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Abstract Multiscale transforms for real-valued data, based on interpolatory sub-
division operators, have been studied in recent years. They are easy to define and
can be extended to other types of data, for example, to manifold-valued data. In
this chapter, we define linear multiscale transforms, based on certain linear, non-
interpolatory subdivision operators, termed “even-reversible.” For such operators,
we prove, using Wiener’s lemma, the existence of an inverse to the linear operator
defined by the even part of the subdivision mask and term it “even-inverse.” We
show that the non-interpolatory subdivision operators, with spline or pseudo-spline
masks, are even-reversible and derive explicitly, for the quadratic and cubic spline
subdivision operators, the symbols of the corresponding even-inverse operators.
We also analyze properties of the multiscale transforms based on even-reversible
subdivision operators, in particular, their stability and the rate of decay of the details.

1 Introduction

A multiscale transform is a ubiquitous way for representing data of the form
{(tk, fk), k ∈ Z}, with tk = kh for some positive h, and fk a real value associated
with the point tk . A general approach to multiscale transforms was introduced in
[21]. Such a linear representation can be obtained by discrete wavelet transforms
(see e.g. [3]). Another common way for generating a multiscale transform is based
on linear or non-linear interpolatory subdivision schemes (see e.g. [1, 6, 10, 19]).
For a detailed analysis of several non-linear multiscale transforms, see [12] and
references therein. The main applications of multiscale transforms are in data
compression and denoising (see e.g. [1, 2, 6, 18–20, 28]). Multiscale transforms
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based on interpolatory subdivision operators are simple and rather intuitive. The
linear ones were extended to manifold-valued data in [14, 15] and [24].

In this chapter, we extend the construction of multiscale transforms from
interpolatory subdivision operators to a wider class of subdivision operators termed
even-reversible operators and show that a large class of the subdivision operators
studied in the literature are even-reversible. We derive properties of the multiscale
transforms based on even-reversible subdivision operators, such as decay rates of
the data generated by the transforms, and the stability of the transforms.

1.1 Multiscale Transform: From Interpolatory
to Even-Reversible Subdivision

First, we present the multiscale transform based on an interpolatory subdivision
operator S. Let f denote a bi-infinite sequence with elements {fk ∈ R, k ∈ Z}.
Since S is interpolatory,

(Sf)2k = fk, k ∈ Z,

and it is straightforward to decimate data at level j , fj , to that at the coarser level
j −1, by taking every second element. Then, the refinement of fj−1 by S is exact for
the even elements of fj . Here is the pyramid of data generated by j decomposition
steps of the multiscale transform based on S,

f�−1 = {f (�−1)
k = f

(�)
2k , k ∈ Z}, d� = f� − Sf�−1, � = j, j − 1, . . . , 1. (1.1)

The elements of d� are termed details at level �. The data fj can be obtained exactly
from the data of the pyramid by the reconstruction steps

f� = Sf�−1 + d�, � = 1, 2, . . . , j. (1.2)

Note that every second element of d� vanishes, since S is interpolatory. Thus, this
method yields details satisfying

d�
2k = 0, k ∈ Z. (1.3)

Multiscale transforms based on non-interpolatory subdivision operators were
studied before, with the decimation from level j to level j − 1, defined by “reverse
subdivision.” In [26], fj−1 = Dfj , where the decimation operator D is related
to the subdivision operator S by a least squares fit of Sfj−1 to fj . This method
is improved in [25], by minimizing a functional consisting of two terms; one is
‖S(Dfj ) − fj‖2, and the other is a roughness measure of fj−1 = (Dfj ). It is clear
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that in this approach, the details do not satisfy (1.3). Specific ways to reverse Chaikin
scheme and Catmull–Clark scheme are presented in [22] and [23], respectively.

Here, we propose to reverse only the even elements of fj , as in the case of
interpolatory subdivision operators, namely for a given subdivision operator S to
use a decimation operator D such that

(S(Dfj ))2k = f
(j)

2k , k ∈ Z. (1.4)

This is achieved by using Wiener’s lemma [16], which guarantees the existence of
such a decimation operator, under mild conditions on the mask of S. We term such
subdivision operators, for which D satisfying (1.4) exists, even-reversible and refer
toD as the even-inverse of S.

1.2 Outline

Section 2 consists of mathematical tools and results used in the chapter, such as
Wiener’s lemma. In Sect. 3, we first give a sufficient condition on the mask of a
subdivision operator guaranteeing that the operator is even-reversible, then show
that pseudo-spline subdivision operators are even-reversible, and derive explicit
expression of the symbols of the even-inverse operators corresponding to the
quadratic and cubic spline subdivision operators. In Sect. 4, we derive the decay
rate of the details in the pyramid generated by the multiscale transform and analyze
the stability of the transform. Some final remarks are given in Sect. 5, and some
technical proofs are postponed to the Appendix.

2 Preliminaries

In this section, we introduce some necessary notation and known results related to
subdivision operators and Wiener algebra, which are used in this chapter.

We denote by l(Z) the space of real-valued sequences α : Z → R

and by l0(Z) ⊆ l(Z) the space of sequences of finite support. For p ∈
[1,∞], lp(Z) denotes the usual space of lp sequences. That is, lp(Z) :={
α ∈ l(Z) : ‖α‖p := (∑

k∈Z |αk|p
)1/p

< ∞
}
, 1 ≤ p < ∞, and l∞(Z) := {α ∈

l(Z) : ‖α‖∞ := supk∈Z |αk| < ∞}. Note that the inclusion l0(Z) ⊆ l1(Z) ⊆
lp(Z) ⊆ lq(Z) ⊆ l∞(Z) holds for any 1 < p < q < ∞.

We say that α ∈ l(Z) is a mask if α ∈ l1(Z). A mask α is of finite support
(α ∈ l0(Z)) if αk = 0 for all |k| ≥ N for some integer N . Given a mask α, we can
define the (dyadic) upscaling rule or subdivision operator Sα : l∞(Z) → l∞(Z)

associated with α by
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(Sαc)k :=
∑
�∈Z

αk−2�c�, k ∈ Z, c ∈ l∞(Z). (2.1)

It is easily seen that Sα is a bounded linear operators on l∞(Z) provided that α ∈
l1(Z). The subdivision scheme based on Sα is the repeated application of (2.1),
generating a sequence of sequences Sj

αc, j ∈ N, for c ∈ l∞(Z). The subdivision
scheme is said to be convergent if the sequence of piecewise linear interpolants to
the data {(k2−j , (Sj

αc)k), k ∈ Z}, j ∈ N, is uniformly convergent for any c ∈ l∞(Z).
For more about subdivision schemes, see e.g. [9].

We next introduce convolution, downsampling, and upsampling operations. For
two sequences α ∈ l1(Z) and c ∈ l∞(Z), we defined the convolution α ∗ c ∈ l∞(Z)

to be

(α ∗ c)k :=
∑
�∈Z

α�ck−�, k ∈ Z,

and the downsampling operator ↓ 2 applied to a sequence c to be (c ↓ 2)k := c2k ,
k ∈ Z, as well as the upsampling operator ↑ 2:

(c ↑ 2)k :=
{

ck/2 k even

0 otherwise
, k ∈ Z.

The subdivision in (2.1) can be restated as Sαc = α ∗ (c ↑ 2).
For a sequence c ∈ l(Z), we define its symbol to be

c(z) :=
∑
k∈Z

ckz
k, z ∈ C.

Its even part cev to be (cev)k = c2k = (c ↓ 2)k , k ∈ Z, and its odd part cod to be
(cod)k = c2k+1, k ∈ Z. The symbols of the even and odd parts can be determined by

cev(z
2) = c(z) + c(−z)

2
and cod(z2) = c(z) − c(−z)

2z
.

In terms of symbolic computation, it is easily shown that

[c ↓ 2](z) = cev(z), [c ↑ 2](z) = c(z2),

c(z) = cev(z
2) + z cod(z2), [α ∗ c](z) = α(z)c(z).

Moreover, we have [Sαc](z) = α(z)c(z2).
In this chapter, we investigate the following multiscale transform based on a

subdivision operator Sα:
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c(j−1) = Dγ c(j) := γ ∗ (c(j) ↓ 2), d(j) := c(j) − Sαc(j−1), (2.2)

whereDγ is a decimation operator associated with a mask γ to be determined. Iter-
ating (2.2) yields a pyramid consisting of the data {c(0); d(1), . . . , d(j)}, where c(0)

is the coarse approximation coefficients and d(�) are the detail coefficients at level
� = 1, . . . , j . The reconstruction (backward transform) from {c(0); d(1), . . . , d(j)}
is straightforward:

c(�) = Sαc(�−1) + d(�), � = 1, . . . , j, (2.3)

and it has the perfect reconstruction property for any pair (γ, α) of masks. However,
the detail coefficients d(�), � = 1, . . . , j do not necessarily satisfy (1.3).

Given a subdivision operator Sα associated with a finitely supported mask α ∈
l0(Z), we investigate the decimation operator Dγ associated with a mask γ so that

d(�) satisfies d
(�)
2k = 0, k ∈ Z, for � = 1, . . . , j , as in the case when Sα is an

interpolatory subdivision operator and Dγ c = c ↓ 2. Thus, we are seeking a mask
γ such that

[(I − SαDγ )c] ↓ 2 = 0 (2.4)

for any sequence c ∈ l∞(Z), where I is the identity operator. In such a case, the
detail coefficients can be downsampled by a factor of 2 without loss of information,
which is a desirable property in data compression.

To solve γ from (2.4), we use Wiener’s lemma [16]. First, we introduce Wiener
algebra.

Let T := {z ∈ C : |z| = 1}. The Wiener algebra W(T) consists of all complex-
valued functions f on [−π, π ] such that f has absolutely convergent Fourier series.
That is, W(T) := {f ∈ C([−π, π ]) : ‖f ‖ := ∑

n∈Z |f̂ (n)| < ∞}, where f̂ (n) :=
1
2π

∫ π

−π
f (x)e−inxdx is the nth Fourier coefficient of f . The Wiener algebra W(T)

is closed under pointwise multiplication of functions. It is easy to show that

‖fg‖ ≤ ‖f ‖ · ‖g‖ ∀f, g ∈ W(T).

Thus, the Wiener algebra is a commutative unitary Banach algebra. The Wiener
algebraW(T) is isomorphic to the Banach algebra l1(Z)with the isomorphism given
by the Fourier transform: f → {f̂ (n)}n∈Z.

Theorem 2.1 (Wiener’s Lemma) If f ∈ W(T) and f (x) �= 0 for all x ∈ [−π, π ],
then 1/f ∈ W(T).

Consequently, for α ∈ l0(Z), if α(z) �= 0 for all z ∈ T, then α has an inverse
α−1 =: γ ∈ l1(Z) determined by γ (z) = 1/α(z), z ∈ T.

Any mask α in the Wiener algebra defines a bi-infinite Toeplitz matrix of the form
Aα = (αj−k)j,k∈Z. Then, Aα has an inverse if and only if α has an inverse. In this
case, we have that the inverse (Aα)−1 of Aα satisfies (Aα)−1 = Aα−1 . A Toeplitz
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matrix Aα is also a linear operator on l2(Z). One can show that the l2-operator norm
of Aα is given by [13, Section 2.2]

‖Aα‖2 := sup
‖c‖2=1

‖Aαc‖2 = sup
z∈T

|α(z)|. (2.5)

We say that a finitely supported mask α ∈ l0(Z) is s-banded if αk = 0 for all
|k| > s. The following theorem gives the decay of the inverse of a banded Hermitian
Toeplitz matrix.

Theorem 2.2 (Theorem 2.1 in [27]) LetA be a bi-infinite Toeplitz matrix acting on
l2(Z) and assume A to be Hermitian, positive definite, and s-banded (i.e. Ak,� = 0
if |k − �| > s). Set κ = ‖A‖2 ‖A−1‖2, q = (

√
κ − 1)/(

√
κ + 1), and λ = q1/s .

Then,

(A−1)k,� ≤ Kλ|k−�|, k, � ∈ Z,

where K = ‖A−1‖2 max
{
1, (1+√

κ)2

2κ

}
.

A direct consequence of the above results is the decay property of the inverse γ

of an invertible mask α ∈ l0(Z). For more general results on the decay property of
the inverse of a mask, we refer to [16].

Corollary 2.1 Let α ∈ l0(Z) be s-banded (i.e. αk = 0 if |k| > s) with α(z) > 0
for all z ∈ T. Set κ = supz∈T |α(z)|

infz∈T |α(z)| , q = (
√

κ − 1)/(
√

κ + 1), and λ = q1/s . Then,

γ = α−1 exists and

|γ�| ≤ Kλ|�|, � ∈ Z,

where K = 1
infz∈T |α(z)| max

{
1, (1+√

κ)2

2κ

}
.

Proof Since α(z) > 0 for all z ∈ T, by Wiener’s lemma, γ = α−1 exists. Now, by
Fejér–Riesz lemma [3], there exists a real-valued mask β ∈ l0(Z) such that α(z) =
β(z)β(1/z) for all z ∈ T. Then, one can easily show that Aα = Aβ(Aβ)�. Hence,
from α(z) > 0 for all z ∈ T, we conclude that Aα is symmetric positive definite.
Now, by Theorem 2.2 and the fact that ‖Aα‖2 = supz∈T |α(z)| and ‖A−1

α ‖2 =
‖Aα−1‖2 = infz∈T |α(z)|, we conclude the result. ��

3 Even-Reversible Subdivision

In this section, we give a sufficient condition on the mask of a subdivision operator
for the existence of the linear multiscale transform defined in (2.2) that satisfies
property (2.4). We call such a subdivision operator even-reversible. We show that
for a large class of even-reversible subdivision operators, the elements of the mask
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of the decimation operator in (2.4) decay exponentially, and we prove that most of
the subdivision operators in the literature are in that class.

3.1 Existence of the Multiscale Transform

We first deduce a sufficient condition on the mask of a subdivision operator for the
existence of a linear multiscale transform satisfying (2.4).

Theorem 3.1 Let Sα be a subdivision operator with a mask α defined as in (2.1),
and let Dγ be a decimation operator with a mask γ defined as in (2.2). Then, (2.4)
holds, i.e., d := (I − SαDγ )c satisfies (d ↓ 2) = 0 for any c ∈ l∞(Z), if and only
if γ is the inverse of αev .

Proof Note that (2.4) is equivalent to c(z)+c(−z)
2 − [SαDγ c](z)+[SαDγ c](−z)

2 = 0; that
is,

cev(z
2) = [SαDγ c]ev(z2) = αev(z

2)[Dγ c](z2) = αev(z
2)γ (z2)cev(z

2), z ∈ T.

Consequently, (2.4) is equivalent to αev(z)γ (z) = 1 for all z ∈ T, i.e., γ is the
inverse of the even part αev of α. ��

Now, using Wiener’s lemma, we get

Corollary 3.1 For any mask α ∈ l0(Z) satisfying αev(z) �= 0 for all z ∈ T, (2.4)
holds with γ ∈ l1(Z) determined by γ (z) = 1

αev(z)
, z ∈ T.

We call a subdivision operator Sα with a mask α such that αev(z) �= 0 for all
z ∈ T even-reversible, and we call the decimation operator Dγ satisfying (2.4) the
even-inverse of Sα . It is shown in the next subsection that for a large class of finitely
supported masks, the condition αev(z) �= 0 for all z ∈ T does hold.

In view of Theorem 3.1, the multiscale transform (2.2) becomes

⎧⎪⎪⎨
⎪⎪⎩

c(�−1)(z) = α−1
ev (z)c

(�)
ev (z)

d
(�)
od (z) = c

(�)
od (z) − αod(z)α−1

ev (z)c
(�)
ev (z)

d�
ev(z) ≡ 0

, � = j, . . . , 1. (3.1)

We term (3.1) multiscale transform based on an even-reversible subdivision
(MTER).

In terms of matrix computation, the MTER can be written as

⎧
⎪⎪⎨
⎪⎪⎩

c(�−1) = A
α−1

ev
c
(�)
ev

d
(�)
od = c

(�)
od − Aαod

A
α−1

ev
c
(�)
ev

d
(�)
ev ≡ 0

, � = j, . . . , 1.
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In particular, when α is interpolatory,

αev(z) ≡ 1 and γ (z) = α−1
ev (z) ≡ 1, (3.2)

and the MTER is reduced to an interpolatory pyramid:

⎧⎪⎪⎨
⎪⎪⎩

c(�−1) = (c(�) ↓ 2)

d
(�)
od = c

(�)
od − αod ∗ (c(�) ↓ 2)

d
(�)
ev ≡ 0

, � = j, . . . , 1.

3.2 The Even-Inverse of the Subdivision Operator

In case αev > 0 for all z ∈ T and αev is s-banded, then by Corollary 2.1, γ = α−1
ev

exists, and the elements of the mask γ decay exponentially, which is an important
feature for the computation of the decimation operation Dγ c. More precisely,

|γ�| ≤ Kλ|�| ∀� ∈ Z,

where K and λ are defined as in Corollary 2.1 with α there replaced by αev .

3.3 Examples

In this subsection, we provide some examples of commonly used subdivision
operators with finitely supported masks. We show that for a large class of masks,
the corresponding subdivision operators are even-reversible.

First, we give two examples of spline subdivision operators of low order for
which we can compute explicitly the even-inverse. We omit the case of the linear
spline subdivision operator because it is interpolatory.

Example 1 (Quadratic Spline) Consider the mask α for the (centered) cubic

B-spline of order 3: α(z) = z−1(1+z)3

22
. That is, α = {α−1, α0, α1, α2} =

1
4 {1, 3, 3, 1}[−1,2] (i.e. supp(α) = [−1, 2] ∩ Z with α−1 = 1/4, α0 = α1 =
3/4, and α2 = 1/4). Then,

αev(z
2) = 1

2
(α(z) + α(−z)) = 1

4
(3 + z2),

(continued)
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Example 1 (continued)
or as a sequence, αev = 1

4 {3, 1}[0,1]. We have |αev(z)| = | 14 (3 + z)| ≥ 1
2 for

all z ∈ T. Consequently, the inverse γ of αev exists and is given by

γ (z) = 1

αev(z)
= 4

3 + z
= 4

3

(
1 − 1

3
z + 1

9
z2 + · · ·

)
= 4

3

∞∑
k=0

(
−1

3

)k

zk,

which is the symbol of the even-inverse operator Dγ . Thus, the quadratic
spline subdivision operator is even-reversible. Direct computations show that
‖γ ‖1 = 2, ‖Aγ ‖2 = 2, and ‖γ ‖∞ = 4/3.

Example 2 (Cubic Spline) Consider the mask α for the (centered) B-spline of

order 4: α(z) = z−2(1+z)4

23
. That is, α = 1

8 {1, 4, 6, 4, 1}[−2,2]. Then,

αev(z
2) = 1

2
(α(z) + α(−z)) = 1

8
(z−2 + 6 + z2),

or as a sequence, αev = 1
8 {1, 6, 1}[−1,1]. Note that αev(z) = 1

8 (z
−1 +6+z) ≥

1
2 for all z ∈ T. Consequently, the inverse γ of αev exists. Hence, the cubic
spline subdivision operator is even-reversible, and

γ (z) = 1

αev(z)
= 8

z−1 + 6 + z
= 4

3
× 1

1 + z−1+z
6

= 4

3

∞∑
n=0

(−1

6

)n

(z−1 + z)n

= 4

3

( ∞∑
n=0

6−2n(z−1 + z)2n −
∞∑

n=0

6−2n−1(z−1 + z)2n+1

)
.

By (2.5), we have ‖Aγ ‖2 = 2. We succeeded to obtain an explicit expression
of γ (z) of the form

γ (z) = √
2 + √

2
∞∑

k=1

( −1

3 + 2
√
2

)k

× (
zk + z−k

)
. (3.3)

With this explicit form of γ (z), the decimation operation in the MTER can
be implemented. Moreover, from (3.3), we get ‖γ ‖1 = 2, ‖γ ‖∞ = √

2,
and the exponential decay of the elements of γ . The proof of (3.3) is not
straightforward and is given in the Appendix.
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From the above examples, one can expect that spline subdivision operators are
even-reversible. In fact, it holds more generally. The class of spline subdivision
operators can be regarded as a special subclass of a larger class called pseudo-spline
subdivision operators, which we introduce next.

Let n, ν ∈ N ∪ {0} satisfy 0 ≤ ν ≤ �n/2� − 1. Define

αn,ν(z) = z−�n/2�(1 + z)n

2n−1

ν∑
j=0

(
n/2 + j − 1

j

)(
1

2
− z + z−1

4

)j

. (3.4)

When ν = 0, the mask αn,0 = αn belongs to the family of masks of spline
subdivision operators. When n = 2k and ν = k − 1, the mask α2k,k−1 is the
Deslauries–Dubuc’s interpolatory mask [5]. For n = 2k and 0 ≤ ν ≤ k − 1, the
masks α2k,ν are the masks of the primal pseudo-splines (pseudo-splines of type II),
while for n = 2k + 1, the masks α2k+1,ν , 0 ≤ ν ≤ k − 1 are the masks of the
dual pseudo-splines. For more about pseudo-splines, see [4, 7, 8, 11] and references
therein.

The next theorem states that pseudo-spline subdivision operators are even-
reversible, which implies that all spline subdivision operators are even-reversible.

Theorem 3.2 Let n, ν ∈ N ∪ {0} satisfying 0 ≤ ν ≤ �n/2� − 1 and αn,ν be the
pseudo-spline mask defined as in (3.4). Then, the following holds:

(1) α
n,ν
ev (1) = 1 and ‖Aα

n,ν
ev

‖2 = maxz∈T |αn,ν
ev (z)| = 1.

(2) γ = (α
n,ν
ev )−1 exists with γ (1) = 1.

(3) The l2-norm of Aγ is given by ‖Aγ ‖2 = 2� n−1
2 �+ν

∑ν
j=0 (

n/2+ν
j )

.

(4) The elements of γ decay exponentially.

The proof of Theorem 3.2 is postponed to the Appendix. We remark that (i) when
ν = 0, we have ‖Aγ ‖2 = 2�(n−1)/2� and (ii) when n = 2k and ν = k − 1, we have
γ (z) ≡ 1.

4 Decay and Stability

We now turn to the study of the decay property of the pyramid sequences and the
stability of the transforms.

4.1 Decay

Let 
 : l(Z) → l(Z) denote the difference operator: (
c)k = ck+1 − ck for
c ∈ l(Z). Then, 
 commutes with convolution operators. Indeed, by [
c](z) =
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(z−1 − 1)c(z) and [γ ∗ c](z) = γ (z)c(z), we have

[
(γ ∗ c)](z) = (z−1 − 1)(γ (z)c(z)) = γ (z)[(z−1 − 1)c(z)] = [γ ∗ (
c)](z).

Suppose the data sequence c(j) = f
∣∣
2−jZ

, where f is a function in C1(R) with
bounded first derivative. Then,

[
c(j)]k = f (2−j (k + 1)) − f (2−j k) = f ′(ξ) · 2−j

for some ξ ∈ (2−j k, 2−j (k + 1)). Thus, ‖
c(j)‖∞ ≤ K2−j with K = ‖f ′‖∞.
Applying the scheme in (2.2), we have a pyramid of data consisting of approxi-

mation coefficient sequences c(�) and detail coefficient sequences d(�). The follow-
ing two results concern the decay property of 
c(�) and d(�).

Theorem 4.1 (Difference of Approximation Coefficients) Let c(j) be such that
‖
c(j)‖∞ ≤ K2−j . Let c(�) := γ ∗ (c(�+1) ↓ 2) with γ ∈ l1(Z) and 0 ≤ � ≤ j − 1.
Then,

‖
c(�)‖∞ ≤ K ‖γ ‖j

1 · (2‖γ ‖1)−�, 0 ≤ � ≤ j − 1. (4.1)

Proof For cev = c ↓ 2, we have

(
cev)k=c2k+2−c2k=(c2k+2−c2k+1)+(c2k+1−c2k) = (
c)2k+1+(
c)2k, k ∈ Z,

and hence, ‖
cev‖∞ ≤ 2‖
c‖∞. Since 
 commutes with convolution operators,
we have

‖
c(j−1)‖∞ = ‖
(γ ∗ (c(j) ↓ 2))‖∞ = ‖γ ∗ 
(c(j) ↓ 2))‖∞

≤ ‖γ ‖1 · ‖
(c(j) ↓ 2)‖∞ ≤ ‖γ ‖1 · 2‖
c(j)‖∞.

Iterating the above inequality starting with ‖
c(j)‖∞ ≤ K2−j , we conclude (4.1).
��

Under some very mild conditions on the masks α, γ , we can show that the detail
coefficients have the same decay property as the differences of the approximation
coefficients.

Theorem 4.2 (Detail Coefficients) Let c(j) ∈ l∞(Z) be a sequence. Define c(�−1)

and d(�) to be

c(�−1) := γ ∗ (c(�) ↓ 2), d(�) := c(�) − Sαc(�−1), 1 ≤ � ≤ j,

where α, γ ∈ l1(Z) are masks satisfying
∑

k

α2k =
∑

k

α2k+1 =
∑

k

γk = 1 (4.2)
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and
∑
k∈Z

|αk| |k| = Kα < ∞, 2
∑
k∈Z

|γk| |k| = Kγ < ∞. (4.3)

Then,

‖d(�)‖∞ ≤ Kα,γ ‖
c(�)‖∞, 1 ≤ � ≤ j (4.4)

with Kα,γ := Kγ ‖α‖1 + Kα‖γ ‖1. In particular, if ‖
c(j)‖∞ ≤ K · 2−j for some
K independent of j , then

‖d(�)‖∞ ≤
(
K · Kα,γ · ‖γ ‖j

1

)
· (2‖γ ‖1)−�, 1 ≤ � ≤ j. (4.5)

Proof Let η = {ηk}k∈Z := c(�−1) = γ ∗ (c(�) ↓ 2). Then, ηk =∑
s γk−sc

(�)
2s . By (4.2), we have d

(�)
k = c

(�)
k − [Sαη]k = c

(�)
k − ∑

s αk−2sηs =∑
s αk−2s

[∑
n γs−n(c

(�)
k − c

(�)
2n )

]
. Consequently,

‖d(�)‖∞ ≤
∑

s

|αk−2s |
[∑

n

|γs−n||2n − k|
]
‖
c(�)‖∞

≤
∑

s

|αk−2s |
[∑

n

|γs−n|(|2n − 2s| + |k − 2s|)
]
‖
c(�)‖∞

≤
∑

s

|αk−2s |
[
Kγ + |k − 2s|‖γ ‖1

]
‖
c(�)‖∞

= (Kγ ‖α‖1 + Kα‖γ ‖1)‖
c(�)‖∞ = Kα,γ ‖
c(�)‖∞

≤ K · Kα,γ · ‖γ ‖j

1 · (2‖γ ‖1)−�,

where the last inequality follows from (4.1). ��
Theorems 4.1 and 4.2 imply the following corollary.

Corollary 4.1 Let α ∈ l0(Z) be a mask of a convergent subdivision scheme
satisfying αev(z) > 0 for z ∈ T, and let c(j) be a sequence satisfying ‖
c(j)‖∞ ≤
K2−j . Then, the pyramid generated by the MTER in (3.1) satisfies (4.1) and (4.5).

We remark that in the interpolatory case, (3.2) holds. Therefore, inequalities (4.1)
and (4.5) depend on the level � and are independent of j . For non-interpolatory
subdivision operators and for a fixed j , the decay of the details is faster, but the
constant is bigger since ‖γ ‖1 > 1.
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4.2 Stability of Reconstruction

In this subsection, we show that the reconstruction is stable.

Theorem 4.3 Suppose supj∈N ‖Sj
α‖∞ ≤ K for some constant K > 0. Then, the

reconstructed data c(j) at level j from coarse data c(0) and details d1, . . . , d(j)

via (2.3) are stable; that is,

‖c(j) − c̃(j)‖∞ ≤ K

⎛
⎝‖c(0) − c̃(0)‖∞ +

j∑
�=1

‖d(�) − d̃(�)‖∞

⎞
⎠ ,

where c̃(j) is reconstructed from the data c̃(0), d̃1, . . ., d̃(j) via (2.3).

Proof From c(�) = Sαc(�−1) + d(�), we have

‖c(j) − c̃(j)‖∞ = ‖Sα(c(j−1) − c̃(j−1)) + (d(j) − d̃(j))‖∞

= ‖S2
α(c(j−2) − c̃(j−2)) + Sα(d(j−1) − d̃(j−1)) + (d(j) − d̃(j))‖∞

...

=
∥∥∥Sj

α(c(0) − c̃(0)) +
j∑

�=1

Sj−�
α (d(�) − d̃(�))

∥∥∥∞

≤ ‖Sj
α‖∞‖c(0) − c̃(0)‖∞ +

j∑
�=1

‖Sj−�
α ‖∞‖d(�) − d̃(�)‖∞

≤ K

⎛
⎝‖c(0) − c̃(0)‖∞ +

j∑
�=1

‖d(�) − d̃(�)‖∞

⎞
⎠ .

��
It is well known and easy to see from the uniform boundedness principle that the

condition supj∈N ‖Sj
α‖∞ ≤ K holds whenever the subdivision scheme based on Sα

is convergent.

4.3 Stability of Decomposition

We now show stability of the decomposition of the MTER in (3.1) for fixed j .

Theorem 4.4 Suppose c(j), c̃(j) ∈ lp(Z) for p ∈ [1,∞]. Let the pyramid
data {c(0); d(1), . . . , d(j)} and {̃c(0); d̃(1), . . . , d̃(j)} be obtained from c(j) and c̃(j),
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respectively, by the scheme (2.2). Then, we have for � = 1, . . . , j ,

‖c(0) − c̃(0)‖p ≤ ‖Dγ ‖j
p · ‖c(j) − c̃(j)‖p,

‖d(�) − d̃(�)‖p ≤
(
‖I − SαDγ ‖p · ‖Dγ ‖j

p · ‖c(j) − c̃(j)‖p

)
· ‖Dγ ‖−�

p .
(4.6)

Proof By ‖c(�−1) − c̃(�−1)‖p = ‖Dγ (c(�) − c̃(�))‖p ≤ ‖Dγ ‖p‖c(�) − c̃(�)‖p, we
have

‖c(0) − c̃(0)‖p ≤ ‖Dγ ‖j
p‖c(j) − c̃(j)‖p.

Similarly, by

‖d(�) − d̃(�)‖p = ‖(I−SαDγ )(c(�) − c̃(�))‖p ≤ ‖I−SαDγ ‖p‖c(�) − c̃(�))‖p,

we have

‖d(�) − d̃(�)‖p ≤ ‖(I − SαDγ )‖p‖Dγ ‖j−�
p ‖c(j) − c̃(j)‖p.

We are done. ��
Remarks

(i) For Sα an interpolatory subdivision operator, (3.2) holds. Therefore, in the
corresponding MTER,Dγ c is simplyDγ c = c ↓ 2 and ‖Dγ ‖p ≡ 1. It follows
from Theorem 4.4 that the decomposition of MTERs based on interpolatory
subdivision operators is stable for all p ∈ [1,∞]; namely, the constants in (4.6)
are independent of j .

(ii) For non-interpolatory subdivision operators corresponding to convergent even-
reversible subdivision schemes, the even-inverseDγ satisfies ‖Dγ ‖p ≥ 1 since

γ (1) = 1. In such a case, the constant ‖Dγ ‖j
p depends on the level j of the data.

In the following, we give bounds on ‖Dγ ‖∞ = ‖γ ‖1 for the family of primal
pseudo-spline subdivision operators.

Theorem 4.5 Let α2k,ν be the mask as defined in (3.4) with 0 ≤ ν ≤ k − 1 and
k ≥ 2, and let γ = (α

2k,ν
ev )−1. Then,

‖Dγ ‖∞ = ‖γ ‖1 ≤ C(k, ν),

where

C(k, ν) = κ · max

{
1,

(1 + √
κ)2

2κ

}
· 1 + λ

1 − λ
(4.7)

is a constant with
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κ = 2k+ν−1

∑ν
j=0

(
k+ν
j

) , λ =
(√

κ − 1√
κ + 1

)1/s

, and s = �(k + ν)/2�.

The proof of Theorem 4.5 is given in the Appendix. We remark that

(i) For the case ν = k−1, α2k,k−1 corresponds to the family of Deslauries–Dubuc’s
interpolatory masks [5]. In such a case, the constant C(k, k − 1) is exact in the
sense that C(k, k − 1) = 1.

(ii) For the case ν = 0, α2k,0 is the mask of degree 2k − 1 (order 2k) spline

subdivision operator. In such a case, it can be shown that C(k, 0) = O(k · 23k
2 )

for k → ∞.

Combining the above results, we have the following result regarding the stability
of decomposition of the MTER based on primal pseudo-spline masks in lp(Z) for
two important cases p = 2 and p = ∞.

Corollary 4.2 Suppose c(j), c̃(j) ∈ lp(Z) for p ∈ [1,∞]. Let the pyramid
data {c(0); d(1), . . . , d(j)} and {̃c(0); d̃(1), . . . , d̃(j)} be obtained from c(j) and c̃(j),
respectively, by the scheme (2.2) with α = α2k,ν for 0 ≤ ν ≤ k − 2 and k ≥ 2.
Then,

(1) for p = ∞, we have

‖c(0) − c̃(0)‖∞ ≤ C(k, ν)j · ‖c(j) − c̃(j)‖∞,

‖d(�) − d̃(�)‖∞ ≤
(
‖I − Sα2k,νDγ ‖∞ · C(k, ν)j · ‖c(j)−c̃(j)‖∞

)
· C(k, ν)−�

(4.8)

for � = 1, . . . , j , where C(k, ν) is the constant defined in (4.7);
(2) for p = 2, (4.6) holds with ‖Dγ ‖2 = ‖Aγ ‖2 = 2k+ν−1∑ν

j=0 (
k+ν
j )

.

Proof This is a direct consequence of Theorems 4.4 and 4.5. ��
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5 Final Remarks

In this section, we give some further remarks.

1. Most examples and results in this chapter deal with finitely supported masks for
the purpose of simplicity of presentation. We point out that the MTER in (3.1)
applies for any mask α provided αev(z) �= 0 for all z ∈ T.

2. Using the weighted version of Wiener’s lemma [16], one can study classes of
masks of infinite support such as masks with polynomial or sub-exponential
decay and masks corresponding to rational symbols. The extension of the class
of masks might lead to even-inverse operators of smaller norm, and by that to
the improvement of the stability of the decomposition and the decay rate of the
details as given in Theorems 4.4 and 4.2, respectively.

3. The existence of MTER relies on Wiener’s lemma. Since a high-dimensional
version of Wiener’s lemma holds, our MTER in (3.1) can be generalized to any
dimension d ∈ N.

4. Without involving Wiener’s lemma, one can also analyze the decay property of
the Laurent polynomials γ (z) = α−1

ev (z) using the Fourier series techniques.

One can show that |γ (k)| := | 1
2π

∫ 2π
0 γ (e−iξ )e−ikξ dξ | ≤ Ce−r1|k| for some

0 < r1 < r with r being the radius of convergence of the Laurent polynomials
of γ (z). Such techniques were employed in [17].

5. One can consider more general decimation operator in (2.2), e.g.

c(j−1) = Dγev,γod
c(j) := γev ∗ c

(j)
ev + γod ∗ c

(j)
od .

When γod = 0, we see that Dγev,γod
= Dγev , which goes back to our setting.

More general results could be obtained with more analysis.

Acknowledgments The authors thank Felipe Cucker for his support which initiated this chapter.
The authors also thank anonymous reviewer for pointing out the alternative proof of (3.3). The
research of X. Zhuang and the work described in this chapter were partially supported by a
grant from the Research Grants Council of the Hong Kong Special Administrative Region, China
(Project No. CityU 11302218).

Appendix

Proof of (3.3) Note that

γ (z) = 8

z−1 + 6 + z
= 4

3

( ∞∑
n=0

6−2n(z−1 + z)2n −
∞∑

n=0

6−2n−1(z−1 + z)2n+1

)
.

For
∑∞

n=0(
1
6 )

2n(z−1 + z)2n, we have
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∞∑
n=0

6−2n(z−1 + z)2n =
∞∑

n=0

6−2n
2n∑

k=0

(
2n

k

)
z2(n−k) =

∞∑
n=0

6−2n
n∑

k=−n

(
2n

n − k

)
z2k

=
∞∑

n=0

(
2n

n

)
6−2n+

∞∑
k=1

[ ∞∑
n=k

(
2n

n − k

)
6−2n

]
(z2k + z−2k)

=
∞∑

n=0

(
2n

n

)
6−2n+

∞∑
k=1

[ ∞∑
n=0

(
2(n+k)

n

)
6−2(n+k)

]
(z2k+z−2k).

Similarly, for the second summation, we have

∞∑
n=0

6−2n−1(z−1+z)2n+1=
∞∑

k=0

[ ∞∑
n=0

(
2(n+k)+1

n

)
6−2(n+k)−1

]
(z2k+1+z−2k−1).

Define for k = 0, 1, 2, . . .,

ak :=
∞∑

n=0

(
2(n + k)

n

)
6−2(n+k) and bk :=

∞∑
n=0

(
2(n + k) + 1

n

)
6−2(n+k)−1.

Then,

γ (z) = 4

3

∞∑
n=0

(−1

6

)n

(z−1 + z)n

= 4

3

[
a0 +

∞∑
k=1

ak(z
2k + z−2k) −

∞∑
k=0

bk(z
2k+1 + z−2k−1)

]
.

Using the formula
(
n+1
m

) = (
n
m

)+ (
n

m−1

)
, it is easy to check that

ak = 1

6
(bk−1 + bk) and bk = 1

6
(ak + ak+1).

Hence,

ak+1 = 6bk − ak and bk = 6ak − bk−1. (A.1)

Next, we proceed to prove the following identities using the recurrence rela-
tions (A.1):

ak = 3
√
2

4
(3 − 2

√
2)2k and bk = 3

√
2

4
(3 − 2

√
2)2k+1, k = 0, 1, 2, . . . .

(A.2)
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First, we compute directly a0 and b0. Using the identities

(1 − x)−t =
∞∑

n=0

(
t − 1 + n

n

)
xn (A.3)

and
(2n

n

) = 4n
(
n−1/2

n

)
, we have

a0 =
∞∑

n=0

(
2n

n

)
6−2n =

∞∑
n=0

(
1/2 − 1 + n

n

)
9−n = (1 − 1/9)−1/2 = 3

√
2

4
.

Similarly,

b0 =
∞∑

n=0

(
2n + 1

n

)
6−2n−1 = 3

[ ∞∑
n=0

(
1/2 − 1 + n

n

)
9−n − 1

]
= 3

√
2

4
(3 − 2

√
2).

Now, recursively using the relation of ak and bk in (A.1), we get

ak+1 = 6bk − ak = 3
√
2

4
(6(3 − 2

√
2)2k+1 − (3 − 2

√
2)2k)

= 3
√
2

4
(3 − 2

√
2)2k(6(3 − 2

√
2) − 1) = 3

√
2

4
(3 − 2

√
2)2k(3 − 2

√
2)2

= 3
√
2

4
(3 − 2

√
2)2(k+1),

and

bk = 6ak − bk−1 = 3
√
2

4
(6(3 − 2

√
2)2k − (3 − 2

√
2)2k−1)

= 3
√
2

4
(3 − 2

√
2)2k−1(6(3 − 2

√
2) − 1) = 3

√
2

4
(3 − 2

√
2)2k−1(3 − 2

√
2)2

= 3
√
2

4
(3 − 2

√
2)2k+1.

Therefore, (A.2) holds. In summary, we conclude that

γ (z) = 4

3

⎡
⎣a0 +

∞∑
k=1

ak(z
2k + z−2k) −

∞∑
k=0

bk(z
2k+1 + z−2k−1)

⎤
⎦

= √
2

⎡
⎣1 +

∞∑
k=1

(3 − 2
√
2)2k(z2k + z−2k) −

∞∑
k=0

(3 − 2
√
2)2k+1(z2k+1 + z−2k−1)

⎤
⎦ ,
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which proves (3.3).
Alternative, one can use standard complex analysis technique to compute the

Laurent series of the function 8
z−1+6+z

. Note that z2 + 6z + 1 = 0 has two real roots

−3 ± 2
√
2 with one outside T and the other inside T. Hence, one can write

8

z−1 + 6 + z
= 8z

z2 + 6z + 1
=

√
2z

z + 3 − 2
√
2

−
√
2z

z + 3 + 2
√
2
.

Since | − 3 + 2
√
2| < 1, we have

√
2z

z + 3 − 2
√
2

=
√
2

1 − (−3 + 2
√
2)z−1

= √
2

∞∑
k=0

(−3 + 2
√
2)kz−k (A.4)

holds for |z| > | − 3 + 2
√
2|. Similarly, since | − 3 − 2

√
2| > 1, we have

−
√
2z

z + 3 + 2
√
2

= −
√
2z(3 − 2

√
2)

1 − (−3 + 2
√
2)z

= √
2

∞∑
k=1

(−3 + 2
√
2)kzk (A.5)

holds for |z| < 3 + 2
√
2. Putting (A.4) and (A.5) together, we get (12). ��

Proof of Theorem 3.2 Let z = e−iθ and x = sin2(θ/2). One can show that

αn,ν(e−iθ ) = 2ei(�n/2�−n/2)θ cosn(θ/2)Qn,ν(sin
2(θ/2)),

with

Qn,ν(x) :=
ν∑

j=0

(
n/2 − 1 + j

j

)
xj = 1

(1 − x)n/2 + O(xν+1),

where in the last equality, we use (A.3). Note that Qn,ν(x) ≥ 1 for all x ≥ 0. By
that αn,ν

ev (z2) = 1
2 (α

n,ν(z) + αn,ν(−z)), we have

αn,ν
ev (e−2iθ ) = ei(�n/2�−n/2)θ

[
(1−x)n/2Qn,ν(x)+i2�n/2�−n(−1)nxn/2Qn,ν(1−x)

]
.

It is easy to see that αn,ν
ev (1) = 1.

For n = 2k, we have

α2k,ν
ev (e−2iθ ) = (1−x)kQ2k,ν(x)+xkQ2k,ν(1−x) =: R(x)+R(1−x), (A.6)

where R(x) := (1 − x)kQ2k,ν(x) = (1 − x)k
∑ν

j=0

(
k−1+j

j

)
xj . Define g(x) :=

R(x)+R(1−x). By using (j +1)
(
k+j
j+1

)− j
(
k−1+j

j

) = k
(
k−1+j

j

)
, one can show that
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R′(x) = −(k + ν)

(
k − 1 + ν

ν

)
(1 − x)k−1xν.

Thus,

g′(x) = R′(x)−R′(1−x) = (k+ν)

(
k − 1 + ν

ν

)
xν(1−x)ν

[
xk−1−ν−(1−x)k−1−ν

]
.

It is easily seen that g′(x) ≤ 0 for x ∈ [0, 1/2] and g′(x) ≥ 0 for x ∈ [1/2, 1].
Consequently,

min
z∈T |α2k,ν

ev (z)| = min
z∈T α2k,ν

ev (z) = min
x∈[0,1] g(x) = g(1/2) = 2R(1/2)

= 21−k
ν∑

j=0

(
k − 1 + j

j

)
2−j > 0,

where the last equation can be shown to be equivalent to

min
z∈T |α2k,ν

ev (z)| = 21−k−ν
ν∑

j=0

(
k + ν

j

)
> 0. (A.7)

Moreover, by (2.5), we have

‖A
α
2k,ν
ev

‖2 = max
z∈T |α2k,ν

ev (z)| = max
x∈[0,1] g(x) = g(0) = g(1) = 1.

For n = 2k + 1, we have

α2k+1,ν
ev (e−2iθ ) = e−iθ/2

[
(1 − x)k+1/2Q2k+1,ν(x) + i · xk+1/2Q2k+1,ν(1 − x)

]
,

from which, we have

|α2k+1,ν
ev (e−2iθ )|2 = (1 − x)2k+1(Q2k+1,ν(x))2 + x2k+1(Q2k+1,ν(1 − x))2

=: R(x)2 + R(1 − x)2,

where

R(x) := (1 − x)k+1/2Q2k+1,ν(x) = (1 − x)k+1/2
ν∑

j=0

(
k − 1/2 + j

j

)
xj .
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Define g(x) = R(x)2+R(1−x)2. Then, by using (j +1)
(
k+1/2+j

j+1

)−j
(
k−1/2+j

j

) =
(k + 1/2)

(
k−1/2+j

j

)
, we can show similarly that

R′(x) = −(k + 1/2 + ν)

(
k − 1/2 + ν

ν

)
(1 − x)k−1/2xν.

Consequently,

g′(x) = 2
[
R(x)R′(x) − R(1 − x)R′(1 − x)

]

= −2cxν(1 − x)ν

⎡
⎣

ν∑
j=0

(
k − 1/2 + j

j

)
(1 − x)j xj

[
(1 − x)2k−ν−j − x2k−ν−j

]
⎤
⎦ ,

where c = (k + 1/2 + ν)
(
k−1/2+ν

ν

)
. Now, it is easy to see that each term

tj (x) :=
(

k − 1/2 + j

j

)
(1 − x)j xj

[
(1 − x)2k−ν−j − x2k−ν−j

]

in the above summation for j = 0, . . . , ν satisfies

tj (x) ≥ 0 for x ∈ [0, 1/2] and tj (x) ≤ 0 for x ∈ [1/2, 1].

Hence, g′(x) ≤ 0 for x ∈ [0, 1/2] and g′(x) ≥ 0 for x ∈ [1/2, 1]. Consequently,

min
x∈[0,1] g(x) = g(1/2) = 2R(1/2)2 = 2

⎛
⎝2−k−1/2

ν∑
j=0

(
k − 1/2 + j

j

)
2−j

⎞
⎠

2

= 2−2k−2ν

⎛
⎝

ν∑
j=0

(
k + 1/2 + ν

j

)⎞
⎠

2

.

Therefore,

min
z∈T |α2k+1,ν

ev (z)| = min
x∈[0,1]

√
g(x) = 2−k−ν

ν∑
j=0

(
k + 1/2 + ν

j

)
> 0,

and by (2.5), we have

‖A
α
2k+1,ν
ev

‖2 = max
z∈T |α2k+1,ν

ev (z)| = g(0) = g(1) = 1.
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Combining the above results for n even and odd, we see that |αn,ν
ev (z)| > 0 for

all z ∈ T (in particular, α2k,ν
ev (z) > 0 for all z ∈ T). Hence, by Wiener’s lemma, its

inverse γ = (α
n,ν
ev )−1 exists and γ (1) = 1

α
n,ν
ev (1)

= 1. Moreover, by (2.5), we have

‖Aα
n,ν
ev

‖2 = max
z∈T |αn,ν

ev (z)| = 1

and

‖Aγ ‖2 = max
z∈T |γ (z)| = 1

minz∈T |αn,ν
ev (z)| = 2� n−1

2 �+ν

∑ν
j=0

(
n/2+ν

j

) .

The exponential decay of the elements of γ in the case that n = 2k follows directly
from Corollary 2.1 since α

2k,ν
ev (z) > 0 for all z ∈ T. In case n = 2k + 1,

the exponential decay of the elements of γ follows from the weighted version of
Wiener’s lemma [16]. ��
Proof of Theorem 4.5 By (A.6) and (A.7), we have α

2k,ν
ev (z) > 0 for all z ∈ T.

Applying Corollary 2.1 and Theorem 3.2, we have

|γn| ≤ Kλ|n|, n ∈ Z, (A.8)

where K = κ · max
{
1, (1+√

κ)2

2κ

}
with κ = supz∈T |α2k,ν

ev (z)|
infz∈T |α2k,ν

ev (z)| = ‖Aγ ‖2 = 2k+ν−1∑ν
j=0 (

k+ν
j )

,

and λ = q1/s with q = (
√

κ − 1)/(
√

κ + 1), s = �(k + ν)/2�. Thus, by (A.8),
we have

‖γ ‖1 = |γ0| + 2
∞∑

n=1

|γn| ≤ K
(
1 + 2

∞∑
n=1

λn
)

= K
1 + λ

1 − λ
= C(k, ν).

��

References

1. Amat, S., Donat, R., Liandrat, J., Trillo, J. C.: A fully adaptive PPH multiresolution scheme
for image processing, Math. Comput. Model. 46 (1–2), 2–11 (2007).

2. Chui, C. K., De Villiers, J., Zhuang, X.: Multirate systems with shortest spline-wavelet filters,
Appl. Comput. Harmon. Anal. 41 (1), 266–296 (2016).

3. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics, 61, SIAM, Philadelphia, PA (1992).

4. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal. 14, 1–46 (2003).

5. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes, Constr. Approx. 5,
49–68 (1989).



Linear Multiscale Transforms Based on Even-Reversible Subdivision Operators 319

6. Donoho, D. L., Yu, T. P.-Y.: Nonlinear Pyramid transforms based on median-interpolation,
SIAM J. Math. Anal. 31 (5), 1030–1061 (2000).

7. Dong, B., Shen, Z.: Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22
(1), 78–104 (2007).

8. Dong, B., Dyn, N., Hormann, K.: Properties of dual pseudo-splines, Appl. Comput. Harmon.
Anal. 29, 104–110 (2010).

9. Dyn, N.: Subdivision Schemes in Computer-Aided Geometric Design, Advances in Numerical
Analysis II, Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light (ed.),
Clarendon Press, Oxford, 36–104 (1992).

10. Dyn, N., Goldman, R.: Convergence smoothness of nonlinear Lane-Riesenfeld algorithms in
the functional functional setting, Found. Comput. Math. 11, 79–94 (2011).

11. Dyn, N., Hormann, K., Sabin, M. A., Shen, Z.: Polynomial reproduction by symmetric
subdivision schemes, J. Approx. Theory 155 (1), 28–42 (2008).

12. Dyn, N., Oswald, P.: Univariate subdivision and multiscale transforms: The nonlinear case,
in Multiscale, Nonlinear, and Adaptive Approximation, R.A. DeVore, A. Kunoth (eds.), pp.
203–247, Springer, Berlin (2009).

13. Gohberg, I., Goldberg, S., Kaashoek, M. A.: Basic Classes of Linear Operators, Birkhäuser
(2003).

14. Grohs P., Wallner, J.: Interpolatory wavelets for manifold-valued data, Appl. Comput. Harmon.
Anal. 27, 325–333 (2009).

15. Grohs P., Wallner, J.: Definability stability of multiscale decompositions for manifold-valued
data, data, J. Franklin Inst. 349, 1648–1664 (2012).

16. Gröchenig, K.: Wiener’s lemma: theme and variations. An introduction to spectral in-variance
and its applications, in Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-
Frequency Methods, and Applications to Signal and Image Analysis, B. Forster, P. Massopust
(eds.), Applied and Numerical Harmonic Analysis. Birkhäauser Boston, ch. 5 (2009).

17. Han, B.: Refinable functions and cascade algorithms in weighted spaces with Hölder continu-
ous masks, SIAM J. Math. Anal. 40 (1), 70–102 (2008).

18. Han, B., Jiang, Q. T., Shen, Z. W., Zhuang, X.: Symmetric canonical quincunx tight framelets
with high vanishing moments and smoothness, Math. Comput. 87 (309), 347–379 (2018).

19. Han, B., Kwon, S. G., Zhuang, X.: Generalized interpolating refinable function vectors, J.
Comput. Appl. Math. 227, 254–270 (2009).

20. Han, B., Zhuang, X.: Algorithms for matrix extension orthogonal wavelet filter banks over
algebraic algebraic number fields, Math. Comput. 82 (281), 459–490 (2013).

21. Harten, A.: Multiresolution representation of data: A general framework, SIAM J. Numer.
Anal. 33 (3), 1205–1256 (1996).

22. Hassan M. F., Dodgson, N. A.: Reverse subdivision, in Advances in Multiresolution for
Geometric Modelling, N. A. Dodgson, M. S. Floater, M. A. Sabin (eds.), 271–283 (2005).

23. Lanquetin, S., Neveu, M.: Reverse Catmull-Clark Subdivision, Conference proceedingsWSCG
(2006).

24. Rahman, I. U., Drori, I., Stodden, V. C., Donoho, D. L., Schröder, P.: Multiscale representations
for manifold-valued data, Multiscale Model. Simul., 4 (4), 1201–1232 (2005).

25. Sadeghi, J., Samavati, F. F.: Smooth reverse subdivision, Computers and Graphics, 33 (3),
217–225 (2009).

26. Samavati, F. F., Bartels, R. H.: Multiresolution curve and surface representation: reversing
subdivision rules by least-squares data fitting, Computer Graphics Forum, 18 (2), 97–119
(1999).

27. Strohmer, T.: Four short stories about Toeplitz matrix calculations, Lin. Alg. Appl. 343–344,
321–344 (2002).

28. Zhuang, X.: Quincunx fundamental refinable functions in arbitrary dimensions, Axioms 6 (3),
20 (2017).


	Linear Multiscale Transforms Based on Even-Reversible Subdivision Operators
	1 Introduction
	1.1 Multiscale Transform: From Interpolatory to Even-Reversible Subdivision
	1.2 Outline

	2 Preliminaries
	3 Even-Reversible Subdivision
	3.1 Existence of the Multiscale Transform
	3.2 The Even-Inverse of the Subdivision Operator
	3.3 Examples

	4 Decay and Stability
	4.1 Decay
	4.2 Stability of Reconstruction
	4.3 Stability of Decomposition

	5 Final Remarks
	Appendix
	References


