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ABSTRACT

Affine shear tight frames with 2-layer structure in arbitrary dimensions are constructed. Affine shear filter banks
with 2-layer structure associated with affine shear tight frames with 2-layer structure are designed and show to
be with the perfect reconstruction property. The redundancy rate and computational complexity of affine shear
filter banks are discussed. Applications to video denoising are conducted to demonstrate the effectiveness of the
affine shear filter banks with 2-layer structure.
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1. INTRODUCTION

Directional multiscale representation systems have been shown to be superb over many other multiscale represen-
tation systems in both theory (sparse approximation) and applications, e.g., see [2, 5, 8–11, 16, 20–23] and many
references therein. Based on the framework of frequency-based affine systems [13], smooth affine shear tight fra-
mes, one of the recent developed directional multiscale representation systems, have been study systematically in
dimension two [16] and in arbitrary dimension d > 2 [23]. In [16,23], it has been shown that an affine shear tight
frames can be deduced from a directional affine wavelet tight frame via appropriate downsampling, and thus it
can be regarded as a subsampled system from a directional affine wavelet tight frame thereby associating an affine
shear tight frame with a underlying directional filter bank. More importantly, digital affine shear transforms can
be efficiently implemented using their underlying filter banks and are very similar to the standard fast wavelet
transforms. Such digital affine shear filter banks enjoy many nice properties including low-redundancy rate,
arbitrary number of directional filters, shear structure, and so on. Applications of digital affine shear filter banks
associated with affine shear tight frames in image/video processing demonstrate the advantages of such types of
filter banks in comparison with many other frame-based directional filter banks [23]. On the other hand, in the
recent papers [14,15], another type of directional systems, called tensor product complex tight framelets, has been

successfully applied in image/vedio processing as well. Their associated filter banks (TP-CTF6 and TP-CTF↓6
filter banks) have many nice properties such as simple tensor product structure, easy frequency-domain design,
and more importantly, 2-layer directional filter banks. The 2-layer structure brings many important features
in a filter bank system. It results in the combinations of an inner layer of high-pass filters that are mainly for
capturing edge-like features, and an outer layer of high-pass filters that are highly oscillating for texture-like
features. However, due to the limitation of tensor-product structure, such type of filter banks can only have a
fixed number of directional filters, which is not desirable in practice, especially when the resolutions of images
getting higher and higher.

Motivated by the successful applications of the affine shear tight frames ([16,23]) and the tensor product com-
plex tight framelets for image/video processing ([14, 15]), in [4], affine shear filter banks with 2-layer structure
(DAS-2 filter bank) in dimension two are proposed and applied to the tasks of image denoising and image inpain-
ting. Though the idea is simple, it brings significant performance improvement in image denoising/inpainting
using the DAS-2 filter banks. In this paper, we further investigate d-dimensional affine shear tight frames with
2-layer structure in any dimension d > 2 and present the characterizations, construction, and applications of
affine shear tight frames with 2-layer structure.
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In the remaining part of this paper, we first introduce affine shear systems with 2-layer structure that
have generators splitting the frequency region at each scale into inner and outer layers, where the inner layer
generators are used to capture edge-like features while the outer layer texture-like features. After that, we
provide the characterization and construction of a sequence of affine shear systems with 2-layer structure to be a
sequence of affine shear tight frames with 2-layer structure, which naturally induce affine shear filter banks with
2-layer structure (DAS-2 filter banks). Last but not least, we show that digital affine shear transforms can be
implemented with low redundancy rate and with near-linear computational complexity (O(N logN)). Numerical
experiments are conducted to demonstrate the advantages of our digital affine shear filter banks with 2-layer
structure over many other state-of-the-art frame-based methods in video processing.

2. AFFINE SHEAR TIGHT FRAMES WITH 2-LAYER STRUCTURE IN Rd

In this section, we extend the definition of affine shear tight frames with 2-layer structure in [4] in dimension
two to any dimension d > 2. We first introduce the notation of a sequence of d-dimensional affine shear systems
with 2-layer structure and then provide the characterization for an affine shear system with 2-layer structure to
be an affine shear tight frame with 2-layer structure in L2(Rd) as well as the construction of d-dimensional affine
shear tight frames with 2-layer structure.

2.1 Characterizaiton

Throughout the paper, we assume d > 2 and use the compact notation fU ;k,n(x) := |detU |1/2f(Ux−k)e−in·Ux, x ∈
Rd to encode dilation by a d × d invertible matrix U , translation by k ∈ Rd, and modulation by n ∈ Rd for a
function f defined in Rd. Such a notation is consistent with the classical wavelet notation ψj;k := 2j/2ψ(2j ·−k).
We denote the shear operator S~τ with ~τ = (τ2, . . . , τd) ∈ Rd−1, anisotropic d×d dilation matrix Aλ, and isotropic
d× d dilation matrix Mλ with λ > 1 by

S~τ =


1 τ2 . . . τd
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Aλ =


λ2 0 . . . 0
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

 , and Mλ =


λ2 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λ2

 .
We use Nλ := M−Tλ and Bλ := A−Tλ to denote the transpose of the inverse of Mλ and Aλ, respectively. Note that
Mλ = AλDλ with Dλ := diag(1, λId−1), where In denotes the n × n identity matrix. Define S~τ := (S~τ )T and
denote d× d matrix En to be the elementary matrix corresponding to the coordinate exchange between the first

axis and the nth one. That is, E1 = Id, E2 = diag(
[
0 1
1 0

]
, Id−2), E3 = diag(

[
0 0 1
0 1 0
1 0 0

]
, Id−3), and so on.

Let ϕ ∈ L2(Rd) be a scaling function for the low frequency part at scale j and Ψin
j ,Ψ

out
j be a set of generators

for the high frequency part in the inner layer ) and in the outer layer at scale j, respectively, be given by

Ψin
j := {ψj,~̀,in : |~̀| 6 ~rj,in}, Ψout

j := {ψj,~̀,out : |~̀| 6 ~rj,out}

with ~̀ := (`2, . . . , `d) ∈ Zd−1, ~rj,ι := (rιj,2, . . . , r
ι
j,d) ∈ Zd−1, and ψj,

~̀,ι being functions in L2(Rd) for ι ∈ {in, out}.
Here and after we shall use the compact notation

∑~rj,ι
~̀=−~rj,ι

to mean
∑rιj,2
`2=−rιj,2

· · ·
∑rιj,d
`d=−rιj,d

and |~̀| 6 ~rj,ι to

mean all ~̀ = (`2, . . . , `d) such that |`2| 6 rιj,2, . . ., |`d| 6 rιj,d. The summation
∑
n and

∑
ι are short for

∑d
n=1

and
∑
ι=in,out, respectively. A d-dimensional affine shear system (with 2-layer structure and starting at scale

J) is then defined to be

ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) = {ϕMλout

J
;k : k ∈ Zd} ∪ {ψj,~̀,ι

S−~̀Aλι
j
En;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~rj,ι, ι = in, out}∞j=J .

(1)

The Fourier transform f̂ of a function f ∈ L1(Rd) is defined to be f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for ξ ∈ Rd

and can be naturally extended to functions in L2(Rd) or tempered distributions. Following the same lines of
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proof in Theorem 2 of [16]. We have the following simple characterization for a sequence of affine shear systems
with 2-layer structure to be a sequence of affine shear tight frames with 2-layer structure for L2(Rd) when all
generators are nonnegative in the frequency domain (also see [13, Corollary 18]):

Theorem 2.1. Let J0 be an integer and ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) be defined as in (1). Suppose that ĥ >

0 for all h ∈ {{ϕ} ∪ Ψin
j ∪ Ψout

j }∞j=J . Then, for all integers J > J0, ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) is an affine shear

tight frame for L2(Rd); that is, all generators are from L2(Rd) and

‖f‖22 =
∑
k∈Zd
|〈f, ϕMλout

J
;k〉|2 +

∞∑
j=J

∑
n,ι

~rj,ι∑
~̀=−~rj,ι

∑
k∈Zd
|〈f, ψj,~̀,ι

S−~̀Aλι
j
En;k
〉|2, ∀f ∈ L2(Rd), (2)

if and only if the following holds:

ĥ(ξ)ĥ(ξ + 2πk) =0, a.e., ξ ∈ Rd, k ∈ Zd\{0}, ∀h ∈ {{ϕ} ∪Ψin
j ∪Ψout

j }∞j=J ,

|ϕ̂(Nλoutj+1
ξ)|2 =|ϕ̂(Nλoutj

ξ)|2 +
∑
n,ι

~rj,ι∑
~̀=−~rj,ι

|ψ̂j,~̀,ι(S~̀BλιjEnξ)|
2, a.e., ξ ∈ Rd, j > J0, (3)

lim
j→∞
〈|ϕ̂(Nλoutj

·)|2, ĥ〉 =〈1, ĥ〉 ∀ĥ ∈ C∞c (Rd).

2.2 Construction

Based on Theorem 2.1, we next provide the construction of affine shear tight frames with 2-layer structure in
arbitrary dimension d > 2. We use the frequency domain approach to achieve (3), which heavily relies on a
building block function ν[c,ε].

Let ν be a function such that ν(x) = 0 for x 6 −1, ν(x) = 1 for x > 1, and |ν(x)|2 + |ν(−x)|2 = 1 for all
x ∈ R. Such a function can be constructed to be smooth in C∞(R) or differentiable in Ck(R); see [16,23]. Define
for 0 < ε 6 c, the funciton ν[c,ε] to be

ν[c,ε](x) :=


ν(x+c

ε ) if x < −c+ ε,

1 if − c+ ε 6 x 6 c− ε,
ν(−x+c

ε ) if x > c− ε.

Then the function ν[c,ε] is a “bump” function supported on [−c− ε, c+ ε] and satisfies
∑
k∈Z |ν[c,ε](·−2kc)|2 ≡ 1.

Define γε := ν[1/2,ε] for 0 < ε 6 1/2 to be the splitting function, and αλ,t,ρ(ξ) := ν[λ−2(1−t/2)ρπ,λ−2tρπ/2](ξ),

βλ,t,ρ(ξ) := (|αλ,t,ρ(λ−2ξ)|2− |αλ,t,ρ(ξ)|2)1/2 to be the 1D Meyer-type scaling and wavelet functions with λ > 1,
0 < t 6 1, and 0 < ρ 6 λ2. Then suppγε = [−1/2− ε, 1/2 + ε], suppαλ,t,ρ = [−λ−2ρπ, λ−2ρπ] and suppβλ,t,ρ =
[−ρπ,−λ−2(1− t)ρπ] ∪ [λ−2(1− t)ρπ, ρπ].

The functions αλ,t,ρ and βλ,t,ρ are used for the ξ1-axis while the function γε is for splitting pieces along the
other axes. Roughly speaking, the core generator for our affine shear systems in the frequency domain looks
like βλ,t,ρ(ξ1)

∏d
n=2 γε(ξn/ξ1), which is a pyramid shape generator. Application of parabolic scaling, shear, and

translation operations to such a generator induces our affine shear systems. Further technical treatments are
then applied on such systems to achieve tightness.

For λ > 1, define `λ := bλ− (1/2 + ε)c+ 1 = bλ+ (1/2− ε)c, λoutj := λj , and λinj := λj−1/2. We next define
Γιj for ι = in, out, which will be used for normalization of frequency splitting along the shear directions. Define

d-dimensional splitting function γ(ξ) :=
∏d
n=2 γε(ξn/ξ1) for ξ = (ξ1, . . . , ξd) ∈ Rd,

γj,
~̀,ι(ξ) := γ(S~̀Bλιjξ) =

d∏
n=2

γε(λ
ι
jξn/ξ1 + `n) and Γιj(ξ) :=

d∑
n=1

~̀
λι
j∑

~̀=−~̀λι
j

γj,
~̀,ι(Enξ), (4)

where ~̀ := (`2, . . . , `d) ∈ Zd−1 and ~̀λιj := (`λιj , . . . , `λιj ) ∈ Zd−1. Then Γιj has the following properties:
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(i) 0 < Γιj(ξ) 6 2, Γιj(Enξ) = Γιj(ξ) for all n = 1, . . . , d, and Γιj(tξ) = Γj(ξ) for all t 6= 0 and ξ 6= 0.

(ii) Γιj(ξ) ≡ 1 for ξ ∈
{
ξ = (ξ1, . . . , ξd) ∈ Rd : max{|ξm/ξn| : m 6= n;m,n = 1, . . . , d} 6 λιj

`λι
j
+1/2+ε

}
.

Next, we define the d-dimensional scaling function ϕ and generators ψj,
~̀,ι. Let

ϕ̂(ξ) :=[⊗αλ,t,ρ](ξ) =

d∏
n=1

αλ,t,ρ(ξn),

ωout(ξ) :=
√
|ϕ̂(λ−2ξ)|2 − |ϕ̂(λ−1ξ)|2,

ωin(ξ) :=
√
|ϕ̂(λ−1ξ)|2 − |ϕ̂(ξ)|2.

Note that for simplicity of presentation, we omit the dependency of ϕ,ψj,
~̀
,γj,

~̀,ι, â, b̂,Γιj , etc., on the parameters

λ, t, ρ, ε. Now define ψj,
~̀,ι by

ψ̂j,~̀,ι(ξ) := ωι(λ−2j(S~̀ Bλιj )
−1ξ)

Πd
n=2γε(ξn/ξ1)√

Γιj((S~̀ Bλιj )
−1ξ)

, ξ ∈ Rd\{0}, ι ∈ {in, out}. (5)

and ψ̂j,~̀,ι(0) := 0, which gives ψ̂j,~̀,ι(S~̀Bλιjξ) = ωι(λ−2jξ)γj,
~̀,ι(ξ)√
Γιj(ξ)

. We have the following (quasi-stationary)

d-dimensional affine shear system with 2-layer structure:

ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) :={ϕMλout

J
;k : k ∈ Zd} ∪ {ψj,~̀,ι

S−~̀Aλι
j
En;k

: k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~̀
λιj
, ι = in, out}∞j=J .

(6)
The affine system with 2-layer structure define above is indeed an affine shear tight frame with 2-layer structure:

Theorem 2.2. Let λ > 1, 0 < t 6 1, 0 < ε 6 1/2, and 0 < ρ 6 1
1+2ε . Let ASJ(ϕ; {Ψin

j ,Ψ
out
j }∞j=J) be defined

as in (6) with ϕ̂ = ⊗dαλ,t,ρ and ψj,
~̀,ι being given by (5). Then ASJ(ϕ; {Ψin

j ,Ψ
out
j }∞j=J) is an affine shear tight

frame with 2-layer structure for L2(Rd) for all J > 0. Moreover, ASJ(ϕ; {Ψin
j ,Ψ

out
j }∞j=J) contains a subsystem

generated by a single generator ψ; that is

{ψS−~̀Aλι
j
En;k : k ∈ Zd, n = 1, . . . , d, |~̀| 6 ~rj , ι = in, out}∞j=J ⊆ ASJ(ϕ; {Ψin

j ,Ψ
out
j }∞j=J),

where ~rj := (rj , . . . , rj) ∈ Zd−1 with rj := bλj−2(1 − t)ρ − (1/2 + ε)c and ψ̂(ξ) := βλ,t,ρ(ξ1)
∏d
n=2 γε(ξn/ξ1),

ξ ∈ Rd.

3. DIGITAL AFFINE SHEAR TRANSFORMS

As demonstrated in [16,23], an affine shear tight frame is associated with a underlying affine shear filter bank. In
this section, we briefly discuss the construction of digital affine shear filter banks with 2-layer structure (DAS-2
filter banks) and the implementation of digital affine shear transforms based on the DAS-2 filter banks.

We can define inner, middle, outer functions â, â1, â2 ∈ C(Rd) by

â(ξ) := [⊗dν[c0,ε0]](ξ), â1(ξ) := [⊗dν[c1,ε1]](ξ), â2(ξ) := [⊗dν[c2,ε2]](ξ), ξ ∈ Rd (7)

for some parameters 0 < c0 < c1 < c2 = π and ε, ε0, ε1, ε2 > 0 satisfying c0 + ε0 6 π/2 (for downsampling by 2),
(c1 + ε1)− c0−ε0

3/2+ε 6 π/2 (for downsampling by 4), and (c2 + ε2)− c1−ε1
3/2+ε 6 π/2 (for downsampling by 4). Here,

the parameter ε is the parameter in γε. We identify the function â as a function in C(T2) in frequency domain.
In the time domain, it then serves as our low-pass filter a. The filter â is supported inside [−π/2, π/2]d. The
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other two functions â1, â2 are auxiliary functions for building the inner and outer layer high-pass filters. Define
the inner and outer functions bin, bout by

b̂out(ξ) :=
√
|â2(ξ)|2 − |â1(ξ)|2, b̂in(ξ) :=

√
|â1(ξ)|2 − |â(ξ)|2. (8)

Now, we apply the splitting technique to b̂ι for the construction of high-pass filters bj,
~̀,ι. At scale j > 0 and

a nonnegative integers kιj ∈ N0, define ~rj,ι := (2k
ι
j , . . . , 2k

ι
j ) ∈ Zd−1. The number kιj controls the total number of

shear directions at scale j. Similar to the definition of normalization function Γιj in (4), we define

Γkιj (ξ) =

d∑
n=1

~rj,ι∑
~̀=−~rj,ι

|γk
ι
j ,
~̀
(Enξ)|2, ξ 6= 0 and Γkιj (0) := 0, (9)

where γk
ι
j ,
~̀
(ξ) :=

∏d
n=2 γε(2

kιjξn/ξ1+`n). To guarantee smoothness of boundary, we need to further split γk
ι
j ,
~̀
(ξ)

to positive part and negative part of ξ1-axis. Define

γk
ι
j ,
~̀,+(ξ) := γk

ι
j ,
~̀
(ξ)χ{ξ1>0} and γk

ι
j ,
~̀,−(ξ) := γk

ι
j ,
~̀
(ξ)χ{ξ1<0}.

Note that b̂ι(ξ)γ
kιj,

~̀,±
(ξ)√

Γkι
j
(ξ)

are not 2πZd-periodic functions. We define bj,
~̀,ι,± to be the 2πZd-periodization of

b̂ι(ξ)γ
kιj,

~̀,±
(ξ))√

Γkι
j
(ξ)

as follows.

b̂j,~̀,ι,±(ξ) :=
∑
k∈Zd

b̂ι(ξ + 2πk)
γk

ι
j ,
~̀,±(ξ + 2πk)√

Γkιj (ξ + 2πk)
, ξ ∈ Td. (10)

The total number of high-pass filters bj,
~̀,ι,+ and bj,

~̀,ι,− at this scale j for |~̀| 6 2k
ι
j is 2(2k

ι
j+1 + 1)d−1. Each

filter of b̂j,~̀,ι,± is 2πZd-periodic function on Td. The set of filters {bj,~̀,ι,τ : |~̀| 6 2k
ι
j , ι ∈ {in, out}, τ ∈ {+,−}}

consists high-pass filters for the ξ1-cone C1 := {ξ ∈ Rd\{0} : |ξn/ξ1| 6 1, n = 2, . . . , d} along the ξ1-axis. The
cone Ck along the ξk-axis is then given by Ck := {ξ ∈ Rd\{0} : |ξn/ξk| 6 1, n = 1, . . . , d, n 6= k}. The high pass

filters bj,
~̀,ι,τ

n := bj,
~̀,ι,τ (En·) are then the high-pass filters for the cone Cn. The digital affine shear filter bank with

2-layer structure (DAS-2 filter bank) at scale j is then defined to be

{a; bj,
~̀,ι,τ

n : |~̀| 6 2k
ι
j , ι ∈ {in, out}, τ ∈ {+,−}, n = 1, . . . , d}. (11)

We have the following result.

Theorem 3.1. Retaining notations in this section and assuming ck, εk, ε for k = 0, 1, 2 satisfying 0 < c0 < c1 <
c2 = π, c0 + ε0 6 π/2, (c1 + ε1)− c0−ε0

3/2+ε 6 π/2, (c2 + ε2)− c1−ε1
3/2+ε 6 π/2, and 0 < ε 6 π

c2+ε2
− 1

2 , then the filter

bank defined in (11) forms a DAS-2 filter bank with the perfect reconstruction (PR) property as follows:

|â(ξ)|2 +
∑
τ,ι,n

~rj,ι∑
~̀=−~rj,ι

∣∣∣̂bj,~̀,ι,τn (ξ)
∣∣∣2 = 1, (12)

â(ξ)â(ξ + 2πω) = 0, (13)

̂
bj,
~̀,ι,τ

n (ξ)
̂
bj,
~̀,ι,τ

n (ξ + 2πωn) = 0, (14)

for all ξ ∈ Td, |~̀| 6 (2k
ι
j , . . . , 2k

ι
j ), ω ∈ [ 1

2Z
d]∩[0, 1)d\{0}, and ωn ∈ [(Aj,ιn )−TZd]∩[0, 1)d\{0}, where ι ∈ {in, out},

τ ∈ {+,−}, n = 1, . . . , d, and the d× d diagonal matrix Aj,ιn := En diag(4, 2k
ι
j , . . . , 2k

ι
j )En.
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Given a sequence of nonnegative integers kιj : j = 0, . . . , J − 1 for some fixed integer J > 0 with respect to

the finest scale. Let M := 2Id and Aj,ιn := En diag(4, 2k
ι
j Id−1)En for n = 1, . . . , d. We can then obtain a sequence

of PR filter banks

{a;Binj ,Boutj } := {a ↓ M, bj,~̀,ι,±n ↓ Aj,ιn : |~̀| 6 ~rj,ι, n = 1, . . . , d, ι = in, out} (15)

for j = 0, . . . , J − 1. Here M in a ↓ M indicates downsampling matrix for filtered coefficients with respect to the

low-pass filter a and Aj,ιn in bj,
~̀,ι,±

n ↓ Aj,ιn indicates downsampling matrix for filtered coefficients with respect to

the high-pass filter bj,
~̀
(En·). We call such a sequence of PR filter banks as a sequence of d-dimensional digital

affine shear filter banks with 2-layer structure (DAS-2 filter banks) and denote it as DASJ({a;Binj ,Boutj }
J−1
j=0 ).

Note that the total number of high-pass filters in {Binj ,Boutj } is 2d(2k
in
j +1 + 1)d−1 + 2d(2k

out
j +1 + 1)d−1.

Using such a sequence of DAS-2 filter banks, we can perform decomposition (forward transform) of d-
dimensional data to a sequence of filtered coefficients as well as reconstruction (backward transform) of the
d-dimensional data from the filtered coefficients. The forward and backward transform algorithms are depicted
in Algorithms 1 and 2.

Algorithm 1. Forward Digital Affine Shear Transform

1: Input: Data vJ and DAS-2 filter banks DASJ
(
{a;Binj ,Boutj }

J−1
j=0

)
.

2: Output: filtered coefficients {v0} ∪ {wj,~̀,ι,τn : |~̀| 6 ~rj,ι, ι, τ, n}J−1
j=0

3: Main steps:
4: for j = J − 1 to 0 do
5: vj ← [vj+1 ~ a] ↓ M.

6: for each bj,
~̀,ι,τ

n in Binj ∪ Boutj do

7: wj,
~̀,ι,τ

n ← [vj+1 ~ bj,
~̀,ι,τ

n ] ↓ Aj,ιn .
8: end for
9: end for

Algorithm 2. Backward Digital Affine Shear Transform

1: Input: Coefficients {v0} ∪ {wj,~̀,ι,τn : |~̀| 6 ~rj,ι, ι, τ, n}J−1
j=0 and DAS-2 filter banks DASJ

(
{a;Binj ,Boutj }

J−1
j=0

)
.

2: Output: Data vJ .
3: Main steps:
4: for j = 0 to J − 1 do
5: vj+1 ← [vj ↑ M] ~ a?.

6: for each bj,
~̀,ι,τ

n in Binj ∪ Boutj do

7: vj+1 ← vj+1 + [wj,
~̀,ι,τ

n ↑ Aj,ιn ] ~ (bj,
~̀,ι,τ

n )?.
8: end for
9: end for

The redundancy rate measures the storage complexity of a filter bank transform, which is usually given by
the ratio of size of the output coefficients and the size of the input data. Similar to [23], we can obtain the
redundancy rate r of the digital affine shear transform based on a sequence of DAS-2 filter banks, which is given
by

r =

J−1∑
j=0

∑
ι=in,out

d(2−k
ι
J−1−j + 2)d−1

2dj+1
+

1

2dJ

 6 d(2−kmin + 2)d−1 2d

2d − 1
.

where kmin := min{kιj : j = 0, . . . , J − 1, ι = in, out}. Moreover, the implementation of the forward and
backward digital transforms can be based on the FFT algorithm, which results in the computational complexity
proportional to O(N logN) for N the size of input data.
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4. NUMERICAL EXPERIMENTS ON VIDEO DENOISING

In [4], we have demonstrated the applications of digital affine shear filter banks with 2-layer structure in the
tasks of image processing. In this section, we apply our high-dimensional DAS-2 filter banks in the tasks of
video denoising. We compare the performance of our systems to several other stat-of-art directional multiscale
representation systems. The usual peak-signal-noise-ratio (PSNR) index is used to measure the performance of

different systems, which is defined to be PSNR(u, ũ) = 10 log10
2552

MSE(u,ũ) , where u : Λ → C is the original data

defined on a lattice Λ, ũ is the denoised data of u, and MSE(u, ũ) is the mean square error 1
|Λ|
∑

k∈Λ |u(k)− ũ(k)|2

with |Λ| the cardinality of the lattice Λ. The unit of PSNR is dB. The local-soft (LS) thresholding technique is
employed in the processing of filtered coefficients (see [23]) for more details).

The parameters ck, εk, εk of a, a1, a2 for k = 0, 1, 2 are given by c0 = 0.879, c1 = 1.98, c2 = π ε0 = 0.268, ε1 =
0.14, ε2 = 0.1 and ε = 0.2 for both inner layer and outer layer. We choose J = 4 for DASJ({a;Binj ,Boutj }

J−1
j=0 ) as

in (15); that is, we decompose to 4 scales. The shear parameters (k0, k1, k2, k3) is set to be (1, 1, 1, 1) for inner layer
and (2, 2, 1, 1) for outer layer. That is, for the finest scale j = 0, we use totally 3((22+1 +1)2 +(21+1 +1)2) = 318
shear directions (106 for each cone). The redundancy of our system DASJ({a;Binj ,Boutj }

J−1
j=0 ) is 11.38. The

convolution window size to compute local coefficient variance is set to be 9, i.e., we are using 9× 9× 9 window.

We test three videos: Mobile and Coastguard which can be downloaded from http://www.shearlab.org.
Both videos are of size 192 × 192 × 192. We first employ symmetric boundary extension (with 32 pixels) on
the noisy image to avoid boundary effect. We then apply our forward transform to obtained the coefficients.
After performing the local-soft threshold procedure, we then apply the backward transform to the thresholded
coefficients and throw away the extended boundary to obtained the final denoised image.

We compare our denoising performance to DAS-1 filter banks in [23], 3D dual-tree complex wavelets [21], 3D
tensor product complex tight framelets [14, 15] , surfacelets [20], 3D DNST in [19]. The DAS-1 filter banks in
[23] has redundancy rate 17.88. The 3D dual-tree complex wavelet transform (DT-CWT) in [21] has redundancy
rate 8. The number of directional filters of DT-CWT at each scale is 56. The number of scales is 5. The
3D TP-CTF6 and TP-CTF↓6 are detailed in [15], which have redundancy rate 29.71 and 3.71, respectively.
The number of scales is 4. Bivariate shrinkage thresholding technique is employed for DT-CWT, TP-CTF6,
and TP-CTF↓6. For 3D DNST from the ShearLab package, we choose the one with redundancy rate 154 (3
scales). The surfacelet transform (SURF) from SurfBox at http://minhdo.ece.illinois.edu/software has
redundancy rate 6.4. The 3D DNST and sufacelet transform use hard thresholding for denoising.

We compare the denoising performance over different noise level σ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
The comparison results are presented in Table 1. The numbers inside brackets are the difference of between the
compared method and our method in terms of PSNR. From Table 1, we see that our method outperforms all
other methods except a few case for DNST.

192 × 192 × 192 Mobile

σ DAS-2 DAS-1 DT-CWT TP-CTF
↓
6 TP-CTF6 SURF DNST

(11.38) (17.88) (8) (3.71) (29.71) (6.4) (154)

10 35.69 34.99(0.70) 34.72(0.98) 35.15(0.55) 35.52(0.18) 32.79(2.91) 35.91(-0.21)
20 31.99 31.50(0.49) 30.86(1.13) 31.48(0.51) 31.77(0.22) 29.95(2.04) 32.18(-0.20)
30 29.90 29.57(0.33) 28.67(1.23) 29.44(0.46) 29.66(0.24) 28.26(1.64) 29.99(-0.09)
40 28.44 28.26(0.18) 27.14(1.30) 28.05(0.39) 28.20(0.25) 27.05(1.39) 28.42(0.02)
50 27.33 27.26(0.07) 26.06(1.27) 26.99(0.34) 27.08(0.25) 26.11(1.22) 27.22(0.11)
60 26.46 26.45(0.00) 25.21(1.25) 26.14(0.32) 26.18(0.27) 25.38(1.08) 26.25(0.21)
70 25.74 25.78(-0.04) 24.55(1.19) 25.44(0.30) 25.45(0.29) 24.77(0.96) 25.44(0.30)
80 25.14 25.20(-0.06) 24.00(1.14) 24.84(0.30) 24.82(0.31) 24.25(0.89) 24.75(0.39)
90 24.60 24.68(-0.09) 23.57(1.03) 24.33(0.26) 24.29(0.31) 23.80(0.80) 24.15(0.45)
100 24.15 24.23(-0.07) 23.17(0.98) 23.89(0.26) 23.82(0.33) 23.40(0.75) 23.62(0.54)

192 × 192 × 192 Coastguard

σ DAS-2 DAS-1 DT-CWT TP-CTF
↓
6 TP-CTF6 SURF DNST

10 34.18 33.70(0.48) 33.21(0.98) 33.86(0.32) 34.15(0.04) 30.86(3.32) 33.81(0.37)
20 30.71 30.27(0.44) 29.61(1.10) 30.26(0.44) 30.62(0.09) 28.26(2.45) 30.28(0.43)
30 28.85 28.47(0.38) 27.71(1.13) 28.39(0.46) 28.73(0.12) 26.87(1.98) 28.40(0.45)
40 27.60 27.27(0.33) 26.47(1.13) 27.14(0.46) 27.45(0.15) 25.91(1.69) 27.13(0.47)
50 26.66 26.40(0.27) 25.56(1.11) 26.21(0.45) 26.48(0.18) 25.17(1.49) 26.17(0.49)
60 25.91 25.70(0.21) 24.86(1.06) 25.47(0.44) 25.71(0.20) 24.57(1.34) 25.39(0.52)
70 25.28 25.14(0.14) 24.29(0.99) 24.86(0.42) 25.07(0.21) 24.06(1.22) 24.74(0.54)
80 24.76 24.65(0.10) 23.83(0.93) 24.34(0.41) 24.53(0.23) 23.61(1.15) 24.17(0.59)
90 24.31 24.23(0.07) 23.41(0.90) 23.90(0.41) 24.06(0.24) 23.22(1.09) 23.67(0.63)
100 23.88 23.86(0.02) 23.08(0.80) 23.51(0.37) 23.65(0.23) 22.87(1.01) 23.22(0.66)

Table 1. PSNR of denoised Mobile and Coastguard.
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