
Smooth Affine Shear Tight Frames: Digitization and
Applications

Xiaosheng Zhuanga

a Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon
Tong, Hong Kong

ABSTRACT

In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth
affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of
directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and
translations of shearlet generators. These two tight frames are actually connected in the sense that the affine
shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an
affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional
wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the
frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward
and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine
shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video
processing show the advantages of digital affine shear transforms over many other stat-of-art directional multiscale
representation systems.

Keywords: directional multiscale representation systems, smooth affine shear tight frames, directional framelets,
directional filter banks, digital affine shear transforms, image processing, video processing, denoising, dual-tree
complex wavelets, tensor product complex tight framelets, shearlets, curvelets, contourlets, surfacelets

1. INTRODUCTION

Since the pioneer work by Meyer, Mallat, Daubechies, etc., wavelet analysis [5] has had a tremendous impact
on many fields such as electric engineering, image/signal processing, computer graphics, numerical solutions of
PDE, and so on. On the other hand, applications of wavelets in turn require the development of wavelet systems
with more and more desirable properties, e.g., high order of vanishing moments, symmetry, and regularity. One
of the lines of development is to design wavelet systems with directionality due to the fact that tensor product
real-value wavelets lack the directional sensitivity and sparse approximation for anisotropic features in dimension
higher than one. Along this line of development are the emergence of many directional multiscale representation
systems, such as dual-tree complex wavelets [18], tensor product complex tight framelets [11,12], curvelets [2,3],
contourlets [4], surfacelets [17], shearlets [1, 6–9,14–16], and so on. In this paper, we shall mainly discuss one of
the directional multiscale representation systems recently developed by the author and his collaborator: smooth
affine shear tight frames [13].

Using the framework of frequency-based affine systems [10], smooth affine shear tight frames have been study
systematically in dimension two in [13]. It has been shown that smooth affine shear tight frames include all known
shearlet tight frames as special cases. Characterization in [13] for an affine shear tight frame greatly simplified
the construction of affine shear tight frames and smooth affine shear tight frames with all their generators in the
Schwartz class have been constructed for L2(R2) in [13]. One of the key results in [13] also shows that an affine
shear tight frame can be regarded as a subsampled system from a directional affine wavelet tight frame that has
an MRA structure thereby associating an affine shear tight frame with a underlying filter bank. This key result
indicates that affine shear tight frames are less ‘redundant’ than directional affine wavelet tight frames. More
importantly, digitization of affine shear tight frames can be efficiently implemented using their underlying filter
banks and are very similar to the standard fast wavelet transforms.

Send correspondence to Email: xzhuang7@city.edu.hk, Phone: +852 3442 5942.



In this paper, we further investigate d-dimensional smooth affine shear tight frames for any d > 2 and provide
the characterization and construction of d-dimensional smooth affine shear tight frames (Sec. 2). We also discuss
the digitization of d-dimensional smooth affine shear tight frames: the forward and backward of digital affine
shear transforms, as well as the redundancy rate and computational complexity of d-dimensional digital affine
shear transforms (Sec. 3). Numerical experiments and comparisons on image/video denoising shall be given
(Sec. 4).

2. SMOOTH AFFINE SHEAR TIGHT FRAMES IN Rd

In this section, we extend the definition of smooth affine shear tight frames in [13] in dimension two to any
dimension d > 2. We first introduce the notation of a sequence of d-dimensional affine shear systems and then
provide the characterization for an affine shear system to be an affine shear tight frame in L2(Rd) as well as the
construction of both d-dimensional affine shear tight frames and d-dimensional affine wavelet tight frames.

2.1 Characterizaiton of smooth affine shear tight frames

Let U be a d× d invertible matrix. Throughout the paper, we shall assume d > 2 and use the compact notation
fU ;k,n(x) := |detU |1/2f(Ux − k)e−in·Ux, k, n, x ∈ Rd to encode dilation U , translation k, and modulation n for
a function f in Rd. The shear operator S~τ with ~τ = (τ2, . . . , τd) ∈ Rd−1, anisotropic dilation matrix Aλ, and
isotropic dilation matrix Mλ with λ > 1 are of the form:

S~τ =


1 τ2 . . . τd
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Aλ =


λ2 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

 , and Mλ =


λ2 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λ2

 .
We shall use Nλ := M−Tλ and Bλ := A−Tλ to denote the transpose of the inverse of Mλ and Aλ, respectively. Note
that Mλ = AλDλ with Dλ := diag(1, λId−1), where In denotes the n× n identity matrix. Define S~τ := (S~τ )T and
denote En to be the elementary matrix corresponding to the coordinate exchange between the first axis and the

nth one. For example, E1 = Id, E2 = diag(
[
0 1
1 0

]
, Id−2), E3 = diag(

[
0 0 1
0 1 0
1 0 0

]
, Id−3), and so on.

Let Ψj be a set of generators for high frequency part at scale j be given by Ψj := {ψj,~̀(S−~̀·) : |~̀| 6 ~rj}
with ~̀ := (`2, . . . , `d) ∈ Zd−1, ~rj := (rj,2, . . . , rj,d) ∈ Zd−1, and ψj,

~̀
being functions in L2(Rd). Here and after

we shall use the compact notation
∑~rj
~̀=−~rj

to mean
∑rj,2
`2=−rj,2 · · ·

∑rj,d
`d=−rj,d and |~̀| 6 ~rj to mean |`2| 6 rj,2,. . . ,

|`d| 6 rj,d. Let ϕj ∈ L2(Rd) be the scaling function for the low frequency part at scale j. Then a d-dimensional
affine shear system (starting at scale J) is defined to be

ASJ(ϕJ ; {Ψj}∞j=J) = {ϕJMJλ;k : k ∈ Zd} ∪ {hAjλEn;k : k ∈ Zd, n = 1, . . . , d, h ∈ Ψj}∞j=J . (2.1)

The Fourier transform f̂ of a function f ∈ L1(Rd) is defined to be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for ξ ∈ Rd and can

be naturally extended to functions in L2(Rd). We denote by D(Rd) the linear space of all compactly supported
C∞ (test) functions with the usual topology. Following the same lines of proof in Theorem 2 of [13]. We have
the following simple characterization for a sequence of affine shear systems ASJ(ϕJ ; {Ψj}∞j=J), J > J0 to be a

sequence of affine shear tight frames for L2(Rd) when all elements ĥ are nonnegative for h ∈ {{ϕj} ∪ Ψj}∞j=J0
(also see [10, Corollary 18]):

Theorem 2.1. Let J0 be an integer and ASJ(ϕJ ; {Ψj}∞j=J) be defined as in (2.1). Suppose that ĥ > 0 for all h ∈
{{ϕj}∪Ψj}∞j=J . Then, for all integers J > J0, ASJ(ϕJ ; {Ψj}∞j=J) is an affine shear tight frame for L2(Rd); that

is, all generators are from L2(Rd) and

‖f‖22 =
∑
k∈Zd
|〈f, ϕMJλ;k〉|2 +

∞∑
j=J

d∑
n=1

∑
h∈Ψj

∑
k∈Zd
|〈f, hAjλEn;k〉|

2, ∀f ∈ L2(Rd), (2.2)



if and only if the following holds:

ĥ(ξ)ĥ(ξ + 2πk) =0, a.e., ξ ∈ Rd, k ∈ Zd\{0}, ∀h ∈ {{ϕj} ∪Ψj}∞j=J ,

|ϕ̂j+1(Nj+1
λ ξ)|2 =|ϕ̂j(Njλξ)|

2 +

d∑
n=1

~rj∑
~̀=−~rj

|ψ̂j,~̀(S~̀BjλEnξ)|
2, a.e., ξ ∈ Rd, j > J0,

lim
j→∞
〈|ϕ̂j(Njλ·)|

2, ĥ〉 =〈1, ĥ〉, ∀ĥ ∈ D(R2).

2.2 Auxiliary functions for the construction of smooth affine shear tight frames

Before we proceed to the construction of d-dimensional smooth affine shear tight frames, we briefly introduce
some necessary auxiliary functions. We shall use a function ν ∈ C∞c (R) (compactly supported C∞ function)
such that ν(x) = 0 for x 6 −1, ν(x) = 1 for x > 1, and |ν(x)|2 + |ν(−x)|2 = 1 for all x ∈ R. There are

many choices of such functions. For example, let f(x) := e−1/x2

for x > 0 and f(x) := 0 for x 6 0, and
g(x) :=

∫ x
−1
f(1 + t)f(1− t)dt. Define

ν(x) :=
g(x)√

|g(x)|2 + |g(−x)|2
, x ∈ R. (2.3)

Then ν ∈ C∞c (R) is a desired function. Using such a function ν, we now construct our building blocks αλ,t,ρ,βλ,t,ρ
of Meyer-type scaling and wavelet functions with λ > 1, 0 < t 6 1, and 0 < ρ 6 λ2 as follows:

αλ,t,ρ(ξ) :=


ν( ξ−aε1 ) if ξ < a+ ε1,

1 if a+ ε1 6 ξ 6 b− ε2,

ν(−ξ+bε2
) if ξ > b− ε2,

βλ,t,ρ(ξ) := (|αλ,t,ρ(λ−2ξ)|2 − |αλ,t,ρ(ξ)|2)1/2, (2.4)

where [a, b] = [−λ−2(1− t/2)ρπ, λ−2(1− t/2)ρπ] and ε1 = ε2 = λ−2tρπ/2. Then αλ,t,ρ,βλ,t,ρ ∈ C∞c (R). More-
over, suppαλ,t,ρ = [−λ−2ρπ, λ−2ρπ] and suppβλ,t,ρ = [−ρπ,−λ−2(1− t)ρπ] ∪ [λ−2(1− t)ρπ, ρπ]. Furthermore,
define a 2π-periodic function µλ,t,ρ and υλ,t,ρ as follows:

µλ,t,ρ(ξ) :=

{
αλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if |ξ| 6 λ−2ρπ,

0 if λ−2ρπ < |ξ| 6 π,
υλ,t,ρ(ξ) :=

{
βλ,t,ρ(λ2ξ)
αλ,t,ρ(ξ) if λ−4(1− t)ρπ 6 |ξ| 6 λ−2ρπ,

gλ,t,ρ(ξ) if ξ ∈ [−π, π]\ suppβλ,t,ρ(λ
2·),

(2.5)

where gλ,t,ρ is a function in C∞(T) such that
[
dn

dξngλ,t,ρ(ξ)
]∣∣∣
ξ=±λ−2ρπ

= δ(n) for all n ∈ N0. The purpose of

gλ,t,ρ is to make the function υλ,t,ρ smooth. We have the following result.

Proposition 2.1. Let λ > 1, 0 < t 6 1, and 0 < ρ 6 λ2. Let αλ,t,ρ, βλ,t,ρ, and µλ,t,ρ,υλ,t,ρ be defined as in
(2.4) and (2.5), respectively. Then αλ,t,ρ,βλ,t,ρ ∈ C∞c (R) and µλ,t,ρ,υλ,t,ρ ∈ C∞(T). Moreover, |αλ,t,ρ(ξ)|2 +
|βλ,t,ρ(ξ)|2 = |αλ,t,ρ(λ−2ξ)|2, αλ,t,ρ(λ

2ξ) = µλ,t,ρ(ξ)αλ,t,ρ(ξ), and βλ,t,ρ(λ
2ξ) = υλ,t,ρ(ξ)αλ,t,ρ(ξ) for ξ ∈ R.

The functions αλ,t,ρ and βλ,t,ρ shall be used for the ξ1-axis. We next define ‘bump’ function γε for splitting
pieces along the other axies. Roughly speaking, the core generator for our affine shear systems in the frequency
domain looks like βλ,t,ρ(ξ1)

∏d
n=2 γε(ξn/ξ1), which is a pyramid shape generator. Application of parabolic

scaling, shear, and translation operations to such a generator induces our affine shear systems. Further technical
treatments are then applied on such systems to achieve tightness; see next subsections for details.

Let ε be a constant such that 0 < ε 6 1/2. For λ > 1, define `λ := bλ − (1/2 + ε)c + 1 = bλ + (1/2 − ε)c.
Define a function γε to be

γε(x) =


1 if |x| 6 1/2− ε,
ν(−|x|+1/2

ε ) if 1/2− ε 6 |x| 6 1/2 + ε,

0 otherwise.

(2.6)



Then it is easy to check that γε ∈ C∞c (R) and
∑
`∈Z |γε(·+ `)|2 = 1. Moreover,

`λ∑
`=−`λ

|γε(λx+ `)|2 = 1 ∀|x| 6 `λ + 1/2− ε
λ

. (2.7)

We next define Γj , which will be used for normalization of frequency splitting along the shear directions. We
have the following result.

Proposition 2.2. Let j ∈ N0. Define γ(ξ) :=
∏d
n=2 γε(ξn/ξ1) and

γj,
~̀
(ξ) := γ(S~̀B

j
λξ) =

d∏
n=2

γε(λ
jξn/ξ1 + `n) and Γj(ξ) :=

d∑
n=1

~̀
λj∑

~̀=−~̀λj

γj,
~̀
(Enξ), (2.8)

where ~̀ := (`2, . . . , `d) ∈ Zd−1 and ~̀
λj := (`λj , . . . , `λj ) ∈ Zd−1. Then Γj ∈ C∞(Rd\{0}) has the following

properties.

(i) 0 < Γj(ξ) 6 2, Γj(Enξ) = Γj(ξ) for all n = 1, . . . , d, and Γj(tξ) = Γj(ξ) for all t 6= 0 and ξ 6= 0.

(ii) Γj satisfies Γj(ξ) ≡ 1 for ξ ∈
{
ξ = (ξ1, . . . , ξd) ∈ Rd : max{|ξm/ξn| : m 6= n;m,n = 1, . . . , d} 6 λj

`λj+1/2+ε

}
.

2.3 Construction of smooth affine shear tight frames for L2(Rd)

Let us next discuss the quasi-stationary construction of smooth affine shear tight frames, in which case, ϕj ≡ ϕ
for all j. One can also construct non-stationary smooth affine shear tight frames similar to those in [13]. For
simplicity, we only consider the quasi-stationary construction. The idea is to use the tensor product of functions

in 1D to obtain rectangular bands for different scales, and then a frequency splitting using γj,
~̀

is applied to
produce generators with respect to different shears. More precisely, let λ > 1, 0 < t 6 1, and 0 < ρ 6 1. Consider
ϕ̂(ξ) := [⊗αλ,t,ρ](ξ) =

∏d
n=1αλ,t,ρ(ξn), ξ = (ξ1, . . . , ξd) ∈ Rd and define

ωλ,t,ρ(ξ) :=
√
|ϕ̂(λ−2ξ)|2 − |ϕ̂(ξ)|2, ξ ∈ Rd. (2.9)

Then ωλ,t,ρ ∈ C∞(Rd). In view of the construction of αλ,t,ρ, the refinable structure is clear. We have ϕ̂(λ2ξ) =
â(ξ)ϕ̂(ξ), ξ ∈ Rd with â = ⊗dµλ,t,ρ being the tensor product of the 1D mask µλ,t,ρ given in (2.5). Moreover,

we have ω(λ2ξ) = b̂(ξ)ϕ̂(ξ) with b̂ ∈ C∞(Td) being given by b̂(ξ) = (g(ξ)− |â(ξ)|2)1/2 for any smooth function
g ∈ C∞(Td) such that g = 1 on the support of ϕ̂. Note that for simplicity of presentation, we omit the

dependency of ϕ,ψj,
~̀
,γj,

~̀
, â, b̂,Γj , etc., on the parameters λ, t, ρ, ε.

Since 0 < Γj 6 2 and Γj is in C∞(Rd\{0}), we have that
√

Γj is infinitely differentiable for all ξ ∈ Rd\{0}.
Let Aλ,Bλ,Mλ,Nλ,Dλ with λ > 1 be defined as before. Let Ψj := {ψj,~̀(S−~̀·) : |~̀| 6 ~̀

λj} with

ψ̂j,~̀(ξ) := ωλ,t,ρ(D
−j
λ S−~̀ ξ)

γj,
~̀
((S~̀B

j
λ)−1ξ)√

Γj((S~̀B
j
λ)−1ξ)

= ωλ,t,ρ(ξ1, λ
−j(−ξ1`2 + ξ2), . . . , λ−j(−ξ1`d`d + ξd))

∏d
n=2 γε(ξn/ξ1)√
Γj((S~̀B

j
λ)−1ξ)

, ξ ∈ Rd\{0},
(2.10)

and ψ̂j,~̀(0) := 0, which gives ψ̂j,~̀(S~̀B
j
λξ) = ωλ,t,ρ(N

j
λξ)

γj,
~̀
(ξ)√

Γj(ξ)
. By the properties of Γj and that the support of

ωλ,t,ρ is away from the origin, we see that ψj,
~̀

are functions in C∞(Rd). We have the following (quasi-stationary)
d-dimensional affine shear system:

ASJ(ϕ; {Ψj}∞j=J) :={ϕMJλ;k : k ∈ Zd} ∪ {hAjλEn;k : k ∈ Zd, n = 1, . . . , d, h ∈ Ψj}∞j=J

={ϕMJλ;k : k ∈ Zd} ∪ {ψj,~̀
S−~̀AjλEn;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~̀
λj}∞j=J .

(2.11)



At first glance, such a system does not have shear structure at all due to that the function ωλ,t,ρ is not shear-
invariant. However, we show that such a system do have certain affine and shear structure in the sense that a
subsystem of this system is from shear and dilation of one single generator.

Theorem 2.2. Let λ > 1, 0 < t 6 1, and 0 < ρ 6 1. Let ASJ(ϕ; {Ψj}∞j=J) be defined as in (2.11)

with ϕ̂ = ⊗dαλ,t,ρ and ψj,` being given by (2.10). Then ASJ(ϕ; {Ψj}∞j=J) is an affine shear tight frame

for L2(Rd) for all J > 0. All elements in ASJ(ϕ; {Ψj}∞j=J) are functions in C∞(Rd). Moreover, we have

{ψ(S−
~̀·) : |~̀| 6 ~rj} ⊆ Ψj , j > J, where ~rj := (rj , . . . , rj) ∈ Zd−1 with rj := bλj−2(1 − t)ρ − (1/2 + ε)c and

ψ̂(ξ) := βλ,t,ρ(ξ1)
∏d
n=2 γε(ξn/ξ1), ξ ∈ Rd. In other words, {ψS−~̀AjλEn;k : k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~rj}∞j=J ⊆

ASJ(ϕ; {Ψj}∞j=J).

2.4 Smooth affine wavelet tight frames and their subsampling systems

We now discuss the connection of affine shear tight frames and affine wavelet tight frames. To this end, we first
introduce affine wavelet systems. Considering the system ASJ(ϕ; {Ψj}∞j=J) defined in (2.11), we have

ϕ̂ = ⊗dαλ,t,ρ and ψ̂j,~̀(ξ) = ωλ,t,ρ(D
−j
λ S−~̀ ξ)

∏d
n=2 γε(ξn/ξ1)√
Γj((S~̀B

j
λ)−1ξ)

, ξ ∈ Rd,

which gives

(ψ̂j,~̀)S~̀Bjλ;0,k(ξ) = λ−(d+1)j/2ωλ,t,ρ(N
j
λξ)

∏d
n=2 γε(λ

jξn/ξ1 + `n)√
Γj(ξ)

e−ik·S~̀B
j
λξ.

Now define a new set

Ψ̊j := {ψ̊j,~̀ : |~̀| 6 ~̀
λj} with

̂̊
ψj,`(ξ) := ωλ,t,ρ(ξ)

∏d
n=2 γε(λ

jξn/ξ1 + `n)√
Γj(ξ)

, ξ ∈ Rd. (2.12)

Then

(
̂̊
ψj,`)Nj ;0,k(ξ) = λ−djωλ,t,ρ(N

j
λξ)

γj,
~̀
(ξ)√

Γj(ξ)
e−ik·N

j
λξ.

We use a fixed dilation matrix Mλ for all generators ϕ and ψ̊j,`. The (quasi-stationary) d-dimensional affine
wavelet system is then defined to be

WSJ(ϕ; {Ψ̊j}∞j=J) ={ϕMJλ;k : k ∈ Zd} ∪ {hMjλEn;k : k ∈ Zd, n = 1, . . . , d, h ∈ Ψ̊j}∞j=J

={ϕMJλ;k : k ∈ Zd} ∪ {ψ̊j,~̀
MjλEn;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~̀
λj}∞j=J .

(2.13)

The connections of (2.13) and (2.11) is given by the following result.

Theorem 2.3. Retaining all the conditions for ASJ(ϕ; {Ψj}∞j=J) in Theorem 2.2. Let WSJ(ϕ; {Ψ̊j}∞j=J) be
defined as in (2.13). Then

(i) WSJ(ϕ; {Ψ̊j}∞j=J) is an affine wavelet tight frame for L2(Rd) for all J > 0; that is, {ϕ}∪{Ψ̊j}∞j=J ⊆ L2(Rd)
and

‖f‖22 =
∑
k∈Zd
|〈f, ϕMJλ;k〉|2 +

∞∑
j=J

d∑
n=1

∑
h∈Ψ̊j

∑
k∈Zd
|〈f, hMjλEn;k〉|

2, ∀f ∈ L2(Rd). (2.14)

(ii) All elements ĥ for h ∈WSJ(ϕ; {Ψ̊j}∞j=J) are compactly supported functions in C∞(Rd).

(iii) Both WSJ(ϕ; {Ψ̊j}∞j=J) and ASJ(ϕ; {Ψj}∞j=J) in Theorem 2.2 are connected to each other by the following
relations:

ψj,
~̀

S−~̀AjλEn;k
= λ(d−1)j/2ψ̊j,

~̀

MjλEn;DjλS
~̀k
, n = 1, . . . , d. (2.15)



When λ is an integer, we have DjλS
~̀Zd ⊆ Zd. Equation (2.15) shows that when λ is an integer, the affine

shear tight frame ASJ(ϕ; {Ψj}∞j=J) is indeed a subsystem of the affine wavelet tight frame WSJ(ϕ; {Ψ̊j}∞j=J)
through subsampling.

2.5 The underlying filter banks of smooth affine shear tight frames

Let us next study the underlying filter bank structure of the affine shear tight frames associated with its affine
wavelet tight frame. For a filter u = {u(k)}k∈Zd ; that is u : Zd → C, we define its Fourier series û : Td → C to be

û(ξ) =
∑

k∈Zd u(k)e−ik·ξ, ξ ∈ Td. Obviously, û are 2πZd-periodic. For the (quasi-stationary) WSJ(ϕ; {Ψ̊j}∞j=J),

we can define a sequence of filter banks. In this case, the low-pass filter â : Td → C for ϕ is fixed as follows

â(ξ) = [⊗dµλ,t,ρ](ξ), ξ ∈ Td (2.16)

with µλ,t,ρ being given in (2.5). Note that supp
̂̊
ψj,~̀(Mλ·) ⊆ supp ϕ̂. Define 2πZd-periodic functions b̂j,~̀ for

̂̊
ψj,~̀,

j > 0 as follows.

b̂j,~̀(ξ) := b̂(ξ)
γj,

~̀
(ξ)√

Γj(ξ)
, |`| 6 `λj , ξ ∈ Td, (2.17)

where b̂(ξ) :=
√

g(ξ)− |â(ξ)|2 for some smooth function g defined on Td satisfying g ≡ 1 on the support of ϕ̂.
Then, we have the following result.

Theorem 2.4. Let λ > 1 be an integer. Choose 0 < ε 6 1/2, 0 < t 6 1, and 0 < ρ < 1. Let WSJ(ϕ; {Ψ̊j}∞j=J),

J > 0 be defined as in (2.13) and let a, bj,` be defined as in (2.16) and (2.17), respectively. Then there exists

g ∈ C∞(Td) such that â, b̂j,~̀ ∈ C∞(Td) for all j > 0, |~̀| 6 ~̀
λj and

ϕ̂(Mλξ) = â(ξ)ϕ̂(ξ) and
̂̊
ψj,`(Mλξ) = b̂j,`(ξ)ϕ̂(ξ) (2.18)

for a.e. ξ ∈ Rd. Moreover, for any j > 0, the set {a, bj,~̀(En·) : |`| 6 ~̀
λj , n = 1, . . . , d} is an affine wavelet filter

bank having the perfect reconstruction property, i.e.,

|â(ξ)|2 +

d∑
n=1

~̀
λj∑

~̀=−~̀λj

|b̂j,~̀(Enξ)|2 = 1, a.e. ξ ∈ σϕ,

â(ξ)â(ξ + 2πω) +

d∑
n=1

~̀
λj∑

~̀=−~̀λj

b̂j,~̀(Enξ)b̂j,`(Enξ + 2πω) = 0,

(2.19)

for a.e. ξ ∈ σϕ ∩ (σϕ − 2πω) and for ω ∈ ΩMλ\{0} with ΩMλ = [M−1
λ Zd] ∩ [0, 1)d and σϕ := {ξ ∈ Rd :∑

k∈Zd |ϕ̂(ξ + 2πk)|2 6= 0}.

3. DIGITIZATION OF SMOOTH AFFINE SHEAR TIGHT FRAMES

In this section, we briefly discuss the numerical implementation of our smooth affine shear systems. Our imple-
mentation is based on the underlying filter bank of our quasi-stationary smooth affine shear tight frames: the
affine wavelet filter banks in (2.19). We first construct digital affine shear filter banks induced from affine wavelet
filter banks and then detail the implementation of the forward and backward digital affine shear transforms based
on the digital affine shear filter banks.



3.1 Digital affine shear filter banks

For some parameters c0 > 0 and ε0 > 0 satisfying c0 + ε0 6 π/2 (for downsampling by 2), we can define an inner
function â ∈ L2(Td) (as a low-pass filter) by

â(ξ) := [⊗dµ[c0,ε0]](ξ) =
∏
n=1

µ[c0,ε0](ξn), ξ = (ξ1, . . . , ξn) ∈ Td (3.1)

with µ[c,ε] being defined as

µ[c,ε](t) =


ν( t+cε ) if t < −c+ ε,

1 if − c+ ε <= t <= c− ε,
ν(−t+cε ) if t > c− ε.

Similarly, we define an outer function â1 ∈ L2(Rd) by â1 := ⊗dµ[c1,ε1], where c1 = π and ε1 satisfies c1 + ε1 −
(c0 − ε0) 6 π for the purpose of downsampling at least by 2 for high-pass filter coefficients. Thanks to the
property of ν, one can show that ∑

k∈Zd
|â1(ξ + 2πk)|2 = 1 ∀ξ ∈ Rd. (3.2)

Now we can define an ‘isotropic’ function b ∈ L2(Rd) by

b̂(ξ) :=

{√
|â1(ξ)|2 − |â(ξ)|2 if ξ ∈ supp â1,

0 otherwise.
(3.3)

Note that both a1 and b are not filters and both â1 and b̂ are supported on [−π − ε1, π + ε1]d.

Now, we apply the splitting technique to b̂ for the construction of high-pass filters bj,
~̀
. At scale j > 0 and a

nonnegative integers kj , define ~rj := (2kj , . . . , 2kj ) ∈ Zd−1. The number kj controls the total number of shear
directions at scale j. Similar to the definition of normalization function Γj in (2.8), we define

Γkj (ξ) =

d∑
n=1

rj∑
~̀=−~rj

|γkj ,~̀(Enξ)|2, ξ 6= 0 and Γkj (0) := 0, (3.4)

where γkj ,
~̀
(ξ) :=

∏d
n=2 γε(2

kjξn/ξ1 +`n) for some 0 6 ε 6 1
1+ε1
−1/2. To guarantee smoothness of boundary, we

need to further split γkj ,
~̀
(ξ) to positive part and negative part of ξ1-axis. Define γkj ,

~̀,±(ξ) := γkj ,
~̀
(ξ)χ{±ξ1>0}.

Note that b̂(ξ)γkj,
~̀,±(ξ)√

Γkj (ξ)
are not 2πZd-periodic functions. We define bj,

~̀,± to be the 2πZd-periodization of

b̂(ξ)γkj,
~̀,±(ξ))√
Γkj (ξ)

as follows.

b̂j,~̀,±(ξ) :=
∑
k∈Zd

b̂(ξ + 2πk)
γkj ,

~̀,±(ξ + 2πk)√
Γkj (ξ + 2πk)

, ξ ∈ Td. (3.5)

The total number of high-pass filters bj,
~̀,+ and bj,

~̀,− at this scale j is 2(2kj+1 + 1)d−1. Each filter of b̂j,~̀,± is
2πZd-periodic function on Td.

Now, in view of (3.2) and (3.4), it is easy to prove the following result.

Theorem 3.1. Let a, bj,
~̀,± be defined as in (3.1), (3.5), respectively. Then {a, bj,~̀,±(En·) : n = 1, . . . , d, |~̀| 6 ~rj}

forms a perfect reconstruction (PR) filter bank satisfying:

|â(ξ)|2 +

d∑
n=1

~rj∑
~̀=−~rj

(
|b̂j,~̀,+(Enξ)|2 + |b̂j,~̀,−(Enξ)|2

)
= 1,

â(ξ)â(ξ + 2πω) = 0, b̂j,~̀,±(Enξ)b̂j,
~̀,±(En(ξ + 2πω1)) = 0, n = 1, . . . , d, ξ ∈ Td,

(3.6)



for all ω ∈ [ 1
2Z

d] ∩ [0, 1)d\{0} and all ω1 ∈ [diag( 1
2 , 2
−kj Id−1)Zd] ∩ [0, 1)d\{0}.

Given a sequence of nonnegative integers kj : j = 0, . . . , J − 1 for some fixed integer J > 0 with respect to
the finest scale. Let M := 2Id and Aj,n := En diag(2, 2kj Id−1) for n = 1, . . . , d. We can then obtain a sequence of
PR filter banks

Bj := {a ↓ M, bj,~̀,±(En·) ↓ Aj,n : |~̀| 6 ~rj , n = 1, . . . , d} (3.7)

for j = 0, . . . , J − 1. Here M in a ↓ M indicates downsampling matrix for filtered coefficients with respect to

the low-pass filter a and Aj,n in bj,
~̀,±(En·) ↓ Aj,n indicates downsampling matrix for filtered coefficients with

respect to the high-pass filter bj,
~̀
(En·). We shall call such a sequence of PR filter banks as a sequence of (quasi-

stationary) d-dimensional digital affine shear filter banks and denote it as DAS({Bj}J−1
j=0 ). Note that the total

number of high-pass filters in Bj is 2d(2kj+1 + 1)d−1.

3.2 Digital affine shear transforms

We next discuss the implementation of the forward transform (decomposition) and backward transform (recon-
struction) of our digital affine shear filter banks. We shall implement our transforms based on discrete Fourier
transform (DFT) for fast digitization. We first discuss three main operations for a filter bank decomposition and
reconstruction: convolution, downsampling, and upsampling.

Without loss of generality and for the simplicity of presentation, we shall assume our data live on the dyadic
grids Λ(K) for K = (K1, . . . ,Kd) ∈ Nd0 = (N ∪ {0})d define by

Λ(K) = Λ(K1, . . . ,Kd) := ([0, . . . , 2K1 − 1]× · · · × [0, . . . , 2Kd − 1]) ∩ Zd.

and

Λ̂(K) = Λ̂(K1, . . . ,Kd) :=
2π

2K1+···+Kd

(
([−2K1−1, . . . , 2K1−1 − 1]× · · · × [−2Kd−1, . . . , 2Kd−1 − 1]) ∩ Zd

)
.

The (centred) discrete Fourier transform (DFT) F maps a time-domain data v : Λ(K)→ C to a 2πZd-periodic
frequency domain data v̂|Λ̂(K), which is defined to be

v̂(k) = [Fv](k) :=
∑

n∈Λ(K)

v(n)e−in·k, k ∈ Λ̂(K).

The inverse (centred) DFT is given by

[F−1v̂](n) =
1

2K1+···+Kd

∑
k∈Λ̂(K)

v(n)ein·k, n ∈ Λ(K).

The centred DFT and its inverse can be implemented by fftn, ifftn, and fftshift in MATLAB.

Given a filter u defined by its Fourier series û : Td → C, and a data v : Λ(K) → C, the circular convolution
v ~ u : Λ(K)→ C is given by

v ~ u := F−1
[
F (v) · û|Λ̂(K)

]
,

where û|Λ̂(K) is the sampling of û on the lattice Λ̂(K). We shall omit such dependence and simply write v~u =

F−1[v̂ · û] since it can be easily told from the expression. For a downsampling matrix A := diag(2m1 , . . . , 2md)
for m := (m1, . . . ,md) ∈ Nd0, the downsampling operation v ↓ A : Λ(K − m) → C and upsampling operation
v ↑ A : Λ(K + m)→ C is defined by

[v ↓ A](k) = v(Ak) for k ∈ Λ(K −m) and [v ↑ A](k) =

{
v(A−1k) if A−1k ∈ Λ(K),

0 otherwise.

It is easy to show that F (v ↓ A) =
(

1
| detA|

∑
ω∈ΩA

v̂(A−Tξ + 2πω)
) ∣∣∣

Λ̂(K−m)
, where ΩA := [A−TZd]∩ [0, 1)d. Note

that if v̂(·)v̂(· + 2πω) = 0 for all ω ∈ ΩA, then F (v ↓ A) can be implemented efficiently by lattice modulation



[F (v ↓ A)](k) := v̂(A−Tk + 2πωk) for those k such that v̂(A−Tk + 2πωk) 6= 0 for some ωk ∈ ΩA. For the
upsampling operation, we have F (v ↑ A) = v̂(ATξ)

∣∣
Λ̂(K+m)

, which can be obtained by the periodic extension

of F (v) in practice. The transition operator Tu,Av and subdivision operator Su,Av combine the operations of
circular convolution and down(up)-sampling together, which are defined to be

Tu,Av := (v ~ u?) ↓ A and Su,Av := |detA|[(v ↑ A) ~ u],

where u? is defined by û?(ξ) = û(ξ). It is easy to show that

F (Tu,Av) =

(
1

|detA|
∑
ω∈ΩA

[v̂ · û](A−Tξ + 2πω)

)∣∣∣∣∣
Λ̂(K−m)

and F (Su,Av) =
(
|detA|v̂(ATξ)û(ξ)

) ∣∣∣
Λ̂(K+m)

.

Consequently, F (Su,ATu,Av) =
(∑

ω∈ΩA
v̂(ξ + 2πω) · û(ξ + 2πω)û(ξ)

) ∣∣∣
Λ̂(K)

. Due to (3.6), it is easy to see the

PR property of decomposition and reconstruction using (3.7):

F

 ∑
(b↓A)∈Bj

Sb,ATb,Av

 =
∑

(b↓A)∈Bj

F (Sb,ATb,Av) =
∑

(b↓A)∈Bj

(∑
ω∈ΩA

v̂(ξ + 2πω) · b̂(ξ + 2πω)̂b(ξ)

)∣∣∣∣∣
Λ̂(K)

=
∑

(b↓A)∈Bj

(
v̂(ξ) · |̂b(ξ)|2

) ∣∣∣∣∣
Λ̂(K)

=

v̂(ξ)
∑

(b↓A)∈Bj

|̂b(ξ)|2
∣∣∣∣∣

Λ̂(K)

= F (v).

We are now ready to present the forward and backward transforms of a digital affine shear filter bank. We
first present the forward transform in Algorithm 1.

Algorithm 1. Forward Digital Affine Shear Transform (Decomposition)

(a) Input: d-dimensional real-value data v0 on Λ(K) for some K = (K1, . . . ,Kd) ∈ Nd0 and a digital affine shear
filter bank DAS({Bj}J−1

j=0 ) defined as in (3.7) with J 6 min{K1−1, . . . ,Kd−1} and k0, . . . , kJ−1 of nonnegative

integers determining the number of shear directions in Bj := {a ↓ M, bj,~̀,±(En·) ↓ Aj,n : |~̀| 6 ~rj , n = 1, . . . , d}
with ~rj := (2kj , . . . , 2kj ) ∈ Zd−1, Aj,n := En diag(2, 2kj Id−1), and a, bj,

~̀,± being defined as in (3.1) and (3.5),
respectively.

(b) Output: Digital affine shear coefficients: cJ ∪ {cj,~̀,n,+ : n = 1, . . . , d, |~̀| 6 ~rj , j = 0, . . . , J − 1}
(c) Main steps:
1: Initialization: v̂ ← F (v0) and j ← 0.
2: while j < J do
3: Low-pass filtering Ta,Mv: Initialize zero matrix û on Λ̂(K1 − 1, . . . ,Kd − 1). Compute û by û(k) ←

v̂(M−Tk) · â(M−Tk) for M−Tk ∈ supp(â).

4: for each bj,
~̀,+(En·) ↓ Aj,n ∈ Bj do

5: b← bj,
~̀,+(En·) and A← Aj,n. Initialize a zero matrix c on the lattice Λ(K1 − kj , . . . ,Kn−1 − kj ,Kn −

1,Kn+1 − kj , . . . ,Kd − kj).
6: Compute F (c) by ĉ(k)← v̂(ATk + 2πωk) · b̂(ATk + 2πωk) for ATk + 2πωk ∈ supp(̂b).

7: High-pass filtering Tbj,~̀,+(En·),Aj,nv: cj,
~̀,n,+ ← F−1(ĉ).

8: end for
9: j ← j + 1, (K1, . . . ,Kd)← (K1 − 1, . . . ,Kd − 1), and v̂ ← û.

10: end while
11: cJ ← F−1(v̂).

We remark that filters in Bj can be precomputed and stored before doing decomposition and reconstruction.

Since by our design the supp(̂b) can be precomputed for each b ∈ Bj , we only need to store data of filters



on its support. Moreover, we only need to compute cj,
~̀,n,+ due to the fact that b̂j,~̀,−(ξ) = b̂j,~̀,+(−ξ) and

v̂(−ξ) = v̂(ξ) for real-valued data, ξ ∈ Rd. These make our transforms extremely fast. We shall give the
computation complexity estimate in next subsection.

We next present the backward transform for the digital affine shear filter bank, which is simply the adjoint
transform of the forward transform due to the tightness of the filter bank.

Algorithm 2. Backward Digital Affine Shear Transform (Reconstruction)

(a) Input: Digital affine shear coefficients: {cJ}∪{cj,~̀,n,+ : n = 1, . . . , d, |~̀| 6 ~rj , j = 0, . . . , J −1} and a digital
affine shear filter bank DAS({Bj}J−1

j=0 ) defined as in (3.7) with J 6 min{K1−1, . . . ,Kd−1} and k0, . . . , kJ−1 of

nonnegative integers determining the number of shear directions in Bj := {a ↓ M, bj,~̀,±(En·) ↓ Aj,n : |~̀| 6 ~rj}
with ~rj := (2kj , . . . , 2kj ) ∈ Zd−1, Aj,n := En diag(2, 2kj Id−1), and a, bj,

~̀,± being defined as in (3.1) and (3.5),
respectively. cJ is on the lattice Λ(K0

1 , . . . ,K
0
d).

(b) Output: d-dimensional real-value data v0 on Λ(K1, . . . ,Kd) with Kn = K0
n + J for n = 1, . . . , d.

(c) Main steps:
1: Initialization: v̂ ← F (cJ), j ← J − 1, and (K1, . . . ,Kd)← (K0

1 + 1, . . . ,K0
d + 1).

2: while j >= 0 do
3: Low-pass subdivision Sa,Mv: Initialize zero matrix v̂lo on Λ̂(K1, . . . ,Kd). Compute v̂lo by v̂lo(k)← v̂(MTk)·

â(k) for k ∈ supp(â).

4: Initialize a zero matrix v̂hi on Λ̂(K1, . . . ,Kd).

5: for each bj,
~̀,+(En·) ↓ Aj,n ∈ Bj do

6: b← bj,
~̀,+(En·), A← Aj,n, and ĉ← F (cj,

~̀,n,+).

7: High-pass subdivision for all Sbj,~̀,+(En·),Aj,nv : v̂hi(A
Tk+ 2πωk)← v̂hi(A

Tk+ 2πωk) + ĉ(k)̂b(ATk+ 2πωk)

for ATk + 2πωk ∈ supp(̂b).
8: end for
9: High-pass subdivision Sbj,~̀,−(En·),Aj,nv: v̂hi ← v̂hi + v̂hi(−·).

10: v̂ ← v̂lo + v̂hi, (K1, . . . ,Kd)← (K1 + 1, . . . ,Kd + 1), j ← j − 1.
11: end while
12: v0 ← F−1(v̂).

3.3 Redundancy rate and computational complexity

The redundancy rate measures the storage complexity of a filter bank transform, which is usually given by the
ratio of size of the output coefficients and the size of the input data. Let N = 2K1+···+Kd be the size of the

input data. For our digital affine shear transforms, at scale j, the output coefficients are cj,
~̀,n,+ for n = 1, . . . , d,

|~̀| 6 ~rj with ~rj = (2kj , . . . , 2kj ) ∈ Zd−1. The coefficient matrix cj,
~̀,n,+ is on the lattice Λ(K1−j−kj , . . . ,Kn−1−

j − kj ,Kn − j − 1,Kn+1 − j − kj , . . . ,Kd − j − kj), which is of size N
2dj
· 1

21+(d−1)kj
. The total number of output

coefficients at scale j is d(2kj+1 + 1)d−1. Consequently, the size of the total output coefficients at scale j is:

N

2dj
· 1

21+(d−1)kj
× d(2kj+1 + 1)d−1 × 2.

The ‘×2’ is due to complex-value coefficients. The low-pass coefficient cJ is of size N/2dJ . Therefore, the total
size of output coefficients is

N

J−1∑
j=0

2d(2kj+1 + 1)d−1

2dj · 21+(d−1)kj
+

1

2dJ

 =N

J−1∑
j=0

d(2−kj + 2)d−1

2dj
+

1

2dJ

 6 Nd(2−kmin + 2)d−1

 ∞∑
j=0

2−dj


=Nd(2−kmin + 2)d−1 2d

2d − 1
,



where kmin := min{kj : j = 0, . . . , J − 1}. The redundancy rate is given by

r =

J−1∑
j=0

d(2−kj + 2)d−1

2dj
+

1

2dJ

 6 d(2−kmin + 2)d−1 2d

2d − 1
.

The following table gives the bound of the redundancy rate with respect to a fixed dimension d and a fixed kmin.

d\kmin 0 1 2 3 4 5 6 2d TP-CTF6 [12]

2 8.00 6.67 6.00 5.67 5.50 5.42 5.38 4 10.66
3 30.86 21.43 17.36 15.48 14.58 14.15 13.93 8 29.71
4 115.20 66.67 48.60 40.94 37.43 35.76 34.94 16 85.33
5 418.06 201.61 132.28 105.24 93.40 87.86 85.19 32 249.80

Table 1. Theoretical redundancy bound of r for digital affine shear transforms.

Interestingly, instead of increasing, the redundancy rate decreases as kmin increases, which determines the
number of shear directions > d(2kmin+1 + 1)d−1. In dimension two, kj = 2 corresponds to 18 directions at scale
j. In dimension three, kj = 2 corresponds to 243 directions at scale j. In Table 1, we also compare with 2d and

the redundancy rate of TP-CTF6 in [12], which has redundancy rate 2d× 3d−1
2d−1

. One can see from the table that
the redundancy rate increases slower than TP-CTF6 with respect to dimension d and kmin > 1. Actually, the

ratio between these two is bounded by d(2−kmin+2)d−1

3d−1
→ 0 as d→∞ for kmin > 1.

For fast computational realization, with a fixed size of data and level J of decomposition, the digital affine
shear filter bank DAS({Bj}J−1

j=0 ) can be precomputed. By the compact property of b̂ for b ∈ Bj , we only need to

store the support indices and values {(k, b̂(k)) : b̂(k) 6= 0, k ∈ Λ̂(K1 − j, . . . ,Kd − j)}. Again, by the symmetry
property, we only need to store half of such information. Similar to the above analysis, we can conclude that the
total size is again bounded by rN for N the size of input data and r the redundancy rate the transform.

We next discuss the computational complexity of the digital affine shear transforms. In Algorithm 1 (decom-
position), the computational complexity of Line 1 (Initialization, DFT) is N log(N). Let us next analyze Lines
3-7 In the while loop with respect to scale j. At Line 3, we need to perform N

2d(j+1) (complex) multiplications for
computing v̂|Λ̂(K1−j−1,...,Kd−j−1). Since the support indices are precomputed, the main computational cost in the

for loop is Line 6 for multiplication and Line 7 for inverse DFT. The total number of (complex) multiplications
in the for loop is (

N

2dj
· 1 + log(N)− dj − 1− (d− 1)kj

21+(d−1)kj

)
× d(2kj+1 + 1)d−1.

The last step Line 13 (inverse DFT) requires N
2dJ

(log(N) − dJ) numbers of (complex) multiplications. Conse-
quently, the total computational cost is

N logN +

J−1∑
j=0

[
N

2dj
· 1 + logN − dj − 1− (d− 1)kj

21+(d−1)kj
× d(2kj+1 + 1)d−1 +

N

2d(j+1)

]
+

N

2dJ
(logN − dJ)

6N logN +N(1 + logN)

J−1∑
j=0

[
d(2kj+1 + 1)d−1

2dj · 21+(d−1)kj
+

1

2d(j+1)

]
+

1

2dJ


6N logN +N(1 + logN)(r + (2d − 1)−1)

6N [(1 + logN)(r + (2d − 1)−1 + 1)− 1]

6(r + 2) · (N +N logN).



Roughly speaking, N mainly comes from the point-wise multiplications of filters and input data while N logN
comes from the performance of DFT for output coefficients. Our computational cost is proportional to the
computational complexity of DFT for input data of size N . The ratio is controlled by the redundancy rate r.
Since the backward transform Algorithm 2 basically reverses the steps in Algorithm 1, the computational cost
of Algorithm 2 is the same as Algorithm 1. See Figure 1 for the computational time comparison between the
forward digital affine shear transform and the standard FFT in dimension three. J is set to be 4 and k0 = 2,
k1 = 1, k2 = 1, k3 = 0. For each N = n3 with n ranging from 80 to 256 (step size 16), the computational
times (in second) for a standard FFT (FFT Time) and our forward digital affine shear transform (DAS Time)
are obtained. The line of DAS Time vs. FFT time is plotted in Figure 1 together with the line r × FFT Time
with r ≈ 17.87 being the redundancy rate. We can see that the computational complexity of our digital affine
shear transform is indeed controlled by the FFT Time.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

FFT Time (sec.)

DA
S 

Ti
m

e 
(s

ec
.)

DAS T im e v s. FFT T im e

 

 

 DAS Time vs. FFT Time

 Redundancy rate x FFT Time

N=160x160x160

N=112x112x112

N=224x224x224

N=192x192x192

N=256x256x256

Figure 1. Comparison of computational costs of the forward digital affine shear transform and the standard FFT in
MATLAB for N = n3, where n ranges from 80 to 256 with step size 16.

4. NUMERICAL EXPERIMENTS ON IMAGE AND VIDEO DENOISING

In this section, we apply our digital affine shear transforms in the tasks of image/video denoising. We compare
the performance of our systems to several other stat-of-art directional multiscale representation systems.

The peak-signal-noise-ratio (PSNR) index is used to measure the performance of different systems, which is
defined to be

PSNR(u, ũ) = 10 log10

2552

MSE(u, ũ)
, (4.1)

where u : Λ → C is the original data defined on a lattice Λ, ũ is the denoised data of u, and MSE(u, ũ) is the
mean square error 1

|Λ|
∑

k∈Λ |u(k)− ũ(k)|2 with |Λ| the cardinality of the lattice Λ. The unit of PSNR is dB.

For the thresholding technique in the denoising task in our digital affine shear transforms, we shall employ the

local-soft (LS) thresholding method. For each high-pass coefficient matrix c ∈ {cJ}∪{cj,~̀,n,+ : n = 1, . . . , d, |~̀| 6
~rj , j = 0, . . . , J − 1} , let b be the filter that induces c, that is, c = Tb,Av0 for the input data v0 and some
downsampling matrix A, we first normalize it with respect to the norm ‖b‖2 of b to obtain cb := c

‖b‖2 . The

filter b can be computed by applying the backward transform to a delta data on the support of c and ‖b‖2 is
the Frobenius norm of the reconstructed data. Let σ be the variance of a noise obeying normal distribution
N(0, σ2) and Λ be the lattice for c. For each k ∈ Λ, compute local coefficient variance σc : Λ → [0,∞) by

σc(k) :=
√(

1
#Λk

∑
n∈Λk
|cb(n)|2 − σ2

)
+

, where Λk is the lattice of the the same size as [−L,L]d centering at

position k for some integer L > 0. Note that σc can be computed by convolution of cb with a normalized window
[−L,L]d∩Zd

(2L+1)d
. The threshold tc : Λ→ [0,∞] is then define by tc(k) = σ2

σc(k)
, k ∈ Λ. The soft-thresholding operator



ηsoftt (x) and hard-thresholding operator ηhardt (x) for t > 0, x ∈ C is defined to be

ηsoftt (x) =

{
x− t x|x| if |x| > t,

0 otherwise,
and ηhardt (x) =

{
x if |x| > t,

0 otherwise.

The local-soft thresholding ηlstc(cb) : Λ→ C applying to cb with threshold tc is then defined to be [ηlstc(cb)](k) :=

ηsofttc(k)
(cb(k)), k ∈ Λ. The threshold coefficient c̃ from c is then renomralized by c̃ := ‖b‖2 · ηlstc(cb).

Figure 2. 2D images Lena and Barbara (left two) and the first frame of 3D data Mobile and Coastguard (right two).

4.1 Comparisons on image denoising and inpainting

We first apply our system to the task of denoising in image processing. The parameters c0, ε0, ε1 of a1, a are
given by c0 = 33

32 , c1 = π, ε0 = 69
128 , ε1 = 51

512 and ε = 1
2 for γε. We choose J = 5 for DAS({Bj}Jj=0) as in (3.7);

that is, we decompose to 5 scales. The shear parameters (k0, k1, k2, k3, k4) is set to be (2, 1, 1, 1, 0). That is, for
the finest scale j = 0, we use totally 2(2k0+1 + 1) = 18 shear directions (9 on horizontal cone and 9 on vertical
cone). For next three scales j = 1, 2, 3, we use 10 shear directions, and for the coarsest scale, we use 6 shear
directions. The redundancy of our system DAS({Bj}4j=0) is 6.165. The convolution window size L to compute
local coefficient variance σc is set to be 4, i.e., we are using 9× 9 window.

We test two standard images: Lena and Barbara; see Figure 2. Both are of size 512× 512. We first employ
symmetric boundary extension (with 32 pixels) on the noisy image to avoid boundary effect. We then apply
our forward transform to obtained the coefficients. After performing the local-soft threshold procedure, we then
apply the backward transform to the thresholded coefficients and throw away the extended boundary to obtained
the final denoised image.

We compare our denoising performance to several other stat-of-art directional multiscale representation sys-
tems: dual-tree complex wavelets [18], tensor product complex tight framelets [11,12] , curvelets [2, 3], compact
support shearlets [16], contourlets [4]. We download each of their available packages and run their denoising
codes for both Lena and Barbara. The 2D dual-tree complex wavelet transform (DT-CWT) in [18] has redun-
dancy rate 4. The number of directional filters of DT-CWT at each scale is 6 covering ±15◦,±45◦,±75◦. The
total number of scales is 6. Bivariate shrinkage thresholding technique is employed for denoising. The TP-CTF6

is detailed in [11, 12], which has redundancy rate 10.67 and 14 directional filters for each scale. The total num-
ber of scales is 5 and it also use bivariate shrinkage thresholding technique. The curvelet transform (FDCT
at http://www.curvelab.org) has two implementations: one uses un-equispace FFT, another uses frequency
wrapping. Here we use the wrapping package; detailed information can be found at [3]. The total number of
scales is 5. At the finest scale, the FDCT uses isotropic wavelet transform to avoid checkerboard effect. At
scale 4, 32 (angular) directions are used. At scales 3 and 2, 16 (angular) directions are used. At the coarsest
scale, 8 (angular) directions are used. The redundancy of the FDCT is about 2.8. The shearlet transform at
http://www.shearlab.org also has many implementations and we choose the compactly supported shearlet
implementation DNST as in [16], which has the best performance so far in the ShearLab package. For DNST,
the total number of scales is 4. 16 shear directions are used for finest scale 4 and 3; while 8 shear directions are
used for the other two scales. The redundancy of DNST is 49. The contourlet transform [4] (NSCT package at
http://minhdo.ece.illinois.edu/software) has redundancy rate 53. It uses 4, 8, 8, 16, 16 directions in the
scales from coarser to finer. The three transforms FDCT, DNST, NSCT use hard thresholding for denoising.

We compare the denoising performance over different Gaussian noise N(0, σ2) with noise level σ in {5, 10, 30,
50, 80, 100}. The comparison results are presented in Table 2. The values in the brackets are gain (+) or loss



(-) of our method comparing to other methods. From Table 2, we see significant improvement over FDCT and
NSCT for both Lena and Barbara. Comparing our method with DNST, when noise level is small σ 6 30, DNST
performs better than our method for the image Lena while our method perform better than DNST when noise
level is high σ > 30 for both Lena and Barbara. The performance of DT-CWT and our method is comparable
when noise level is small and our method outperforms DTCWT when noise level is high. TP-CTF6 outperforms
our method for Lena when noise level σ < 80 and for Barbara when σ 6 30. However, when noise level is
high, our method outperforms TP-CTF6. In summary, we conclude that our method is in general better than
DT-CWT, TP-CTF6, FDCT, DNST, NSCT, especially for texture-rich image Barbara and for high noise level
(σ > 50).

512× 512 Lena
σ DAS DT-CWT TP-CTF6 DNST FDCT NSCT
5 38.15 38.25(-0.10) 38.37(-0.22) 38.01(0.14) 35.77(2.38) 37.71(0.44)
10 35.13 35.19(-0.06) 35.48(-0.35) 35.35(-0.22) 33.37(1.76) 34.92(0.21)
30 30.62 30.50(0.12) 30.80(-0.18) 30.68(-0.06) 29.34(1.28) 30.32(0.30)
50 28.49 28.22(0.27) 28.54(-0.05) 28.21(0.28) 27.19(1.30) 28.02(0.47)
80 26.55 26.15(0.40) 26.47(0.08) 25.78(0.77) 25.16(1.39) 25.80(0.75)
100 25.64 25.20(0.44) 25.52(0.12) 24.58(1.06) 24.22(1.42) 24.71(0.93)

512× 512 Barbara
σ DAS DT-CWT TP-CTF6 DNST FDCT NSCT
5 37.33 37.37(-0.04) 37.84(-0.51) 37.17(0.16) 33.83(3.50) 36.96(0.37)
10 33.65 33.54(0.11) 34.18(-0.53) 33.62(0.03) 29.17(4.48) 33.35(0.30)
30 28.33 27.89(0.44) 28.38(-0.05) 27.97(0.36) 24.44(3.89) 27.28(1.05)
50 26.01 25.36(0.65) 25.71(0.30) 25.31(0.70) 23.38(2.63) 24.57(1.44)
80 23.99 23.27(0.72) 23.53(0.46) 22.96(1.03) 22.22(1.77) 22.65(1.34)
100 23.08 22.42(0.66) 22.64(0.44) 22.06(1.02) 21.61(1.47) 21.90(1.18)

Table 2. PSNR of denoised Lena and Barbara.

4.2 Comparisons on video denoising and inpainting

We next apply our system to the task of denoising in video processing. The parameters c0, c1, ε0, ε1 of a1, a are
same as before except ε = 0.469 for γε. We choose J = 4 for DAS({Bj}Jj=0) as in (3.7); that is, we decompose
to 4 scales. The shear parameters (k0, k1, k2, k3) is set to be (2, 1, 1, 0). That is, for the finest scale j = 0, we
use totally 3(2k0+1 + 1)2 = 243 shear directions (81 for each cone). For next two scales j = 1, 2, we use 75 shear
directions, and for the coarsest scale, we use 27 shear directions. The redundancy of our system DAS({Bj}3j=0)
is 17.88. The convolution window size L to compute local coefficient variance σc is set to be 2, i.e., we are using
5× 5× 5 window.

We test two videos: Mobile and Coastguard, which can be downloaded from http://www.shearlab.org;
see Figure 2 for the first frame of each video. Both videos are of size 192×192×192. We first employ symmetric
boundary extension (with 16 pixels) on the noisy image to avoid boundary effect. We then apply our forward
transform to obtained the coefficients. After performing the local-soft threshold procedure, we then apply the
backward transform to the thresholded coefficients and throw away the extended boundary to obtained the final
denoised image.

We compare our denoising performance to 3D dual-tree complex wavelets [18], 3D tensor product com-
plex tight framelets [11, 12] , surfacelets [17], 3D compact support shearlets [16]. The 3D dual-tree complex
wavelet transform (DT-CWT) in [18] has redundancy rate 8. The number of directional filters of DT-CWT
at each scale is 56. The number of scales is 5. The 3D TP-CTF6 is detailed in [12], which has redundancy
rate 29.71 and 208 directional filters for each scale. The number of scales is 4. Bivariate shrinkage thresh-
olding technique is employed for both DTCWT and TP-CTF6. For 3D DNST from the ShearLab package,
we choose the one with redundancy rate 154 (3 scales). The surfacelet transform (SURF) from SurfBox at
http://minhdo.ece.illinois.edu/software has redundancy rate 6.4. The 3D DNST and sufacelet transform
use hard thresholding for denoising.

We compare the denoising performance over different noise level σ ∈ {10, 20, 30, 50, 80, 100}. The comparison
results are presented in Table 3. From Table 3, we see that our method outperforms both two low-redundant 3D
transforms DTCWT and surfacelets. For the other two high-redundant 3D transforms TP-CTF6 and DNST, our
performance is worse while noise level is small (σ < 50)but significant better when noise level is high (σ > 50).



192 × 192 × 192 Mobile 192 × 192 × 192 Coastguard

σ DAS DT-CWT TP-CTF6 SURF DNST DAS DT-CWT TP-CTF6 SURF DNST

10 34.99 34.72(0.27) 35.52(-0.53) 32.79(2.20) 35.91(-0.92) 33.70 33.21(0.49) 34.15(-0.45) 30.86(2.84) 33.81(-0.11)
20 31.50 30.86(0.64) 31.77(-0.27) 29.95(1.55) 32.18(-0.68) 30.27 29.61(0.66) 30.62(-0.35) 28.26(2.01) 30.28(-0.01)
30 29.57 28.67(0.90) 29.66(-0.09) 28.26(1.31) 29.99(-0.42) 28.47 27.71(0.76) 28.73(-0.26) 26.87(1.60) 28.40(0.07)
50 27.26 26.06(1.20) 27.08(0.18) 26.11(1.15) 27.22(0.04) 26.40 25.56(0.84) 26.48(-0.08) 25.17(1.23) 26.17(0.23)
80 25.20 24.00(1.20) 24.82(0.38) 24.25(0.95) 24.75(0.45) 24.65 23.83(0.82) 24.53(0.12) 23.61(1.04) 24.17(0.48)
100 24.23 23.17(1.06) 23.82(0.41) 23.40(0.83) 23.62(0.61) 23.86 23.08(0.78) 23.65(0.21) 22.87(0.99) 23.22(0.64)

Table 3. PSNR of denoised Mobile and Coastguard.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project No. CityU 108913).

REFERENCES

[1] B. G. Bodmann, G. Kutyniok, and X. Zhuang, Gabor shearlets, Appl. Comput. Harmon. Anal. 38 (1)
(2015), 87–114.

[2] E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with
piecewise C2 singularities, Comm. Pure Appl. Math. 57 (2) (2004), 219–266.

[3] E. J. Candès, L. Demannet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, Multiscale Model.
Simul. 5 (3) (2006), 861–899.

[4] A. L. Cunha, J. Zhou, and M. N. Do, The nonsubsampled contourlet transform: theory, design, and
applications, IEEE Trans. Image Proc. 15 (10) (2006), 3089–3101.

[5] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics,
61, SIAM, Philadelphia, PA, 1992.

[6] K. Guo, D. Labate, W. Lim, G. Weiss, and E. Wilson, Wavelets with composite dilations, Electr. Res. Ann.
AMS. 10 (2004), 78–87.

[7] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representations using anisotropic dilation and
shear operators, Wavelets and Splines (Athens, GA, 2005), Nashboro Press, Nashville, TN (2006), 189-201.

[8] K. Guo and D. Labate, Optimal sparse multidimensional representation using shearlets, SIAM J. Math.
Anal. 9 (2007), 298–318.

[9] K. Guo and D. Labate, The construction of smooth Parseval frames of shearlets, Math. Model. Nat. Phenom.
8 (2013), 82–105.

[10] B. Han, Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32 (2012),
169–196.

[11] B. Han and Z. Zhao, Tensor product complex tight framelets with increasing directionality, SIAM J. Imaging
Sci. 7 (2014), 997–1034.

[12] B. Han, Z. Zhao, and X. Zhuang, Directional tensor product complex tight framelets with low redundancy,
Appl. Comput. Harmon. Anal., to appear.

[13] B. Han and X. Zhuang, Smooth affine shear tight frames with MRA structures, Appl. Comput. Harmon.
Anal. 39 (2) (2015), 300–338.

[14] E. J. King, G. Kutyniok, and X. Zhuang, Analysis of data separation and recovery problems using clustered
sparsity, J. Math. Imaging Vis. 48 (2014), 205–234.

[15] G. Kutyniok, M. Sharam, and X. Zhuang, ShearLab: A rational design of a digital parabolic scaling algo-
rithm, SIAM J. Imaging Sci. 5 (4) (2012), 1291–1332.

[16] W.-Q. Lim, Nonseparable shearlet transform. IEEE Trans. Image Proc. 22 (2013), 2056 - 2065.

[17] Y. M. Lu and M. N. Do, Multidimensional directional filter banks and surfacelets, IEEE Trans. Image
Process. 16 (2007), 918–931.

[18] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, The dual-tree complex wavelet transform, IEEE
Signal Process. Mag. 22 (6) (2005), 123–151.


