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Abstract
Hypergraph neural networks (HGNNs) have shown great po-
tential in modeling higher-order relationships among multi-
ple entities. However, most existing HGNNs primarily em-
phasize low-pass filtering while neglecting the role of high-
frequency information. In this work, we present a theoreti-
cal investigation into the spectral behavior of HGNNs and
prove that combining both low-pass and high-pass compo-
nents leads to more expressive and effective models. Notably,
our analysis highlights that high-pass signals play a crucial
role in capturing local discriminative structures within hyper-
graphs. Guided by these insights, we propose a novel sheaflet-
based HNNs that integrates cellular sheaf theory and framelet
transforms to preserve higher-order dependencies while en-
abling multi-scale spectral decomposition. This framework
explicitly emphasizes high-pass components, aligning with
our theoretical findings. Extensive experiments on bench-
mark datasets demonstrate the superiority of our approach
over existing methods, validating the importance of high-
frequency information in hypergraph learning.

1 Introduction
Unlike traditional graphs that capture only pairwise relation-
ships, hypergraphs provide a more expressive framework for
modeling higher-order interactions among multiple entities,
as supported by both theoretical and empirical evidence in
(Wang and Kleinberg 2024; Millán et al. 2025). This richer
representational capacity allows hypergraphs to naturally
encode complex and multi-way dependencies, making them
especially suitable for real-world applications characterized
by intricate relational structures (Antelmi et al. 2023).

Recent advances in hypergraph neural networks
(HGNNs) have extended spectral and message-passing
techniques from graphs to hypergraphs, enabling effective
learning over higher-order structures (Kim et al. 2024; Gao
et al. 2024). Despite these developments, the spectral design
of HGNNs remains largely underexplored, particularly
in terms of frequency components. While graph neural
networks have begun to incorporate both low-pass and
high-pass filtering mechanisms (Bo et al. 2021; Zheng
et al. 2021; Li et al. 2024), analogous efforts in the hyper-
graph setting remain sparse. Most existing HGNNs either
implicitly favor low-frequency propagation or neglect the
role of high-frequency signals altogether. This gap leaves
open a fundamental question: To what extent do high-pass

components influence the expressive power and learning
performance of HGNNs?

In this work, we present a theoretical and practical inves-
tigation into this question. We begin by providing rigorous
theoretical analysis to demonstrate that incorporating both
low-pass and high-pass components yields more expressive
and robust hypergraph neural networks than relying on ei-
ther component alone. Notably, our results reveal that high-
pass information is particularly essential in capturing fine-
grained structural variations and node-level distinctions that
are often diluted in standard HGNN designs. Motivated by
these findings, we propose a novel framework, i.e., sheaflet-
based HNNs, that unifies cellular sheaf theory and framelet
transforms to explicitly model both low- and high-frequency
components on hypergraphs. The sheaf structure allows us
to preserve the directional and functional dependencies in
higher-order relations, while framelets provide a principled
tool to decompose and process signals at multiple frequency
bands, with a particular emphasis on high-pass signals as
guided by our theoretical insights.

In summary, our primary contributions are three-fold:

• Theoretical Perspective: We establish a theoretical
foundation that characterizes the complementary roles of
low- and high-pass components in hypergraph learning,
and formally prove that models leveraging both exhibit
improved representational capacity.

• Model Design: We propose a Sheaflet-based HGNN
framework that integrates the expressive advantages
of cellular sheaves and the multi-resolution analysis
of framelets, explicitly highlighting and utilizing high-
frequency signals.

• Experimental Study: We conduct extensive empirical
evaluations across multiple hypergraph benchmarks to
validate our theoretical claims and demonstrate the con-
sistent effectiveness of the proposed method.

2 Related Work
Recent advances in hypergraph learning have yielded var-
ious architectures that extend message passing or spec-
tral methods to capture higher-order interactions, including
HGNN (Feng et al. 2019), HyperGCN (Yadati et al. 2019),
and more recent designs such as HyperND (Prokopchik,
Benson, and Tudisco 2022), ED-HNN (Wang et al. 2023),



and HDSode(Yan et al. 2024). While some methods explore
structural transformations or dynamic systems, the role of
frequency components in terms of the spectral perspective
remains underexplored. FrameHGNN (Li et al. 2025a) is
among the few that incorporate both low- and high-pass sig-
nals to address oversmoothing in HNNs. Meanwhile, cel-
lular sheaf theory has been employed to introduce geomet-
ric structure into graphs and hypergraphs, such as SheafHy-
perGNN (Duta et al. 2024), though most focus on single-
frequency propagation. Although some works have explored
framelet-based graph neural networks (Zheng et al. 2021;
Luo, Mo, and Pan 2024; Li et al. 2024), they do not pro-
vide theoretical insights into how low-pass and high-pass
components affect model expressivity. Furthermore, the in-
tegration of framelets into sheaf-based hypergraph models
remains unexplored. While Chen et al. (2023) propose a
combination of sheaf and framelet ideas, their work is lim-
ited to graphs and does not address hypergraph structures.
These gaps motivate our study, in which we provide theoret-
ical insights into the spectral behavior of hypergraph learn-
ing, highlighting the significance of high-pass components,
and introduces a sheaflet-based model that unifies cellular
sheaves and framelet transforms for multi-frequency hyper-
graph representation learning.

3 Theoretical Insights and Findings
In this section, we analyze the impact of high-frequency in-
formation on the generalization error of HGNNs for node
classification. Our results show that combining low-pass and
high-pass components improves the expressiveness of the
model and reduces the generalization error. To begin, we
revisit the node classification problem with n-labels on hy-
pergraph and analyze its generalization error under a proba-
bilistic framework.
Generalization Analysis of Hypergraph Node Classifica-
tion. Let △n = {x ∈ Rn : xj ∈ [0, 1] and

∑n
j=1 xj = 1}

and △̄n = {x ∈ Rn : xj ∈ {0, 1} and
∑n

j=1 xj = 1}.
Given some observations (x, y) ∈ X × Y of nodes/labels,
we assume a joint distribution ρ on X × Y . The task is
to learn a classification function f(x) ∈ △n, with mini-
mum expected risk R(f), that can predict the label y ∈ △̄n

for a given node x. Let η(x) ∈ △n and the jth compo-
nent ηj(x) = Pr(y = ej | x) for (x, y) ∼ ρ. We de-
note the ground truth by fρ = η. Then the generaliza-
tion error is given by R(f) − R(fρ). Here the expected
risk can be defined by 0-1 loss (i.e., 1(f(x) ̸= y) = 1 if
f(x) ̸= y, and is zero otherwise), and cross-entropy loss
(i.e., ℓ(f(x), y) =

∑n
j=1 yj log fj(x) for f, y ∈ △n).

Consider the case n = 2. Let

R(f) =

∫
X×Y

1(f(x) ̸= y)dρ

and
Rℓ(f) =

∫
X×Y

ℓ(f(x), y)dρ.

Theorem 3.1. Suppose that there exits s ∈ (0.5, 1] such that
max{η1(x), η2(x)} ≥ s for all x ∈ X , then

R(f)−R(fρ) ≤
1

s− 0.5
[Rℓ(f)−Rℓ(fρ)].

Proof. Let Aj = {x ∈ X | Label(fρ(x)) = ej} and Bj =
{x ∈ X | Label(f(x)) = ej}.

R(f)−R(fρ)

=
∑
i=1,2

∫
X

ηi(x)[1(f(x) ̸= ei)− 1(fρ(x) ̸= ei)]dx

=
∑
i ̸=j

∫
X

1(x ∈ Ai ∩Bj)[ηi(x)− ηj(x)]dx.

Note that for any x ∈ A1 ∩B2, η1(x) > η2(x) but f1(x) ≤
f2(x), which yields

−η1(x) log f1(x)− η2(x) log f2(x) ≥ log 2.

Furthermore, we have that

Rℓ(f)−Rℓ(fρ)

=

∫
X

−η1(x) log f1(x)− η2(x) log f2(x)

+ η1(x) log η1(x) + η2(x) log η2(x)dx

≥
∫
X

[1(x ∈ A1 ∩B2) + 1(x ∈ A2 ∩B1)]·

[log 2 + η1(x) log η1(x) + η2(x) log η2(x)]dx.

Notice that for any t ∈ (0, 1),

log 2 + t log t+ (1− t) log(1− t) ≥ (2t− 1)2/2,

which can be verified by checking h′(t) ≥ 0 and h′′(t) ≥ 0
with h(t) = log 2+ t log t+(1− t) log(1− t)− (2t−1)2/2
for t ≥ 0.5. Then, by taking t = η1(x) it implies that

2 [Rℓ(f)−Rℓ(fρ)]

≥
∑
i ̸=j

∫
X

[1(x ∈ Ai ∩Bj)][ηi(x)− ηj(x)]
2dx

≥(2s− 1)
∑
i ̸=j

∫
X

[1(x ∈ Ai ∩Bj)]|ηi(x)− ηj(x)|dx,

where the last inequality is due to the condition
max{η1(x), η2(x)} ≥ s > 0.5. Therefore, rearranging the
above inequality we have

R(f)−R(fρ) ≤
1

s− 0.5
[Rℓ(f)−Rℓ(fρ)] .

Corollary 1. Given an encoder f , let η(x; f) = η(f(x))
and the jth component ηj(x; f) = Pr(y = ej | f(x)), for
(f(x), y) ∼ ρ̃. Then for a decoder g trained with cross en-
tropy loss,

R(g(f))−R(fρ̃) ≤
1

s− 0.5
[Rℓ(g(f))−Rℓ(fρ̃)],

where fρ̃ = η(x; f).
Remark 1. The proof of the aforementioned corollary can
be accomplished by substituting η(x) with η(x; f).
Remark 2. The component ηj(x; f) is essentially a condi-
tional probability and should continuous with respect to f .
Given two node sets {xm} and {xn}, if we have

ηj(xm; f1) > ηj(xm; f2) > 0.5



and
ηj(xn; f1) < ηj(xn; f2) < 0.5,

then f1 will exhibit relatively more oscillation than f2. Con-
sequently, it is logical to expect that wr(f1, t) > wr(f2, t)
for t > 0, since the modulus wr serves as a means of quan-
tifying oscillation.

In the following theorem, we will demonstrate that a high-
pass filter has the capacity to augment the oscillation of fea-
ture expressions.

Theorem 3.2. If H is a highpass filter with all nonzero
eigenvalues having lower bound β > 1, then

ωr(Hf, t) ≥ βωr(f, t).

Proof. Let H = U diag(h1, h2, . . . , hN )U∗. When H is a
highpass filter with β > 1, we have 0 = h1 < β < h2 ≤
· · · ≤ hN . By definition of ωr(f, t), for any s ∈ R,

∥(Ts − I)rHf∥22 =

N∑
j=2

|eis
√

λj − 1|2r|hj f̂(j)|2

≥ β2
N∑
j=2

|eis
√

λj − 1|2r|f̂(j)|2

= β2∥(Ts − I)rf∥22.

This proves ∥(Ts − I)rHf∥2 ≥ β∥(Ts − I)rf∥2. Due to
the arbitrary of s,

ωr(Hf, t) ≥ βωr(f, t) .

Our result shows that representations with larger values
of s lead to tighter generalization bounds. This insight moti-
vates a principled approach to design representations that ex-
plicitly maximize s, which we address next through framelet
analysis on hypergraph.
Framelet-Based Representation Learning for Optimal
Generalization. Consider a hypergraph G = (V, E)
with N nodes and hypergraph Laplacian L. Let U =
[u1, . . . ,uN ] denote the matrix of eigenvectors of L, and
Λ = diag (λ1, . . . , λN ) be the diagonal matrix of the eigen-
values. We define the Fourier transform for a signal x ∈ RN

on hypergraph as x̂ = U⊤x, and the inverse Fourier trans-
form as x = Ux̂. Given a set of filters {ar : 0 ≤ r ≤
R}, the discrete J-level tight wavelet frame decomposi-
tion of x is defined as {Wr,jx : (r, j) ∈ Γ} with Γ =
{(1, 1), (2, 1), . . . , (R, 1), (1, 2), . . . , (R, J)}∪{(0, J)} and

W0,J = Uâ∗0
(
2−S+J−1Λ

)
· · · â∗0

(
2−SΛ

)
U⊤,

Wr,1 = Uâ∗r
(
2−SΛ

)
U⊤,

Wr,j =Uâ∗r
(
2−S+j−1Λ

)
â∗0
(
2−S+j−2Λ

)
· · · â∗0

(
2−SΛ

)
U⊤

where h∗ denotes the complex conjugate of h. Here, S is
chosen to be sufficiently large such that the largest eigen-
value λmax of the hypergraph Laplacian satisfies λmax ≤
2Sπ. The band of the transform is indicated by index r,
where r = 0 corresponds to the low frequency component,
while 1 ≤ r ≤ R represent the high-frequency components.
The index j denotes the level of the transform. The tightness

of the framelet system can be guaranteed by the condition,∑R
r=1 |âr(ξ)|

2
= 1. This ensures that framelet decompo-

sition and reconstruction are invertible, i.e., W⊤
0,JW0,Jx +∑

r,j W⊤
r,jWr,jx = x. Next we present a Gaussian denois-

ing model that incorporates a framelet-based sparse prior.

Theorem 3.3. Consider the additive noise model x = z +
σn, with σ > 0 and n ∼ N (0, I). Let g(u; γ) =

∑
i γi|ui|

denote the weighted ℓ1-norm of u with non-negative param-
eter γ. We impose a sparsity enforcing prior on z with the
tight framelet transform {Wr,j : (r, j) ∈ Γ}, i.e., p(z) ∝
exp[−

∑
r,j g(Wr,jz; γr,j)]. Then the MAP estimate is given

by z∗ =
∑

r,j W⊤
r,jΘr,jWr,jx, where Θr,j are shrinkage-

thresholding matrices depending on σ, γr,j and Wr,j .

Proof. The MAP estimate maximizes the posterior
p(z|x) ∝ p(x|z)p(z). Then

z∗ = argmax
z

[log p(x|z) + log p(z)] .

Substituting the likelihood and prior gives

z∗ = argmin
z

 1

2σ2
∥x− z∥22 +

∑
r,j

g(Wr,jz; γr,j)

 .
By optimality condition, we have

1

σ2
(z∗ − x) +

∑
r,j

∂g(Wr,jz
∗; γr,j) ∋ 0.

Note that the subdifferential of the weighted ℓ1-norm is ex-
plicitly given by

∂g(Wr,jz
∗; γr,j) = W⊤

r,j ∂g(u; γr,j)|u=Wr,jz∗ ,

where

∂g(u; γr,j) =
{
γr,j ⊙ s : ∥s∥∞ ≤ 1, s⊤u = ∥u∥1

}
.

Due to the tight framelet condition, we can decouple the
above problem in the transform domain. For each (r, j) ∈ Γ
we impose that

1

σ2
Wr,j(z

∗ − x) + ∂g(u; γr,j)|u=Wr,jz∗ ∋ 0.

The above inclusion is equivalent to the proximal operator
of g(·;σ2γr,j), i.e.,

Wr,jz
∗ = proxg(Wr,jx),

such that

(Wr,jz
∗)i =

(Wr,jx)i − σ2(γr,j)i if (Wr,jx)i > σ2(γr,j)i,

(Wr,jx)i + σ2(γr,j)i if (Wr,jx)i < −σ2(γr,j)i,

0 otherwise.

That is
Wr,jz

∗ = Θr,jWr,jx,



where Θr,j = diag(θr,j) and each element of θr,j is defined
as

(θr,j)i =

{
1− σ2(γr,j)i

|(Wr,jx)i| if |(Wr,jx)i| > σ2(γr,j)i,

0 otherwise.

Again, we apply the tight framelet condition to derive z∗

z∗ =
∑
r,j

W⊤
r,jΘr,jWr,jx.

Remark 3. Suppose the regularization parameters satisfy
that γr,j → +∞ elementwise for all (r, j) ∈ Γ except
the index of the low-pass filter (0, J), while λ0,J remains
fixed. Then the MAP estimate z∗ converges to the low-
pass only form, zL = W⊤

0,JΘ0,JW0,Jx. We can also de-
rive a similar result for the high-pass only estimate, zH =∑

(r,j)̸=(0,J) W⊤
r,jΘr,jWr,jx.

Remark 4. The MAP estimate z∗ maximizes the oscillation
measure s under mild conditions. Let s(z) = maxj p(y =
ej , z) and k∗ be the corresponding maximizer. Assume that
Pr(y = ej |x) = 1 if j = k∗ and is zero otherwise. Then
s(z) = Pr(y = ek∗ |x)p(x|z) ∝ p(x, z), aligning the max-
imization of s(z) with the joint likelihood. Further we can
apply Theorem 3.3 to evaluate, in terms of s, the representa-
tions learned via low-pass and high-pass framelets respec-
tively.
Theorem 3.4. In the setting of Theorem 3.3, let s(z) =
log p(x, z) be the log-likelihood function, and define the
low-pass and high-pass estimates:

zL = W⊤
0,JΘ0,JW0,Jx,

zH =
∑

(r,j)̸=(0,J)

W⊤
r,jΘr,jWr,jx.

Let λmin denote the smallest non-zero eigenvalue of the hy-
pergraph Laplacian. Suppose the low-pass filter a0 satisfies
â0(0) = 1, a =

∏J−1
j=0 |â0

(
2−S+jλmin

)
|2 < 1

2 . If the high-
frequency components of x dominate in the sense that:

(1− 2a)

 ∑
λk≥λmin

|x̂k|2
 1

2

≥

[ ∑
λk<λmin

|x̂k|2
] 1

2

+

∑
(r,j)∈Γ

∥I −Θr,j∥2 ∥x̂∥2 +
√
2σε,

where

ε =max

∑
(r,j)∈Γ

[
g(Wr,jzH ; γr,j)− g(Wr,jzL; γr,j)

]
, 0


1
2

.

Then we have that s(zL) ≤ s(zH).
The proof of Theorem 3.4 is provided in the Appendix.

Our analysis shows that the MAP estimate z∗ under this
model not only admits a closed-form framelet convolution
but also favors high-frequency components. These results
provide a theoretical foundation for the design of our pro-
posed architecture, which leverages both low-frequency and
high-frequency framelet coefficients to improve generaliza-
tion, as detailed in the next section.

4 HyperSheaflets
In this section, we present the framework of designing
sheaflet-based hypergraph neural networks, termed Hyper-
Sheaflets, which integrates both low-pass and high-pass
filtering by combining cellular sheaf theory with framelet
transforms on hypergraphs. To lay the foundation for our
model design, we first revisit the definition of cellular
sheaves on hypergraphs and the associated linear sheaf hy-
pergraph Laplacian Duta et al. (2024).
Basics of Sheaves on Hypergraphs. A cellular sheaf F
associated with a hypergraph H is defined as a triple
⟨F(v),F(e),Fv⊴e⟩, where: i) F(v) are vertex stalks: vector
spaces associated with each node v; ii) F(e) are hyperedge
stalks: vector spaces associated with each hyperedge e; iii)
Fv⊴e : F(v) → F(e) are restriction maps: linear maps be-
tween each pair v ⊴ e, if hyperedge e contains node v.

Then, the linear sheaf hypergraph Laplacian is defined as:

(LF )vv =
∑
e;v∈e

1

δe
FT

v⊴eFv⊴e ∈ Rd×d

and

(LF )uv = −
∑

e;u,v∈e

1

δe
FT

u⊴eFv⊴e ∈ Rd×d,

where d is the dimension of the sheaf, Fv⊴e : Rd → Rd

represents the linear restriction maps guiding the flow of in-
formation from node v to hyperedge e.

In particular, the linear sheaf Laplacian operator for node
v applied on a signal x ∈ RN×d can be rewritten as:

LF (x)v =
∑
e;v∈e

1

δe
FT

v⊴e(
∑
u∈e
u̸=v

(Fv⊴exv −Fu⊴exu)). (1)

Construction of Sheaflets on Hypergraphs. Following
the general principles of constructing framelet systems on
graphs (Chen et al. 2023), we extend this methodology to
define sheaflets on hypergraphs. Let {(ul, λl)}Nd

l=1 denote
the eigenpairs of the linear sheaf hypergraph Laplacian LF .
For j ∈ Z and p ∈ V, we define the undecimated sheaflets
ϕj,p(v) and ψr

j,p(v), v ∈ V at scale j as follows:

ϕj,p(v) :=

Nd∑
l=1

α̂

(
λl
2j

)
ul(p)ul(v),

ψr
j,p(v) :=

Nd∑
l=1

β̂

(
λl
2j

)
ul(p)ul(v), r = 1, . . . , n.

(2)

Here, the scaling functions {α;β(1), . . . , β(n)}, are associ-
ated with a filter bank η = {a; b(1), . . . , b(n)}, satisfying

α̂(2ξ) = â(ξ)α̂(ξ), β̂(r)(2ξ) = b̂(r)(ξ)α̂(ξ), ∀ξ ∈ R,

where ĥ(ξ) denotes the Fourier transform of a function h,
defined by ĥ(ξ) :=

∑
k∈Z h(k) e

−2πikξ. Here, α corre-
sponds to the low-pass scaling function, while {β(r)}nr=1
represent the high-pass functions, and n is the number of
high-pass channels in the filter bank.
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Figure 1: An overview of HyperSheaflets.

Sheaflet coefficients V0,W r
j ∈ RNd×m are defined as:

V0 = ⟨ϕ0,·, X⟩ = U⊤α̂
(Λ
2

)
UX,

W r
j =

〈
ψr
j,·, X

〉
= U⊤β̂(r)

( Λ

2j+1

)
UX,

(3)

where X ∈ RNd×m denotes the sheaf signal, m is the fea-
ture dimension.

Let Wr,j denote the decomposition operators given by
V0 = W0,JX and W r

j = Wr,jX . To avoid the compu-
tational burden of directly computing the eigendecomposi-
tion of sheaf Laplacian LF . Given Chebyshev polynomials
T0, · · · , Tn of fixed degree t, we can approximate the filter
bank as a ≈ T0 and b(r) ≈ Tr, then the decomposition oper-
ators Wr,j can be approximated
W0,J ≈ U⊤T0(2−K+J−1Λ) · · · T0(2−KΛ)U

= T0(2K+J−2LF ) · · · T0(2−KLF ),

Wr,1 ≈ U⊤Tr(2−KΛ)U = Tr(2−KLF ),

Wr,j ≈U⊤Tr(2−K+j−1Λ)T0(2−K+j−2Λ) · · · T0(2−KΛ)U

= Tr(2K+j−1LF )T0(2K+j−2LF ) · · · T0(2−KLF ).

Hypergraph Neural Networks with Sheaflets. Given a hy-
pergraph G = (V, E), where each node is associated with a
feature representation X ∈ RN×m, we begin by applying
a linear projection to map the input features into a higher-
dimensional space X̃ ∈ RN×(dm). We then reshape X̃ into
RNd×m to obtain a structure compatible with the vertex
stalk representation. As a result, each node is embedded as a
matrix in Rd×m, where d denotes the dimension of the ver-
tex stalk and m corresponds to the number of feature chan-
nels. Based on the constructed sheaflet operators on hyper-
graphs, i.e., W0,J ,Wr,j as defined above, we formulate a hy-
pergraph neural network consisting of two layers of sheaflet-
based spectral convolution. Specifically, the forward propa-
gation is defined as:

X̃(ℓ+1) =σ
(
W⊤

0,JΘ0,JW0,JX̃
(ℓ)W0,J

+
∑
r,j

W⊤
r,jΘr,jWr,jX̃

(ℓ)Wr,j

)
,

where ℓ = 0, 1 denotes the first and second layers, respec-
tively, and X̃(0) := X̃ is the initial input feature matrix. The
diagonal matrices Θ0,J = diag(θ0,J), Θr,j = diag(θr,j)
contain learnable spectral filter coefficients for the low- and
high-frequency components, respectively. The matrices with
W0,J , Wr,j are trainable transformation weights applied
to the corresponding frequency responses. The nonlinearity
σ(·) denotes an activation function such as ReLU.
Remark 5. The overall architecture of HyperSheaflets is
illustrated in Figure 1, where we adopt a two-layer de-
sign, consistent with our experimental setup. Technically,
the framework can be extended to deeper architectures by
incorporating residual connections and identity mappings,
following techniques introduced in (Chen et al. 2020). These
mechanisms help preserve the initial node features and facil-
itate stable training by mitigating oversmoothing (as demon-
strated in our experiments on deep HNNs equipped with
sheaflets). A generalized propagation rule for such deeper
variants can be expressed as:

X̃(ℓ+1)=σ

(((
1− αℓ

)(
W⊤

0,JΘ0,JW0,JX̃
(ℓ)+

∑
r,j

W⊤
r,jΘr,j

· Wr,jX̃
(ℓ)
)
+ αℓX̃

)(
(1− βℓ)I+ βℓΘ

(ℓ)
))
,

where αℓ, βℓ are two hyperparameters, Θ(ℓ) is the trainable
parameter matrix.

5 Experiments
5.1 Experimental Setups
Datasets. We evaluate HyperSheaflets on 12 benchmark
datasets, including Cora, Citeseer, Pubmed, Cora-CA,
DBLP-CA (Yadati et al. 2019), House (Chodrow, Veldt, and
Benson 2021), Senate, and Congress (Fowler 2006), as well
as four recently introduced heterophilic hypergraph datasets:
Actor, Twitch, Amazon, and Pokec (Li et al. 2025b). For the
first eight datasets, we adopt a 50%/25%/25% split for train-
ing, validation, and testing, while the heterophilic datasets



Table 1: Accuracy (%) comparison across 12 datasets, including six homophilic and six heterophilic ones. Results are reported as
mean and standard deviation over 10 runs. Best results are in bold; second-best are underlined. ‘OOM’ denotes out-of-memory.

Datasets Cora Citeseer Pubmed Cora-CA DBLP-CA Congress

HGNN 79.39 ± 1.36 72.45 ± 1.16 86.44 ± 0.44 82.64 ± 1.65 91.03 ± 0.20 91.26 ± 1.15
HyperGCN 78.45 ± 1.26 71.28 ± 0.82 82.84 ± 8.67 79.48 ± 2.08 89.38 ± 0.25 55.12 ± 1.96
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 88.25 ± 0.40 83.60 ± 1.14 91.69 ± 0.19 94.81 ± 0.81
HyperND 79.20 ± 1.14 72.62 ± 1.49 86.68 ± 1.32 80.62 ± 1.32 90.35 ± 0.26 74.63 ± 3.62

AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 88.75 ± 0.33 81.97 ± 1.50 91.27 ± 0.27 91.80 ± 1.53
AllSetTransformer 78.58 ± 1.47 73.08 ± 1.20 88.72 ± 0.37 83.63 ± 1.47 91.53 ± 0.23 92.16 ± 1.05

ED-HNN 80.31 ± 1.35 73.70 ± 1.38 89.03 ± 0.53 83.97 ± 1.55 91.90 ± 0.19 95.00 ± 0.99
SheafHyperGNN 81.30 ± 1.70 74.71 ± 1.23 87.68 ± 0.60 85.52 ± 1.28 91.59 ± 0.24 91.81 ± 1.60

HyperUFG 81.51 ± 0.99 74.72 ± 2.10 88.73 ± 0.42 85.18 ± 0.69 91.67 ± 0.31 OOM
HyperSheaflets(Ours) 81.60 ± 1.92 75.19 ± 1.80 87.19 ± 0.45 85.85 ± 0.92 91.58 ± 0.27 92.07 ± 1.22

Datasets Senate House Actor Amazon Twitch Pokec Rank(↑)

HGNN 48.59 ± 4.52 61.39 ± 2.96 74.47 ± 0.32 23.79 ± 0.24 51.88 ± 0.26 49.82 ± 0.27 8
HyperGCN 42.45 ± 3.67 48.32 ± 2.93 68.67 ± 4.38 22.53 ± 3.94 51.32 ± 1.02 52.43 ± 3.68 10
UniGCNII 49.30 ± 4.25 67.25 ± 2.57 80.48 ± 1.13 26.63 ± 1.32 50.84 ± 0.76 54.25 ± 2.70 5
HyperND 52.82 ± 3.20 51.70 ± 3.37 92.52 ± 0.81 26.08 ± 0.33 51.44 ± 0.67 55.94 ± 0.45 7

AllDeepSets 48.17 ± 5.67 67.82 ± 2.40 82.00 ± 2.33 18.60 ± 0.17 50.72 ± 0.96 51.11 ± 1.04 9
AllSetTransformer 51.83 ± 5.22 69.33 ± 2.20 83.39 ± 1.73 18.60 ± 0.17 50.45 ± 0.76 58.40 ± 0.42 6

ED-HNN 64.79 ± 5.14 72.45 ± 2.28 91.86 ± 0.43 26.21 ± 0.36 50.86 ± 0.88 59.11 ± 0.57 3rd
SheafHyperGNN 68.73 ± 4.68 73.84 ± 2.30 80.09 ± 2.45 26.93 ± 3.04 51.03 ± 0.76 55.34 ± 4.39 4

HyperUFG 67.61 ± 7.00 72.82 ± 2.22 89.32 ± 0.75 40.53 ± 2.25 52.35 ± 0.04 62.30 ± 0.12 2nd
HyperSheaflets(Ours) 69.01 ± 5.39 74.49 ± 1.21 84.77 ± 0.53 27.13 ± 0.48 52.29 ± 0.59 59.81 ± 0.55 1st

follow the 40%/20%/40% protocol from (Li et al. 2025b) to
ensure fair comparison. Further details on the dataset statis-
tics are summarized in Appendix, where we also report
node and hyperedge homophily levels, denoted as Hnode and
Hedge, respectively. Based on homophily ratios, the datasets
can be broadly categorized into eight homophilic and six
heterophilic datasets. All models are trained for up to 1,000
epochs with early stopping (patience = 200), and results are
averaged over 10 random splits to report mean accuracy and
standard deviation.
Baselines. We compare HyperSheaflets against 9 exist-
ing models, including HGNN (Feng et al. 2019), Hyper-
GCN (Yadati et al. 2019), UniGCNII (Huang and Yang
2021), HyperND (Prokopchik, Benson, and Tudisco 2022),
AllDeepSets (Chien et al. 2022), AllSetTransformer (Chien
et al. 2022), ED-HNN (Wang et al. 2023), SheafHyper-
GNN (Duta et al. 2024), HyperUFG (Li et al. 2025b) .

5.2 Overall Performance Comparison
Table 1 summarizes the performance of HyperSheaflets on
node classification tasks across eight widely used bench-
marks and four recently introduced heterophilic datasets.
The results demonstrate that our model consistently per-
forms well across all datasets and achieves state-of-the-
art performance on the majority of them. Notably, Hyper-
Sheaflets shows clear advantages on challenging datasets
such as Senate, House, Twitch, and Pokec, highlighting
its strong capacity to model complex higher-order rela-
tionships. These results underscore the model’s robustness
and its effectiveness in handling both homophilic and het-
erophilic hypergraph structures.
Potential for Preventing Oversmoothing. We conduct a
set of experiments to examine whether HyperSheaflets can
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Figure 2: Demonstration of how HyperSheaflets alleviate
oversmoothing.

maintain stable performance as the network depth increases,
i.e., a key indicator of resistance to oversmoothing, which
is a well-known limitation in deep GNNs and HNNs. As
shown in Figure 2, HyperSheaflets exhibits stable accuracy
across a wide range of layer depths (from 1 to 32) on Cite-
seer and House datasets, which are representative of ho-
mophilic and heterophilic hypergraphs, respectively. These
results suggest that the proposed model is less prone to
oversmoothing, likely due to its multi-frequency design and
sheaf-based formulation. While this issue is not the primary
focus of our work, the findings highlight the model’s po-
tential for enabling deeper architectures without substantial
performance degradation.

5.3 Parameter Sensitivity Analysis
The scale level in HyperSheaflets controls the number of hi-
erarchical resolutions used for multi-scale spectral decom-
position, ranging from the coarsest scale (capturing global
structures) to the finest scale (capturing localized variations).
We examine its influence by varying the scale level from 1
to 6 on the Citeseer and House datasets. As shown in Fig-
ure 3, the model exhibits stable performance across differ-



Table 2: Ablation study on the contributions of low-pass and high-pass components.
Datasets Cora Citeseer Pubmed Cora-CA DBLP-CA Congress

Full model 81.60 ± 1.92 75.19 ± 1.80 87.19 ± 0.45 85.85 ± 0.92 91.58 ± 0.27 92.07 ± 1.22
w/o low pass 81.08 ± 1.68 74.23 ± 1.59 86.66 ± 0.53 85.35 ± 1.03 91.42 ± 0.21 91.70 ± 1.54
w/o high pass 30.77 ± 1.85 51.10 ± 1.47 40.19 ± 2.02 22.98 ± 1.93 26.70 ± 0.54 51.67 ± 1.77

Datasets Senate House Actor Amazon Twitch Pokec

Full model 69.01 ± 5.39 74.49 ± 1.21 84.77 ± 0.53 27.13 ± 0.48 52.29 ± 0.59 59.81 ± 0.55
w/o low pass 65.63 ± 5.48 73.68 ± 2.12 84.53 ± 0.45 26.99 ± 0.22 51.93 ± 0.55 59.62 ± 0.45
w/o high pass 64.51 ± 7.51 54.58 ± 3.63 62.41 ± 0.81 26.39 ± 0.70 50.79 ± 0.84 50.41 ± 0.75

ent settings, with slightly better accuracy achieved at lower
levels (e.g., 1 or 2). These results suggest that a small num-
ber of scales is sufficient for capturing meaningful multi-
frequency representations, while higher scale levels may in-
troduce redundancy and impose additional computational
overhead without significant performance improvement.
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Figure 3: Impact of scale level on the overall performance.

5.4 Ablation Study
To validate the necessity of incorporating both low-pass and
high-pass components in HyperSheaflets, we conduct an ab-
lation study by selectively removing each frequency compo-
nent and evaluating the resulting performance. Specifically,
we consider three variants: the full model (with both low-
and high-pass), a variant without low-pass components, and
a variant without high-pass components.

As shown in Table 2, removing the high-pass component
consistently leads to significant performance degradation
across all datasets. For instance, on the Cora, Pubmed, and
Actor datasets, the accuracy drops from 81.60% to 30.77%,
87.19% to 40.19%, and 84.77% to 62.41%, respectively.
This sharp decline highlights the essential role of high-pass
signals in capturing local variations and preserving node-
level discriminability, which are especially critical in non-
homophilic or structurally complex settings. In contrast, re-
moving the low-pass component results in only marginal de-
creases in performance on most datasets. The slight perfor-
mance drop indicats that while low-pass signals contribute
to smoothing and global consistency, they are less critical
than high-pass signals in our model. The relatively minor
impact of removing low-pass filtering further corroborates
our theoretical finding that high-frequency components play
a dominant role in enhancing the expressivity of hypergraph
neural networks. Figure 4 further illustrates this observa-
tion through a visualization of node embeddings on the Cora
dataset. The full model yields well-separated clusters, while
the removal of high-pass components leads to severe mixing
of class distributions. The model without low-pass filtering
still maintains clear boundaries among classes, though the

Original Full model

w/o low pass w/o high pass
Figure 4: Visualization of node embeddings on Cora for the
full HyperSheaflets model and its ablated variants (w/o low-
pass, w/o high-pass).

clusters are slightly less compact. Overall, the ablation re-
sults validate our spectral design and demonstrate that the
high-pass component is indispensable for effective hyper-
graph learning, which aligns well with our theoretical results
and insights.

6 Conclusion
This work provides a theoretical and empirical investiga-
tion into the role of spectral components in hypergraph neu-
ral networks. We prove that combining both low-pass and
high-pass signals enhances the expressive power of HGNNs,
with high-pass components playing a particularly critical
role in capturing fine-grained relational structures. Moti-
vated by these insights, we propose HyperSheaflets, a novel
sheaflet-based HNNs that integrates cellular sheaf theory
and framelet transforms to perform multi-frequency sig-
nal processing on hypergraphs. Our model effectively pre-
serves higher-order relational dependencies while empha-
sizing high-frequency information. Extensive experiments
across benchmark datasets validate the theoretical claims
and demonstrate the superior performance of the proposed
method. Inspired by our theoretical results and analysis, fu-
ture work is expected to explore more advanced hypergraph
neural networks with well-designed multi-frequency filters
in the context of complex real-world applications.
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