rigorous applications of the Riesz-Thorin interpolation.

Besides [10, Theorem 4.1], by [12, Theorem 4.2, Remark 4.3], the upper bound
for [[R(mp,q)|| in Lemma 4.4 can be replaced by

n
[R(mpa)| < =,
Tdt
. (2v3)4(5d+1), d>3,
T =
111, d=2.
For d = 2, the original upper bound is approximately
.
98.55(t +4)

Compared with the alternative bound 747, the original bound gives a smaller

denominator for sufficiently large ¢. For d > 2, the original bound also seems better
since the order of d in the form 6(3%7T + 2d + 3)t is smaller in contrast to the order
in (2v/3)%(5d + 1)t. However, the addendum 6(3% 7 + 2d + 3)d? in the denominator
should also be considered.
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4.4. Quadrature weights for uniform sampled points

Note that in Lemma 4.3 the points are assumed to be distinct. On the other hand,
it is possible that X; = Xj;,7 # j. Therefore, when combining the statements
from Sections 4.1, 4.2, and 4.3, it should be understood that the results are first
established for the distinct values of the random vectors, i.e. the set formed by the
distinct values of X, Xs,..., X,,. Then, for X;, X;, X},... corresponding to the
same Voronoi cell, we can simply set one point to have non-zero weight and other
points’ weights to be zero, or an average weight for each point. It is obvious that
choosing either way will not affect the validity of Theorem 2.3.

Now we are ready to present the proof of Theorem 2.3. This immediately follows
from Lemma 4.3, Lemma 4.4, Theorem 2.1 and Theorem 2.2. We provide details
below.

Proof. [Proof of Theorem 2.3] We first prove Item (i). For any ¢ > 1 and n € (0, 1),

we have § = Denote the events

Pri= {I[R(mn0)]| < 0} and Py = {max| Mo (X:) — BIM, ()] < =},
Their complements are denoted as
Py := {[R(mna)l| > 6} and Py := {max| Mo (X) — E[M, (X2)]| > ).

Then, by Theorem 2.1 and Theorem 2.2, we have
P(P, U Py) <P(P) +P(P2) < nepq(l— cz,d}(;)nfl +c¢72,
which implies that
P(PLNPy)=1-P(PLUP) >1—ncra(l —coas) " —c 2

Hence, with probability at least 1 —neq g (1 — 027d7§)n_1 — ¢ 2, both events P, and
P, hold.

Now, from the event P; and Lemma 4.4, we see that the M-Z inequality in (4.2)
holds for any P € TI¢ and thus by Part (a) of Lemma 4.3, there exist quadrature
weights ay,...,a, € R such that ((a;,z;))", is a t-exact quadrature rule for S¢
satisfying (4.3). Moreover, from the event Py, we see that 14(Cin) = M, (X;) <
max; M, (X;) < + + <=, which leads to the result in (2.2).

Next, we prove Item (ii). For the result in (2.3), we need to use the result of
Part (b) in Lemma 4.3. To this end, for any ¢ > 1 and 7 € (0, 3), we still set § to be

§ = gy The event Ps := {|R(m,.q4)|| > 6} is defined with respect to such a

d. By Theorem 2.2, with probability at least 1 —ncyq (1 — Cg)d,é)n_l, the event Ps
holds. Then, by Lemma 4.4 with n € (0, 3), the M~Z inequality in (4.2) holds for
any P € II{. Hence, by Part (b) of Lemma 4.3, we see that there exist quadrature
weights by, ...,b, € R such that {(b;,x;)}", is a t-exact quadrature rule for S?

satisfying (4.5), which directly implies 0 < b; < Nl for all ¢ € {1,...,n}. This
L5

completes the proof of Item (ii) and the proof of the theorem. O
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Remark 4.3. As for the non-negative weights (b;)"_;, we consider only the event
P3 since Lemma 4.3, Lemma 4.4, Theorem 2.2 together implies the existence of
quadrature rule and also (2.3), that is, each b; satisfies

1- 2 1
1a(Cin) <b; < .
Ty HGen) N

The event P; in this case is not considered since it can only imply a lower bound
for b; which, by Theorem 2.1, is given by

1-2 1-2 1—cyn
b; > 1 nud(ci,n) > i f-
- I—n n

It is negative under our assumptions and is therefore discarded. On the other hand,
as mentioned earlier it is possible that some of the sample points X; are identical
and thus the weights are either be divided or set to zero. If a positive lower bound
for b; is given, then either way of adjusting the weights will result in having weights
smaller than the given bound. Therefore, we do not consider providing such positive
lower bounds. However, if we assume that the values of X; are distinct, then it is
possible to derive such positive lower bounds by applying the Cantelli’s inequality
which provides one-sided tail bounds.

5. Conclusion and Final Remarks

We have provided concrete probability lower bounds on obtaining exact quadrature
rules with bounded weights given n points uniformly sampled on the sphere. The
estimates are either directly obtained from the established results in the literature
or derived from the probability quantities of the Voronoi cells, which are part of
our main contributions. These results in turn provide upper bounds on the number
of points to obtain a t-exact quadrature rule on spheres with high probability.
Nonetheless, the lower bounds are pessimistic compared with the numerical findings.
In contrast, finding possible relations between the number of points n and the degree
t might provide more practical significance, for it allows tuning the specific constants
in the relations instead of directly adjusting the number n. Our estimates based on
the Voronoi tessellations provide a general probability lower bound that allows a
unified way to test the validity of such relations.

In particular, we investigated the problem of setting the number of points n to
be n = Cy4t?, where Cy is independent of ¢. Simple qualitative analysis based on
our probability lower bound suggests that the aforementioned problem is possibly
intractable for large ¢ in practice, and our experiments did verify this conjecture.
Note that the results are affected by the choices of optimization settings and
numerical algorithms, for which we might further investigate using high-performance
computing resources to conduct a more thorough test. On the other hand, our lower
bounds depict the requirement to satisfy certain sufficient conditions that imply
the existence of the t-exact quadrature rules. The failure to satisfy the sufficient
conditions does not preclude the existence of the rules, as it has not been established
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that these conditions are necessary. Interestingly, the results related to the relation
between n and t conform to the conditions, at least empirically, to a certain extent.

Finally, we also showed that by adding logarithmic factors to the relation
n = Cyt?, the new relations hold with high probability. Despite being consistent
with the results derived from the literature, we did not provide better relations.
Nonetheless, our results give a different perspective, which provides some insights
into the possibility of having better relations. In detail, we are interested in whether
we could replace the logarithmic factors with functions of smaller order. From
Remark 2.4 and 2.5, we see that the logarithmic factors come from the first n of
neyq (1 — 627d75)"_1. This n appears due to trivially handling the events of n Voronoi
cells. Similar comments are also mentioned in Remark 2.6. Indeed, the n Voronoi
cells are not independent, and we might reduce the first n to n®,0 < a < 1 while
keeping the exponential tails of the Voronoi cells by exploiting geometric relations
among the cells. However, we still can only obtain logarithmic factors since « is
absorbed into the constants. Vaguely speaking, it seems not likely to have better
relations. Nonetheless, this remains an interesting question to explore.
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