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Abstract
Hypergraphs provide a natural and expressive framework
for modeling high-order relationships, enabling the represen-
tation of group-wise interactions beyond pairwise connec-
tions. While hypergraph neural networks (HNNs) have shown
promise for learning on such structures, existing models of-
ten rely on shallow message passing and lack the ability to
extract multiscale patterns. Framelet-based techniques offer
a principled solution by decomposing signals into multiple
frequency bands. However, most prior framelet systems, par-
ticularly Haar-type ones, are sensitive to node ordering and
fail to ensure consistent representations under permutation,
leading to instability in hypergraph learning. To address this,
we propose Permutation Equivariant Framelet-based Hyper-
graph Neural Networks (PEF-HNN), a novel framework
that integrates multiscale framelet analysis with permutation-
consistent learning. We construct a new family of permuta-
tion equivariant Haar-type framelets specifically designed for
hypergraphs, supported by theoretical analysis of their stabil-
ity and decomposition properties. Built upon these framelets,
PEF-HNN incorporates both low-pass and high-pass compo-
nents across multiple scales into a unified neural architecture.
Extensive experiments on nine benchmark datasets, includ-
ing three homophilic and four heterophilic hypergraphs, as
well as two real-world datasets for visual object classifica-
tion, demonstrate the effectiveness of our approach, consis-
tently outperforming existing HNN baselines and highlight-
ing the advantages of permutation equivariant framelet design
in hypergraph representation learning.

1 Introduction
Hypergraphs offer a natural way to model high-order rela-
tionships among entities by allowing hyperedges to connect
arbitrary-sized subsets of nodes. This generalization of pair-
wise graphs makes hypergraphs especially suitable for rep-
resenting group-wise interactions in real-world systems such
as co-authorship networks, biological complexes, and multi-
party communications (Antelmi et al. 2023). Recent works
(Wang and Kleinberg 2024; Millán et al. 2025) have already
demonstrated both theoretically and empirically the advan-
tages of using hypergraphs directly, rather than simplifying
them into pairwise graphs for specific problem formulations.

While hypergraph neural networks (HNNs) (Kim et al.
2024) have emerged as a promising tool for learning from
such structures, most existing models rely on local or shal-
low message passing, which may be insufficient to capture

the diverse and multiscale dependencies inherent in com-
plex hypergraph data. To enhance representational power,
recent works (Li et al. 2025a) have explored the integra-
tion of spectral techniques, such as wavelets (Hammond,
Vandergheynst, and Gribonval 2011) and framelets (Dong
2017), into neural architectures. Framelets, in particular, en-
able multiscale decomposition of signals, allowing simul-
taneous extraction of smooth (low-frequency) and detailed
(high-frequency) structural patterns (Zheng et al. 2021,
2022). However, a critical limitation persists: many exist-
ing framelet constructions, especially Haar-type framelets,
are sensitive to node ordering. Since their bases often de-
pend on hierarchical structures built from a specific node
sequence, reordering the nodes while preserving the hyper-
graph structure can lead to inconsistencies in the generated
framelet representations. This lack of permutation equivari-
ance undermines the stability and reproducibility of learned
features, especially in hypergraph settings where the struc-
tural complexity magnifies sensitivity to input permutations.
While recent advances have proposed permutation equivari-
ant framelets for standard graphs (Li et al. 2024), the exten-
sion to hypergraphs remains unexplored.

To address this gap, we propose a novel framework,
Permutation Equivariant Framelet-based Hypergraph Neu-
ral Networks (termed PEF-HNN), which combines the
strengths of multiscale framelet analysis with permutation-
consistent representation learning on hypergraphs. At the
core of our framework lies a new design of Haar-type
framelets that are permutation equivariant and specifically
tailored for hypergraph structures, constructed based on hi-
erarchical decompositions of node groups derived from hy-
peredge incidence. These framelets ensure that the trans-
formation of node signals remains consistent under arbi-
trary reordering. Built on this foundation, PEF-HNN in-
corporates multi-scale framelet transforms as input chan-
nels within a unified neural architecture, enabling effective
capture of both low-pass and high-pass components across
multiple structural resolutions. We evaluate PEF-HNN on
hypergraph node classification tasks using nine benchmark
datasets, including three homophilic and four heterophilic
hypergraphs, as well as two real-world datasets for visual
object classification. Extensive comparisons against existing
HNN baselines demonstrate the compelling performance of
our model, highlighting the benefits of constructing permu-



tation equivariant framelets for enhancing hypergraph repre-
sentation learning.

In summary, our contributions are three-fold:
• Theoretical Result: We construct a new family of per-

mutation equivariant Haar-type framelets on hypergraphs
and provide theoretical analysis of their key properties,
enabling stable and consistent multiscale decomposition
under arbitrary node reorderings;

• Model Development: We propose PEF-HNN, a novel
framework that integrates permutation equivariant
framelet-based multiscale representations into hy-
pergraph neural networks for effective hypergraph
learning;

• Experimental Study: We validate the effectiveness of
PEF-HNN through extensive experiments on nine bench-
mark datasets, including five homophilic and four het-
erophilic hypergraphs, as well as two real-world datasets
for visual object classification. The results consistently
show performance gains over existing HNN baselines,
underscoring the benefits of incorporating permutation
equivariant framelet design in hypergraph learning.

2 Related Work
Hypergraph neural networks (HNNs) have emerged as pow-
erful tools for modeling high-order relational structures,
where each hyperedge can connect an arbitrary subset of
nodes. Classical models such as HGNN (Feng et al. 2019)
and HyperGCN (Yadati et al. 2019) extend traditional graph
neural networks (GNNs) by using incidence matrix-based
propagation or clique expansion techniques. However, these
methods primarily rely on shallow message passing and are
constrained by their inability to effectively capture multi-
scale or high-frequency information inherent in complex hy-
pergraphs. To improve learning capacity, UniGCNII (Huang
and Yang 2021) introduces deep architectures with identity
and residual connections to mitigate oversmoothing, while
ED-HNN (Wang et al. 2023) incorporates edge-dependent
transformations for more flexible and adaptive aggregation.
Set-based approaches such as AllDeepSets and AllSetTrans-
former (Chien et al. 2022) treat each hyperedge as a set and
model intra-hyperedge interactions through permutation-
invariant functions, offering a principled way to handle un-
ordered node sets and dynamic hyperedge cardinality. Nev-
ertheless, these models largely ignore the global hierarchi-
cal structure of hypergraphs and often lack a spectral or
frequency-aware perspective.

To overcome the limitations of local aggregation, recent
efforts have explored spectral methods for hypergraph learn-
ing. For example, Li et al. (2025a,b) propose framelet-based
HNNs that construct multiscale representations using hy-
pergraph Laplacian eigenbases. These spectral framelets en-
able the decomposition of node features into low- and high-
frequency components, allowing the model to capture both
smooth and oscillatory patterns. However, such Laplacian-
induced framelet transforms are sensitive to node order-
ings and are typically designed in a global and rigid fash-
ion, without accounting for the hierarchical or local multi-
scale structure within the hypergraph. As a result, they lack

permutation consistency, meaning that reordering the input
nodes can yield inconsistent feature representations and un-
stable learning outcomes. PEGFAN (Li et al. 2024) intro-
duces Haar-type framelets with explicit permutation equiv-
ariance for standard graph neural networks. By constructing
hierarchical trees over graph nodes and defining framelets in
a spatially localized manner, PEGFAN achieves consistent
multiscale decomposition regardless of node ordering. This
property is crucial for learning robust representations and
ensuring stability across varying graph structures. However,
the extension of permutation equivariant framelets to hy-
pergraphs has not been systematically studied. Hypergraphs
present additional challenges due to their higher-order con-
nectivity and more complex combinatorial structures, which
require novel design principles beyond those developed for
pairwise graphs.

Motivated by these observations, our work devel-
ops a new family of permutation equivariant Haar-type
framelets specifically designed for hypergraphs. By leverag-
ing hyperedge-induced hierarchical groupings, we construct
localized framelet transforms that preserve equivariance un-
der node permutations and support multiscale signal ex-
traction. These framelets are integrated into a unified HNN
framework, enabling robust and expressive hypergraph rep-
resentation learning across both homophilic and heterophilic
structures.

3 Proposed Method
3.1 Notation and Preliminaries
A hypergraph is represented as G = (V, E), comprising a
vertex set V of size N = |V|, a hyperedge set E of size
M = |E|. Suppose that vertices and hyperedges have fea-
ture dimensions d and m, respectively, we have the repre-
sentation of vertex data as X ∈ RN×d and hyperedge data
as Y ∈ RM×o.

The hypergraph structure, from a vertex perspective, is
defined by an incidence matrix H ∈ {0, 1}N×M where
H(v, e) = 1 if vertex v is contained in hyperedge e, and
0 otherwise, as represented by:

H(v, e) =

{
1, if v ∈ e;
0, otherwise. (1)

The degrees of vertex v and hyperedge e are denoted by di-
agonal matricesDv ∈ RN×N andDe ∈ RM×M , calculated
as

∑
e∈EH(v, e) and

∑
v∈VH(v, e), respectively.

3.2 Construction of Permutation Equivariant
Framelets on Hypergraphs

A hypergraph signal f = [f1, . . . , fN ]⊤ ∈ RN is con-
sidered as f : V = {1, 2, . . . , N} → R with ℓ2 norm
∥f∥2 =

∑N
i=1 |fi|2 < ∞. All such signals form a Hilbert

space L2(G) under the usual inner product ⟨f , g⟩ := f⊤g
for f , g ∈ L2(G). A collection {ei : i ∈ [I]} ⊂ L2(G)
is a tight frame of L2(G) if f =

∑I
i=1⟨f , ei⟩ei for all

f ∈ L2(G), where we denote [I] := {1, . . . , I}. We denote
the i-th column vector and row vector of a matrix M , by
M:i and Mi:, respectively. For K ≥ 2, we call a sequence



PK := {Vj : j = 1, . . . ,K} of sets as a K-hierarchical
clustering of V if each Vj := {sΛ ⊂ V : dim(Λ) = j} is
a partition of V , i.e., V = ∪ΛsΛ, and Vj is a refinement of
Vj−1, where we use the index vector Λ = (λ1, . . . , λj) ∈
Nj to encode position, level j, and parent-children relation-
ship, of the clusters sΛ, and dim(Λ) is the length of the
index vector. If sΛ ∈ Vj is a parent, then the index vec-
tors of its children are appended with an integer, i.e. (Λ, i),
indicating its i-th child, and thus the child is denoted by
s(Λ,i) ∈ Vj+1. Then we have the parent-children relation-
ship s(Λ,i) ⊂ sΛ. We denote the number of children of sΛ
by LΛ. Unless specified, we consider K-hierarchical clus-
tering PK with VK = {{1}, . . . , {N}} and V1 = {[N ]}
being a singleton, i.e., PK is a tree.

Given PK and any j0 ∈ [K], we next define a sequence
of framelet systems

Fj0(PK) :={ϕΛ : dim(Λ) = j0}
∪ {ψΛ : dim(Λ) = j}Kj=j0+1

(2)

of scaling vectorsϕΛ and framelet vectorsψ(Λ,m) in L2(G).
For the scaling vectors ϕΛ, they are defined iteratively from
dim(Λ) = K to dim(Λ) = 1. When dim(Λ) = K, each
cluster (node) sΛ contains only one vertex in hypergraph G,
and we define ϕΛ = I:i, where i ∈ sΛ ⊂ V and I:i is
the i-th column of the identity matrix I ∈ RN×N . When
dim(Λ) < K, we define

ϕΛ :=
∑

ℓ∈[LΛ]

p(Λ,ℓ)ϕ(Λ,ℓ), (3)

where pΛ,ℓ ≡ 1√
LΛ

. Obviously, ϕΛ is with support
suppϕΛ = sΛ and ∥ϕΛ∥ = 1. For the framelet vectors,
we define ψ(Λ,i), i ∈ [IΛ] with IΛ := LΛ(LΛ−1)

2 by

ψ(Λ,i) :=
∑

ℓ∈[LΛ]

(BΛ)i,ℓ ϕ(Λ,ℓ), (4)

where the matrices BΛ ∈ RIΛ×LΛ are defined row-by-row
with its i-th row [BΛ]i: = [w1, . . . , wLΛ

] being given by

wτ =


1√
LΛ

τ = ℓ1;
−1√
LΛ

τ = ℓ2;

0 otherwise.
(5)

Here 1 ≤ ℓ1 < ℓ2 ≤ LΛ is uniquely determined by
i = i(ℓ1, ℓ2, LΛ) = (2LΛ−ℓ1)(ℓ1−1)

2 + ℓ2 − ℓ1. In short,
the row of BΛ is obtained by permutating the row vector

1√
LΛ

[1,−1, 0, . . . , 0].

3.3 Theoretical Properties
Theorem 1 shows that Fj0(PK) is a tight frame.

Theorem 1. Let Fj0(PK) be defined as by (2). Then
Fj0(PK) is a tight frame of L2(G) for any j0 ∈ [K].

Proof. We prove the result by induction on j0. Obviously,
for j0 = K, FK(PK) = {I:i}Ni=1 is simply the orthonor-
mal basis and thus a tight frame. Suppose for j0 = k + 1,

Fk+1(PK) is tight. We need to show that Fk(PK) is tight.
That is, for all f ∈ L2(G), we have

f =
∑

dim(Λ)=k

⟨f ,ϕΛ⟩ϕΛ +

K∑
j=k+1

∑
dim(Λ)=j

⟨f ,ψΛ⟩ψΛ.

By the induction hypothesis, we only need to show∑
dim(Λ)=k

⟨f ,ϕΛ⟩ϕΛ +
∑

dim((Λ,i))=k+1

⟨f ,ψ(Λ,i)⟩ψ(Λ,i)

=
∑

dim(Λ)=k+1

⟨f ,ϕΛ⟩ϕΛ.

By definition ofϕΛ andψ(Λ,i) in (3) and (4), it is equivalent
to that for each Λ with dim(Λ) = k, it holds

pΛp
⊤
Λ +B⊤

ΛBΛ = I,

where pΛ := [p(Λ,1), . . . , p(Λ,LΛ)]
⊤ ≡ 1√

LΛ
1 is the con-

stant vector and BΛ is the matrix defined in (5), which
is true thanks to the structures of pΛ and BΛ. Therefore,
Fk(PK) is tight.

We have the following remarks concerning the properties
of Fj0(PK).
Remark 1. Let Fj0(PK) := {ϕΛ,dim(Λ) = j0} ∪
{ψΛ,dim(Λ) = j}Kj=j0+1 =: {ui}IGi=1 with IG the to-
tal number of vectors in Fj0(PK). We denote F :=
[u1, . . . ,uIG ]

⊤ ∈ RIG×N to be its matrix representation.
Then, by the tight frame property, we have F⊤F = I ∈
RN×N .
Remark 2. If for all Λ, we have LΛ ≤ h for some inte-
ger h ≥ 2, then K = O(logh N). One can show that the
total number IG is of order IG = O(Nh) and hence the
total number nnz(F) of nonzero entries of F is of order
nnz(F) = O(Nh logh N). In practice, h is usually small
(e.g., 2, 4, or 8), and hence F is a sparse matrix. Thus, F
can be stored as a sparse matrix and the framelet coefficient
vectors f̂ := Ff can be computed efficiently with the com-
putational complexity of order O(Nh logh N).

Let π : V → V be a reordering (relabeling, bijection)
of V = {1, 2, . . . , N}, i.e., π is w.r.t. a permutation on
[N ] with π(V ) = {π(1), . . . , π(N)}. We denote π(G) =
(π(V ), π(E)) with π(E) := {π(e) : e ∈ E} being given by
π(e) := {π(v) : v ∈ e}. The corresponding signal f on
G is reordered to be π(f) under the newly ordered π(G). In
other words, given a π, there exists a permutation matrix Pπ

of size N ×N such that π(f) = Pπf . Fix G = (V, E) and
PK . Denote our construction of F = Fj0(PK) by

A(G,PK) = F .

For each permutation π, the construction A is called permu-
tation equivariant if

A (π(G),PK) = π (A(G,PK)) ,

where π(F) := FPπ . We have the following result con-
cerning the permutation equivariant property of our con-
struction of Fj0(PK) with respect to the reordering of V .



Theorem 2. For any permutation π, we have
A (π(G),PK) = π(A(G,PK)).

Proof. Let ΦΛ := [ϕ(Λ,1), . . . ,ϕ(Λ,LΛ)]
⊤ and ΨΛ :=

[ψ(Λ,1), . . . ,ψ(Λ,IΛ)]
⊤. Since the scaling vectors ϕ⊤

Λ =

p⊤ΛΦΛ are defined iteratively for dim(Λ) decreasing from
K to 1 and the framelets ψ(Λ,m) are given by ΨΛ =
BΛΦΛ, we only need to prove the permutation equivari-
ant properties for each Λ. Note that ϕ(Λ,ℓ) : V → R only
depends on G, PK , and pΛ = 1√

LΛ
1. For any permutation

π, the PK is determined by the index vectors Λ according
to a tree structure and is independent of the permutation π.
Moreover, the vectors pΛ are fixed constants. Hence, itera-
tively, after the permutation π acting on G, the new scaling
vector ϕπ

(Λ,ℓ) : π(V) → R is given by ϕπ
(Λ,ℓ) = Pπϕ(Λ,ℓ),

where Pπ is the permutation matrix with respect to π. Con-
sequently, the new Φπ

Λ and Ψπ
Λ on the permuted hypergraph

π(G) are given by Φπ
Λ = ΦΛPπ and Ψπ

Λ = BΛΦ
π
Λ =

BΛΦΛPπ = ΨΛPπ . This implies the conclusion.

Remark 3. Theorem 2 shows that framelet system F =
Fj0(PK) is permutation equivariant when reordering node
indices. We call F a Permutation Equivariant Framelet
(PEF) system.

3.4 Hypergraph Neural Networks with PEF
After constructing the permutation equivariant framelet
(PEF) system (see the above section), we can design Hy-
pergraph Neural Networks with PEF, termed as PEF-HNN,
as follows:

X(ℓ+1) =σ

((
(1− αℓ)F⊤diag(θ)FX(ℓ) + αℓX

(0)
)

·
(
(1− βℓ)I + βℓΘ

(ℓ)
))

,

(6)

where θ ∈ RIG is the learnable filter, F ∈ RIG×N denotes
framelet matrix representation of our PEF system.
Theorem 3. Let G = (V, E) be a hypergraph with fea-
ture matrix X(0) and a K-hierarchical partition PK . Let
P be a permutation matrix w.r.t. to a permutation π on V .
If the permuted feature matrix PX(0) and framelet system
π(A(G,PK)) are used in the PEF-HNN network (6), then
the new output X(ℓ+1)

P of each layer differs from the origi-
nal one by a permutation matrix, i.e.X(ℓ+1)

P = PX(ℓ+1).
Proof. Let F := A(G,PK). Then we have Fπ :=
π(A(G,PK)) = FP . Thus, (by induction on ℓ), we have

X
(ℓ+1)
P = σ

((
(1− αℓ)F⊤

π diag(θ)FπPX
(ℓ) + αℓPX

(0)
)

·
(
(1− βℓ)I + βℓΘ

(ℓ)
))

= σ

((
(1− αℓ)PF⊤diag(θ)FX(ℓ) + αℓPX

(0)
)

·
(
(1− βℓ)I + βℓΘ

(ℓ)
))

= PX(ℓ+1).

4 Experiments
4.1 Datasets
We evaluate the performance of PEF-HNN across a diverse
collection of hypergraph datasets spanning various domains.
Specifically, we use seven publicly available real-world hy-
pergraph datasets: Cora, Citeseer, and Cora-CA (covering
both cocitation and coauthorship networks)(Yadati et al.
2019), Actor and Twitch(Li et al. 2025b), as well as Sen-
ate and House (Fowler 2006; Chodrow, Veldt, and Benson
2021). These datasets are categorized based on the hyper-
edge homophily ratio Hedge(Li et al. 2025b), where datasets
with Hedge > 0.5 are labeled homophilic, and those with
Hedge ≤ 0.5 are labeled heterophilic. In addition, we in-
clude two real-world datasets for visual object classification:
the 3D NTU2012 dataset(Chen et al. 2003) and the Prince-
ton ModelNet40 dataset (Wu et al. 2015), which evaluate the
model’s capability in geometric understanding and 3D shape
classification. Full descriptions of all datasets can be found
in the Appendix.

4.2 Baselines and Implementation Details.
We adopt different data splits for training, validation,
and testing according to standard practices. For Actor
and Twitch, we follow the 40%/20%/40% split introduced
in (Wang et al. 2023), while the remaining datasets use
a 50%/25%/25% split following (Li et al. 2025b). PEF-
HNN is evaluated against two groups of baseline methods:
(i) general-purpose hypergraph neural networks, including
HGNN (Feng et al. 2019), HyperGCN (Yadati et al. 2019),
UniGCNII (Huang and Yang 2021), AllDeepSets, and
AllSetTransformer (Chien et al. 2022); and (ii) heterophily-
aware HNNs, specifically ED-HNN (Wang et al. 2023) and
HyperUFG (Li et al. 2025b). Additional experimental set-
tings as well as the code link are provided in the Appendix.

All experiments are implemented in PyTorch and
conducted on a single NVIDIA RTX A6000 GPU with
48GB memory. We use the Adam optimizer (Kingma
and Ba 2014) and perform grid search to tune hy-
perparameters. The learning rate is selected from
{5e−3, 3e−3, 2e−3, 1e−3, 5e−2, 3e−2, 2e−2, 1e−2};
weight decay from {5e−5, 1e−5, 5e−4, 1e−4, 5e−3, 1e−3};
hidden dimensions from {32, 64, 128, 256, 512, 1024}; and
the number of layers from the range [1, 128]. For baseline
methods, we report published results when available.
Otherwise, we reproduce results using the original imple-
mentations provided by the authors.

4.3 Results and Discussion
We conduct a thorough evaluation of PEF-HNN on a di-
verse set of hypergraphs that vary in their degree of ho-
mophily. The analysis includes comparisons with both con-
ventional hypergraph neural networks (HNNs) and recent
models specifically designed for heterophilic structures. Ta-
ble 1 reports the classification accuracy (%) on three repre-
sentative homophilic datasets: Cora, Citeseer, and Cora-CA,
and four heterophilic datasets: Actor, Twitch, Senate, and
House.



Table 1: Performance comparison between PEF-HNN and baselines on classification accuracy (%) across three homophilic and
four heterophilic hypergraphs. The best results are shown in bold, and the second-best are underlined.

Methods Cora Citeseer Cora-CA Actor Twitch Senate House
Hom. ratio, Hedge 0.7462 0.6814 0.7797 0.4675 0.4857 0.4642 0.4851

HGNN 79.39 ± 1.36 72.45 ± 1.16 82.64 ± 1.65 74.47 ± 0.32 51.88 ± 0.26 48.59 ± 4.52 61.39 ± 2.96
HyperGCN 78.45 ± 1.26 71.28 ± 0.82 79.48 ± 2.08 68.67 ± 4.38 51.32 ± 1.02 42.45 ± 3.67 48.32 ± 2.93
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 83.60 ± 1.14 80.48 ± 1.13 50.84 ± 0.76 49.30 ± 4.25 67.25 ± 2.57

AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 81.97 ± 1.50 82.00 ± 2.33 50.72 ± 0.96 52.82 ± 3.20 51.70 ± 3.37
AllSetTransformer 78.58 ± 1.47 73.08 ± 1.20 83.63 ± 1.47 83.39 ± 1.73 50.45 ± 0.76 51.83 ± 5.22 69.33 ± 2.20

ED-HNN 80.31 ± 1.35 73.70 ± 1.38 83.97 ± 1.55 91.86 ± 0.43 50.86 ± 0.88 64.79 ± 5.14 72.45 ± 2.28
HyperUFG 81.51 ± 0.99 74.72 ± 2.10 85.18 ± 0.69 89.32 ± 0.75 52.35 ± 0.04 67.61 ± 7.00 72.82 ± 2.22

PEF-HNN (Ours) 81.51 ± 0.98 74.96 ± 1.77 86.00 ± 0.71 90.27 ± 2.13 53.18 ± 0.37 68.45 ± 6.84 73.25 ± 1.55
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Figure 1: Comparison of the models’ ability to alleviate oversmoothing: Cora-CA (left), Senate (middle), House (right).

From the results, we observe that PEF-HNN consis-
tently achieves competitive or superior performance across
all datasets. On the homophilic datasets, PEF-HNN ei-
ther matches or outperforms the best baselines. Notably,
it achieves the highest accuracy on Cora-CA (86.00%)
and matches the top-performing model on Cora (81.51%),
demonstrating its ability to capture low-frequency pat-
terns typical of homophilic structures. On the heterophilic
datasets, where high-frequency components are more promi-
nent, PEF-HNN shows strong performance, achieving the
best results on Twitch (53.18%), Senate (68.45%), and
House (73.25%), while remaining competitive on Actor.

Compared to general-purpose HNNs such as HGNN, Hy-
perGCN, and UniGCNII, PEF-HNN demonstrates more sta-
ble performance across both homophilic and heterophilic
regimes. Furthermore, while ED-HNN and HyperUFG are
tailored for heterophilic hypergraphs, PEF-HNN surpasses
them on three of the four heterophilic datasets. These results
highlight the advantage of integrating permutation equiv-
ariant framelets, which allow PEF-HNN to flexibly capture
both coarse and fine-grained structural signals without sen-
sitivity to node ordering. Overall, these findings confirm the
effectiveness and generalizability of the proposed PEF-HNN
framework, which demonstrates robust performance across
varying hypergraph structures and homophily levels.

4.4 Ability to Alleviate Oversmoothing
We also study empirically the ability of PEF-HNN to al-
leviate oversmoothing as the number of layers increases.
Figure 1 presents accuracy trends on three representative
datasets: Cora-CA (left), Senate (middle), and House (right)

as the number of layers increases from 1 to 128. We compare
PEF-HNN with HGNN, UniGCNII, AllDeepSets, AllSet-
Transformer, ED-HNN, and HyperUFG.

Among the baselines, UniGCNII benefits from residual
connections and maintains moderate performance at deeper
layers on Cora-CA. However, its accuracy drops signifi-
cantly beyond two layers on the heterophilic Senate and
House datasets. ED-HNN performs competitively on Senate
and House at shallower depths but exhibits sharp degrada-
tion and higher variance after 8 layers on Cora-CA. Hyper-
UFG remains relatively stable across all three datasets, yet
its performance does not consistently improve with depth. In
contrast, PEF-HNN demonstrates strong resistance to over-
smoothing and consistently benefits from increased depth.
On all three datasets, its accuracy either improves or remains
steady as the number of layers increases, with notably lower
variance compared to other methods. This indicates that the
integration of permutation equivariant framelet transforms
enables effective multi-scale representation learning while
preserving discriminative features even in very deep archi-
tectures. These results demonstrate that PEF-HNN effec-
tively avoids oversmoothing on both homophilic and het-
erophilic hypergraphs, even at large depths.

4.5 Parameter Sensitivity Analysis
We investigate the sensitivity of PEF-HNN to two key hy-
perparameters, α and β, which influence the architectural
dynamics of the model. As illustrated in Figure 2, we con-
duct univariate experiments by varying each parameter in-
dependently in the range {0.1, 0.2, . . . , 0.9} on three repre-
sentative datasets: Cora, Senate, and House. The parameter
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Figure 2: Sensitivity analysis of α (top row) and β (bottom row) on Cora (left), Senate (middle), and House (right) datasets.

Table 2: Ablation study evaluating the impact of low-pass and high-pass components in PEF-HNN.

Cora Citeseer Cora-CA Actor Twitch Senate House
Full model 81.51 ± 0.98 74.96 ± 1.77 86.00 ± 0.71 90.27 ± 2.13 53.18 ± 0.37 68.45 ± 6.84 73.25 ± 1.55

w/o high pass 81.39 ± 1.17 75.06 ± 2.01 85.58 ± 1.00 88.71 ± 2.76 51.32 ± 0.89 67.32 ± 6.53 71.98 ± 1.76
w/o low pass 81.45 ± 0.99 74.81 ± 2.00 85.44 ± 0.72 89.12 ± 2.55 52.63 ± 1.04 66.34 ± 7.38 72.26 ± 1.83

α controls the trade-off between the current node features
and their initial representations, whereas β modulates the
relative importance of the initial features in each layer via
a decaying schedule. Experimental results show that PEF-
HNN maintains stable performance across a broad range of
values for both parameters. In particular, model accuracy is
moderately affected by α, indicating its importance in pre-
serving useful initial information. In contrast, the model is
less sensitive to β, likely due to its diminishing influence
over deeper layers. Overall, these results suggest that PEF-
HNN is robust to the choice of α and β, and does not require
fine-grained tuning to achieve strong performance.

4.6 Ablation Study
We conduct an ablation study to evaluate the individual con-
tributions of the low-pass and high-pass components in PEF-
HNN. As shown in Table 2, removing either component
leads to performance degradation across most datasets, con-
firming the effectiveness of the full multi-scale design. On
heterophilic datasets (Actor, Twitch, Senate, and House),
the absence of high-pass signals results in notable accuracy
drops, underscoring their role in capturing fine-grained, dis-
criminative features. On homophilic datasets (Cora, Cite-
seer, and Cora-CA), low-pass filtering is essential, while
high-pass components still provide complementary benefits
by capturing local variations. Overall, both low-pass and
high-pass components are critical for achieving robust per-
formance across hypergraphs with varying degrees of ho-
mophily.

4.7 Visualization
To qualitatively assess the representation quality, we visu-
alize the original input features and the aggregated deep
representations learned by various HNNs on a homophilic
dataset (Citeseer) and a heterophilic dataset (House), as

shown in Figure 3. The original features exhibit unclear or
overlapping class distributions. On Citeseer, most methods
produce reasonably separable clusters, though HGNN and
UniGCNII show evident class mixing. ED-HNN and PEF-
HNN yield cleaner separation, with PEF-HNN producing
the most compact and distinct clusters. On the heterophilic
House dataset, HGNN fails to distinguish class boundaries,
and UniGCNII and ED-HNN provide partial improvements.
In contrast, PEF-HNN forms clearly separated and well-
structured clusters, demonstrating its superior ability to cap-
ture discriminative features in both homophilic and het-
erophilic settings.

4.8 Visual Object Classification
To further assess the generalization capability of PEF-HNN
beyond graph benchmarks, we apply it to the task of 3D vi-
sual object classification. Specifically, we conduct experi-
ments on two publicly available real-world datasets: Model-
Net40 (Wu et al. 2015), a large-scale CAD model bench-
mark widely used in shape classification, and NTU2012
(Chen et al. 2003), a smaller but challenging dataset consist-
ing of geometric 3D models with high intra-class variability.
Hypergraph Construction. We construct both single-view
and multi-view hypergraphs based on shape features ex-
tracted from two well-established deep architectures: Multi-
view Convolutional Neural Network (MVCNN)(Su et al.
2015) and Group-View Convolutional Neural Network
(GVCNN)(Feng et al. 2018). In the single-view setting, each
3D object is embedded into either the MVCNN or GVCNN
feature space, and a hypergraph is constructed using the k-
nearest neighbor (k-NN) approach: each object is treated
as a centroid and connected to its k nearest neighbors to
form one hyperedge. This procedure results in N hyper-
edges for N objects, where the structure reflects local simi-
larities in the selected feature space. For the multi-view set-
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Figure 3: Visualization comparison of raw input features and learned representations on Citeseer (top) and House (bottom).

Table 3: Comparison between GCN, HGNN and PEF-HNN
on ModelNet40 (top) and NTU2012 (bottom).

Feature GCN HGNN PEF-HNN
GVCNN 91.8% 92.6% 97.2%
MVCNN 86.7% 91.0% 92.1%

GVCNN&MVCNN 94.4% 96.7% 98.4%
Feature GCN HGNN PEF-HNN
GVCNN 78.8% 82.5% 93.3%
MVCNN 71.3% 75.6% 89.1%

GVCNN&MVCNN 76.1% 84.2% 91.4%

Table 4: Performance comparison of state-of-the-art classi-
fication methods on ModelNet40.

Methods Accuracy
PointNet (Qi et al. 2017a) 89.2%

PointNet++ (Qi et al. 2017b) 90.7%
PointCNN (Li et al. 2018) 91.8%

SO-Net (Li, Chen, and Lee 2018) 93.4%
Point-UMAE (Zeng et al. 2025) 94.2%

HGNN (Feng et al. 2019) 96.7%
ED-HNN (Wang et al. 2023) 97.8%

PEF-HNN 98.4%

ting, we independently perform k-NN hyperedge construc-
tion in both feature spaces and then concatenate the result-
ing hyperedge incidence matrices. This fused representation
integrates complementary information from both MVCNN
and GVCNN, thereby enriching the relational structure used
in PEF-HNN. Full implementation details and hyperparam-
eter choices are provided in the Appendix.
Performance Comparison. As shown in Tables 3 and 4,
PEF-HNN consistently achieves superior performance
across both ModelNet40 and NTU2012 benchmarks. On
ModelNet40, it attains the highest classification accuracy
of 98.4%, outperforming strong point-based models such

as PointCNN (91.8%) and Point-UMAE (94.2%), as well
as existing hypergraph methods like HGNN and ED-HNN.
This highlights the effectiveness of our permutation equiv-
ariant framelet design in capturing structured geomet-
ric information. Furthermore, PEF-HNN demonstrates ro-
bust performance across different feature extraction set-
tings: when using single-view embeddings (MVCNN or
GVCNN), it consistently surpasses both GCN and HGNN
on both datasets. Notably, the multi-view fusion setting
(combining GVCNN and MVCNN) further boosts accuracy,
allowing PEF-HNN to leverage complementary shape fea-
tures for more discriminative representations. These results
collectively confirm that PEF-HNN is well-suited for visual
object classification and generalizes effectively to complex,
real-world hypergraph structures.

5 Conclusion
This paper presents PEF-HNN, a novel hypergraph neural
network framework that leverages permutation equivariant
framelets for multiscale hypergraph representation learning.
By constructing a new class of Haar-type framelets specif-
ically tailored for hypergraph structures and ensuring con-
sistency under arbitrary node reorderings, our method ad-
dresses a critical limitation of existing framelet-based ap-
proaches. The integration of these framelets into a unified ar-
chitecture enables the model to capture both global and local
structural patterns, enhancing its adaptability to diverse hy-
pergraph characteristics. Experimental results across seven
benchmark datasets and two real-world visual object clas-
sification datasets confirm the effectiveness of PEF-HNN
in both homophilic and heterophilic hypergraph settings.
For the future work, it is promising to explore extensions
of this framework to dynamic or temporal hypergraphs,
where structural evolution adds another layer of complex-
ity. Moreover, combining permutation equivariant framelets
with other types of high-order signal processing techniques
may further improve model generalization and interpretabil-
ity in broader learning tasks.
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and Montúfar, G. 2021. How framelets enhance graph neural
networks. In ICML, 12761–12771.
Zheng, X.; Zhou, B.; Wang, Y. G.; and Zhuang, X. 2022.
Decimated framelet system on graphs and fast G-framelet
transforms. Journal of Machine Learning Research, 23(18):
1–68.

Reproducibility Checklist
1. General Paper Structure
1.1. Includes a conceptual outline and/or pseudocode de-

scription of AI methods introduced (yes/partial/no/NA)
yes

1.2. Clearly delineates statements that are opinions, hypoth-
esis, and speculation from objective facts and results
(yes/no) yes

1.3. Provides well-marked pedagogical references for less-
familiar readers to gain background necessary to repli-
cate the paper (yes/no) yes

2. Theoretical Contributions
2.1. Does this paper make theoretical contributions?

(yes/no) yes

If yes, please address the following points:

2.2. All assumptions and restrictions are stated clearly
and formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem
statements) (yes/partial/no) yes



2.4. Proofs of all novel claims are included (yes/par-
tial/no) yes

2.5. Proof sketches or intuitions are given for complex
and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are
given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically
to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove
claims is included (yes/no/NA) yes

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no)
yes

If yes, please address the following points:

3.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) yes

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) yes

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) yes

3.6. All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are publicly available (yes/par-
tial/no/NA) yes

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) yes

4. Computational Experiments

4.1. Does this paper include computational experiments?
(yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values
tried per (hyper-) parameter during development of
the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) par-
tial

4.3. Any code required for pre-processing data is in-

cluded in the appendix (yes/partial/no) yes

4.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) partial

4.5. All source code required for conducting and ana-
lyzing the experiments will be made publicly avail-
able upon publication of the paper with a license
that allows free usage for research purposes (yes/-
partial/no) yes

4.6. All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) yes

4.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) yes

4.8. This paper specifies the computing infrastructure
used for running experiments (hardware and soft-
ware), including GPU/CPU models; amount of
memory; operating system; names and versions of
relevant software libraries and frameworks (yes/par-
tial/no) yes

4.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

4.11. Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
yes

4.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no)
partial

4.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) NA


