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ABSTRACT

In this paper, a 3-dimension directional Haar tight framelet (3DHF) is used to detect the related features between
coil images in parallel magnetic resonance imaging (pMRI). Such a Haar tight framelet has an extremely simple
geometric structure in the sense that all the high-pass filters in its underlying filter bank have only two nonzero
coefficients with opposite signs. A pMRI optimization model, which we coined 3DHF-SPIRiT, by regularizing the
3DHF features on the 3-D coil image data is proposed to reduce the aliasing artifacts caused by the downsampling
operation in the k-space (Fourier) domain, which can be solved by alternating direction method of multipliers
(ADMM) scheme. Numerical experiments are provided to demonstrate the superiority and efficiency of our
3DHF-SPIRiT model.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) technique can visualize in-vivo structures without damaging radiation, but
its imaging time is relatively long [21]. To accelerate imaging speed, parallel MRI (pMRI) system using an array
of surface coils is proposed to simultaneously receive partial information of target slice, and only acquires parts
of the k-space data of each receiver [6]. A lot of pMRI image reconstruction methods from the undersampled
data have been studied and produced over the last two decades. The sensitivity encoding (SENSE) [22] and
the generalized autocalibrating partially parallel acquisitions (GRAPPA) [8] are the most well-known parallel
imaging techniques for reconstruction and commercially available for clinical purposes, but they provide aliased
reconstructed images with artifacts when the accelerated rate is high.

To regularize the pMRI problem for SENSE-based or GRAPPA-based methods, 2-D redundant transform
systems are utilized to decompose images and shrink the feature coefficients [18, 20, 24]. Using regularization
on SENSE-based reconstruction model, e.g., the TV (Total Variation)-based [17, 25] or wavelet-based [3] reg-
ularization, edges can be preserved and the noise or artifacts can be removed or suppressed. Regarding edge
preservation or detection, wavelets/framelets with directionality, e.g., [1, 2, 9, 14–16], have been shown to be im-
portant in such scenarios. In fact, recently, a 2-D directional Haar framelet (DHF) system is constructed with
ability to detect edges of an image in the horizontal, vertical, and ±45◦ directions, which is successfully applied
to pMRI problem [18] (see also [13]) using the SENSE-based method. However, SENSE-based methods require
accurate estimation of coil sensitivity, which is difficult to determine due to the complex geometry of the coils.
Unlike SENSE-based methods, GRAPPA [8] considers the pMRI reconstruction as an interpolation problem in
the k-space domain and supposes the missing k-space coefficients can be predicted by the linear combination of
its neighbour cuboid data. Though coil sensitivity is not needed for GRAPPA-based methods, they require the
auto calibration signal (ACS) data, fully sampled at the center of the k-space, to estimate the interpolation coef-
ficients. Regularization on calibration kernel and jointly sparse reconstructed coil channel images was proposed
to update the GRAPPA-based kernel and coil image iteratively [24]. The ℓ1-SPIRiT [20] is a GRAPPA similar
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method by applying interpolation kernel at known and unknown k-space data for arbitrary sampling patterns,
and iteratively reconstructs images by regularizing coil images together using joint sparsity-promoting norm.

More precisely, suppose we have p coil k-space data gj , j = 1, . . . , p. The sampling matrix P is a diagonal
matrix with 0 and 1 (indicating the corresponding k-space data is skipped or not) at its diagonal elements, and
the collected data of each coil is denoted by Pgj . For the GRAPPA method, every k-space coefficient of gj can
be considered as a linear combination with the data within its neighbour of gj and the same local neighbor of
other coil data. The template of the known data with respect to the target point may have different interpolating
form for each coil data. We denote the interpolation kernel with the ith template for the missing position of the
jth coil by κij ∈ Cnip×1, where ni is the size of the known data in the 2-D template around the missing position

of gj , j = 1, . . . , p. The interpolation kernels κij are estimated according to the sampling model by using the

ACS data, fully sampled at the region of the center of k-space. For the jth coil, we construct a matrix Di
j by

collecting the known data of the ith template from ACS k-space data of p coils and denote its corresponding
target data as a vector bij , and then the kernel κij is estimated as

min
κi
j

∥Di
jκ

i
j − bij∥22, i = 1, . . . ,m; j = 1, . . . , p. (1)

where m is the number of kernels determined by the sampling model for each coil.

When the interpolation kernels κij are available, the missing coefficients can be predicted by its linear combi-
nation. Just as the coil sensitivity in the SENSE method, the kernel is also difficult to be estimated accurately
even when a full k-space data is given. Moreover, the number of kernel templates could be huge especially for
the random sampling model in the k-space. To reduce the number of interpolation kernels and reconstruct image
from arbitrary sampling patterns in k-space, the iterative self-consistent parallel imaging reconstruction (SPIR-
iT) [19] method is proposed to estimate one interpolation kernel for each coil and reconstruct the coil images by
2D-wavelet regularization (ℓ1-SPIRiT) [20]. The data within the cuboid, except for the target position, are all
linearly combined together to predict the information in ℓ1-SPIRiT meothod. Let the interpolating window for
each coil be of size n1 × n2, and the jth coil interpolation kernel denoted by κj ∈ C(n1n2p−1)×1 be estimated as

min
κj

∥Djκj − bj∥22, j = 1, . . . , p, (2)

where Dj and bj are the known data and target interpolated data from the ACS lines, respectively.

Once such kernels κj are estimated, the ℓ1-SPIRiT method utilizes the 2D-wavelet regularization for recon-
structing the target slice data u. In fact, let a matrix Cj represent the jth pre-estimated kernel κj and

C :=

C1

...
Cp

 , Qp :=

 I − P
. . .

I − P

 , Fp :=

 F
. . .

F

 , g :=

Pg1...
Pgp

 , W2D :=

W...
W

 . (3)

Here, I is the identity matrix, F is the discrete Fourier transform matrix with inverse F−1, andW corresponds to
a 2-D wavelet transform associated with certain wavelet/framelet system. The optimization model by ℓ1-SPIRiT
[20] is then presented by

min
u

{
1

2
∥(C − I)(Qpu+ g)∥22 + λ∥W2DF−1

p (Qpu+ g)∥1,2
}
, (4)

where λ is the regularization parameter, and ∥W2DF−1
p (Qpu+ g)∥1,2 is the sparsity-promoting term.

Note that each coil image is decomposed by the 2-D wavelet/framelet transform, the relationship between
coils is not considered for regularization. The W2D in both the SENSE-based model in [18] and the above model
(4) only utilizes 2-D coil image information independently while ignoring the correlated information among multi-
coil images. In fact, The coil images stacked together can be considered as 3-D cuboid data and their related
features can be regularized by the 3-D tight framelet systems to reduce the aliasing artifacts. In view of this,



a modified version of (4) using 3-D directional Haar tight framelet (3DHF) regularization model for pMRI is
proposed as:

min
u

{
1

2
∥(C − I)(Qpu+ g)∥22 + λ∥W3DF−1

p (Qpu+ g)∥1
}

(5)

where W3D in this paper is a framelet transfrom associated with the 3-D directional Haar tight framelet. We
coined such a model 3DHF-SPIRiT, which can be solve by the ADMM scheme [7]. We next introduce the 3-D
directional Haar tight framelet associated with W3D.

2. DIRECTIONAL HAAR TIGHT FRAMELETS

In this section, we introduce compactly supported tight framelets with directionality and very simple geometric
structures from the Haar refinable functions. All the high-pass filters in such directional Haar tight framelets have
only two nonzero coefficients with oppositive signs. Consequently, all of them naturally exhibit directionality and
their associated fast framelet transforms can be efficiently implemented through simple difference operations.

Tight framelets are closely related to filter banks. Before proceeding to their connections, let us recall some
definitions and notation first. By L2(Rd), we denote the usual space of square integrable functions defined on Rd.
Let ϕ, ψ1, . . . , ψs ∈ L2(Rd). We say that {ϕ;ψ1, . . . , ψs} is a (nonhomogeneous dyadic) tight framelet in L2(Rd)
if ∥f∥2L2(Rd) =

∑
k∈Zd |⟨f, ϕ(· − k)⟩|2 +

∑∞
j=0

∑s
ℓ=1

∑
k∈Zd |⟨f, 2jd/2ψℓ(2

j · −k)⟩|2, ∀ f ∈ L2(Rd). By l0(Zd) we

denote the set of all finitely supported sequences/filters a = {a(k)}k∈Zd : Zd → C on Zd. For a filter a ∈ l0(Zd),
its Fourier series is defined to be â(ξ) :=

∑
k∈Zd a(k)e−ik·ξ for ξ ∈ Rd, which is a 2πZd-periodic trigonometric

polynomial. In particular, by δ we denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}.
For γ ∈ Zd, we also use the notation δγ to stand for the sequence δ(· − γ), i.e., δγ(γ) = 1 and δγ(k) = 0 for all

k ∈ Zd\{γ}. Note that δ̂γ(ξ) = e−iγ·ξ. For filters a, b1, . . . , bs ∈ l0(Zd), we say that a filter bank {a; b1, . . . , bs}
is a (d-dimensional dyadic) tight framelet filter bank if

â(ξ)â(ξ + πω) +

s∑
ℓ=1

b̂ℓ(ξ)b̂ℓ(ξ + πω) = δ(ω), ∀ ξ ∈ Rd, ω ∈ {0, 1}d. (6)

Equation (6) is just the perfect reconstruction property of a tight framelet filter bank ( [12, Theorems 1.1.1 and
1.1.4]). When ω = 0 in (6), it is the partition of unity condition:

|â(ξ)|2 +
s∑

ℓ=1

|b̂ℓ(ξ)|2 = 1, ∀ ξ ∈ Rd. (7)

Let a, b1, . . . , bs ∈ l0(Zd) and assume that â(0) =
∑

k∈Zd a(k) = 1. Then we can define compactly supported

tempered distributions ϕ and ψ1, . . . , ψs on Rd through ϕ̂(ξ) :=
∏∞

j=1 â(2
−jξ) and ψ̂ℓ(ξ) = b̂ℓ(ξ/2)ϕ̂(ξ/2),

ξ ∈ Rd, ℓ = 1, . . . , s. It is known in [11, Corollary 12 and Theorem 17] and [12, Theorem 4.5.4] that {ϕ;ψ1, . . . , ψs}
is a tight framelet in L2(Rd) if and only if {a; b1, . . . , bs} is a tight framelet filter bank. Also c.f. [4, 5, 10, 23]
for related results. The tempered distribution ϕ is called a refinable function satisfying the refinement equation
ϕ̂(ξ) = â(ξ/2)ϕ̂(ξ/2) for ξ ∈ Rd with the refinement filter a. In fact, it is known in [12, Theorem 4.5.4] that every
tight framelet {ϕ;ψ1, . . . , ψs} in L2(Rd) must come from a generalized tight framelet filter bank {a; b1, . . . , bs}
through the refinable structure. Consequently, in this paper we mainly focus on tight framelet filter banks.

Motivated by [18], the authors in [13] prove the following theorem.

Theorem 2.1. Let aH = 2−d
∑

γ∈{0,1}d δγ be the d-dimensional Haar low-pass filter. Define the high-pass

filters b1, . . . , bs with s :=
(
2d

2

)
= 2d−1(2d − 1) in the following way: 2−d(δγ1 − δγ2) for all undirected edges with

endpoints γ1, γ2 ∈ {0, 1}d and γ1 ̸= γ2. Then {aH ; b1, . . . , bs} is a tight framelet filter bank such that all the high-
pass filters b1, . . . , bs have directionality and exhibit 1

2 (3
d − 1) directions in dimension d. Define functions ϕ and

ψ1, . . . , ψs through ϕ̂(ξ) :=
∏∞

j=1 â(2
−jξ) and ψ̂ℓ(ξ) = b̂ℓ(ξ/2)ϕ̂(ξ/2), ξ ∈ Rd, ℓ = 1, . . . , s. Then {ϕ;ψ1, . . . , ψs}

is a d-dimensional directional compactly supported Haar tight framelet in L2(Rd).



When d = 1, the tight framelet filter bank in Theorem 2.1 is just the standard Haar orthogonal wavelet filter
bank DHF1 := {aH ; b} with aH = 1

2 (δ0 + δ1) and b = 1
2 (δ0 − δ1).

When d = 2, Theorem 2.1 recovers the 2-D directional Haar tight framelet filter bank DHF2 := {aH ; b1, . . . , b6}
in [18] with aH = 1

4 (δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)) and

b1 =
1

4
(δ(0,0) − δ(0,1)), b2 =

1

4
(δ(0,0) − δ(1,0)), b3 =

1

4
(δ(0,0) − δ(1,1)),

b4 =
1

4
(δ(0,1) − δ(1,0)), b5 =

1

4
(δ(0,1) − δ(1,1)), b6 =

1

4
(δ(1,0) − δ(1,1)).

When d = 3, Theorem 2.1 gives rise to the following 3-D directional Haar tight framelet filter bank DHF1
3 :=

{aH ; b1, . . . , b28} with aH = 1
8 (δ(0,0,0) + δ(0,0,1) + δ(0,1,0) + δ(0,1,1) + δ(1,0,0) + δ(1,0,1) + δ(1,1,0) + δ(1,1,1)) and

b1 =
1

8
(δ(0,0,0) − δ(0,0,1)), b2 =

1

8
(δ(0,0,0) − δ(0,1,0)), b3 =

1

8
(δ(0,0,0) − δ(0,1,1)), b4 =

1

8
(δ(0,0,0) − δ(1,0,0)),

b5 =
1

8
(δ(0,0,0) − δ(1,0,1)), b6 =

1

8
(δ(0,0,0) − δ(1,1,0)), b7 =

1

8
(δ(0,0,0) − δ(1,1,1)), b8 =

1

8
(δ(0,0,1) − δ(0,1,0)),

b9 =
1

8
(δ(0,0,1) − δ(0,1,1)), b10 =

1

8
(δ(0,0,1) − δ(1,0,0)), b11 =

1

8
(δ(0,0,1) − δ(1,0,1)), b12 =

1

8
(δ(0,0,1) − δ(1,1,0)),

b13 =
1

8
(δ(0,0,1) − δ(1,1,1)), b14 =

1

8
(δ(0,1,0) − δ(0,1,1)), b15 =

1

8
(δ(0,1,0) − δ(1,0,0)), b16 =

1

8
(δ(0,1,0) − δ(1,0,1)),

b17 =
1

8
(δ(0,1,0) − δ(1,1,0)), b18 =

1

8
(δ(0,1,0) − δ(1,1,1)), b19 =

1

8
(δ(0,1,1) − δ(1,0,0)), b20 =

1

8
(δ(0,1,1) − δ(1,0,1)),

b21 =
1

8
(δ(0,1,1) − δ(1,1,0)), b22 =

1

8
(δ(0,1,1) − δ(1,1,1)), b23 =

1

8
(δ(1,0,0) − δ(1,0,1)), b24 =

1

8
(δ(1,0,0) − δ(1,1,0)),

b25 =
1

8
(δ(1,0,0) − δ(1,1,1)), b26 =

1

8
(δ(1,0,1) − δ(1,1,0)), b27 =

1

8
(δ(1,0,1) − δ(1,1,1)), b28 =

1

8
(δ(1,1,0) − δ(1,1,1)).

See Figure 1 for the illustration of the filter banks DHF1,DHF2, and DHF1
3.

Figure 1. Directional Haar tight framelet filter banks in d = 1, 2, 3 respectively, where each line connecting two vertices
γ1, γ2 ∈ {0, 1}d represents a high-pass filter bℓ := 2−d(δγ1 − δγ2).

In this paper, we focus on d = 3 since the pMRI data are formed by stacking a sequence of 2-D pMRI
coil-images as a 3-D signal. Moreover, we aim at reconstructing signal from its degenerated version, where
for such tasks, redundant representation systems are more favour since it provides more information for data
recovery. Furthermore, in signal/image processing, translation in-variance property of a discrete transform is
very much desirable especially in the scenario of signal denoising/inpainting. To preserve the translation in-
variance property, in this paper, we hence use the more redundant version of the discrete framelet transform,
that is, the undecimated discrete framelet transforms (UDFmT):

Decompoistion: vj−1 = vj ∗ (a⋆ ↑ 2J−j), wj−1;ℓ = vj ∗ (b⋆ℓ ↑ 2J−j), ℓ = 1, . . . , s, j = J, . . . , 1.

Reconstruciton: vj = vj−1 ∗ (a ↑ 2J−j) +

s∑
ℓ=1

wj−1;ℓ ∗ (bℓ ↑ 2J−j), j = 1, . . . , J,



where ∗ is the convolution operation and ↑ m is the upsampling operation.

For undecimated discrete framelet transforms, we only need the filter bank satisfying the partition of unity
condition as in (7). Consequently, filters up to a translation indeed represent the same feature of input data, which
can then be regrouped together. In DHF1

3 = {aH ; b1, . . . , b28}, there are many filters characterizing the same di-
rectional property. For example, the filters in {b1, b14, b23, b28} represent the same z-direction (vertical), the filters
in {b2, b9, b25, b27} represent the same y-direction, etc. In view of this, the above 28 high-pass filters can actually be
regrouped to 13 filters as a filter bank DHF2

3 := {aH ; bx, by, bz, bxy, bx,y, bxz, bx,z, byz, by,z, bxyz, bxy,z, bx,yz, bxz,y}:

bx =
1

4
(δ(1,0,0) − δ(0,0,0)), by =

1

4
(δ(0,1,0) − δ(0,0,0)), bz =

1

4
(δ(0,0,1) − δ(0,0,0)),

bxy =

√
2

8
(δ(1,1,0) − δ(0,0,0)), bx,y =

√
2

8
(δ(1,0,0) − δ(0,1,0)), bxz =

√
2

8
(δ(1,0,1) − δ(0,0,0)),

bx,z =

√
2

8
(δ(1,0,0) − δ(0,0,1)), byz =

√
2

8
(δ(0,1,1) − δ(0,0,0)), by,z =

√
2

8
(δ(0,1,0) − δ(0,0,1)),

bxyz =
1

8
(δ(1,1,1) − δ(0,0,0)), bxy,z =

1

8
(δ(1,1,0) − δ(0,0,1)), bx,yz =

1

8
(δ(1,0,0) − δ(0,1,1)),

bxz,y =
1

8
(δ(1,0,1) − δ(0,1,0)).

See Figure 2 for its illustration. In our processing of the output framelet coefficient sequences, information
involving the z-filters, i.e., those bz, bxz, bxyz, etc., are actually ‘bad’ features for our 3-D signal reconstruction.
In fact, they represent local contrast discrepancy between coil images which does not play a role in our restriction
process. We thus ignore the processing for the output coefficient sequences related to those z-filters. The W3D in
(5) is then the UDFmT-decomposition process associated with DHF2

3 while WT
3D is the UDFmT-reconstruction

process associated with DHF2
3.

Figure 2. Directional Haar tight framelet filter banks in DHF2
3 := {aH ; bx, by, bz, bxy, bx,y, bxz, bx,z, byz, by,z, bxyz,

bxy,z, bx,yz, bxz,y} (solid edges in {0, 1}3).

3. NUMERICAL EXPERIMENTS

In this section, we illustrate the superiority and efficiency of our 3DHF-SPIRiT model (5) comparing to the
ℓ1-SPIRiT model (4). Note that both models can be solved by using ADMM method [7].

The source code of ℓ1-SPIRiT [20] method can be downloaded from the web site of one of the authors∗. Four
phantom MR images are acquired on a 3T MRI System (Tim Trio, Siemens, Erlangen, Germany), which are
T2-weighted images acquired by a turbo spin-echo sequence. The detailed imaging parameters are set as follows:
field of view (FOV) = 256× 256 mm2, image marix size = 512× 512, slice thicknesses (ST) = 3 mm, flip angle
= 180 degree, repetition time (TR) = 4000 ms, echo time (TE) = 71 ms, echo train length (ETL) = 11 and
number of excitation (NEX) = 1. Figures 3 (a)–(d) are four coil MR images without uniform intensity by the

∗The code is available at: http://www.eecs.berkeley.edu/~mlustig/Software.html



full k-space data, and their sum of square (SoS) image is shown in Figure 4 (a). Though some parts of each coil
image are lighter and others are darker, the SoS image by each coil image is harmony intensity with clear edges.

(a) (b) (c) (d) (e)
Figure 3. (a)–(d) Four coil images by the full k-space; (e) Sampling model of 15% k-space with 24 ACS lines.

(a) (b) (c) (d)
Figure 4. Reconstruction results on 15% k-space data. (a) SoS image of the full k-space with zoom-in parts displayed in
Figure 5; (b) SoS image of the 15% k-space data; (c) ℓ1-SPIRiT [20] with parameter 0.009; (d) Our 3DHF-SPIRiT.

The coil images in Figures 3 (a)–(d) can be considered as parts of information of the target imaging slice, and
are redundant with each others. Thus parts of each coil k-space data are collected to fuse a desired image and to
accelerate the imaging speed. An example with four coil images of size 512× 512 is adopted in this experiment
using coil pseudo random downsampling k-space data in the phase-encoding direction on the Cartesian coordi-
nate. According to the sampling model in Figure 3 (e) with 24 ACS lines in the center of k-space, about 15% of
k-space data (marked by white color there) of each coil are collected for shortening imaging time. Figure 4 (b)
is the SoS image of the coil images obtained by applying the inverse Fourier transform for the collected k-space
data with zero-padding for missing data. It has aliasing artifacts obviously and is blurry with unclear edges.

The ℓ1-SPIRiT method [20] and our proposed 3DHF-SPIRiT method are with the calibration kernel size
of 11-by-11 for each coil k-space data, which are used to reconstruct an image from four coil images with the
sampling model described in Figure 3 (e). The SoS image of the full k-space is considered as a reference image
shown in Figure 4 (a). The image in Figure 4 (c) is the result from the ℓ1-SPIRiT using the default settings in the
source code of ℓ1-SPIRiT algorithm except that the regularization parameter is set to be 0.009 after an extensive
trial-and-error search to find the best one. The reconstructed image by our 3DHF-SPIRiT is shown in Figure 4
(d). Clearly, aliasing artifacts appeared in Figure 4 (b) are significantly suppressed by the two methods. But
the aliasing artifacts in the image by ℓ1-SPIRiT is more obvious than that in the image by our 3DHF-SPIRiT.

To further evaluate the quality of the reconstructions, four regions shown in Figure 4 (a) are zoomed in
Figure 5. For the ‘R1’ region, The surface of two squares reconstructed by ℓ1-SPIRiT has little artifact, but our
3DHF-SPIRiT can remove this artifact and retrieve the shape of the left-down square more close to reference
one. For the ‘R2’ region in the second row of Figure 4, the dots by our 3DHF-SPIRiT are sharper and brighter,
which are close to dots by SoS image of the full k-space, but those by ℓ1-SPIRiT is blurred and can not be
separated with each other. For the ‘R3’ and ‘R4’ regions, our 3DHF-SPIRiT is still efficient to keep edges
and remove artifacts as well as perform much better than the ℓ1-SPIRiT. We conclude that our 3DHF-SPIRiT
performs superiorly in preserving the details of the images and removing noisy artifacts in smooth area, and
provide high-quality MRI images.



(a) (b) (c) (d)
Figure 5. Zoom-in parts of Figure 4. (a) SoS image of the full k-space with zoom-in parts. (b) SoS image of the 15%
k-space data. (c) ℓ1-SPIRiT [20] with parameter 0.009. (d) Our 3DHF-SPIRiT with parameter 0.02.
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