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Abstract—This paper proposes a multimodal neural
network AI model for gauging the metastatic load of
axillary lymph nodes in the breast. The model utilizes
three modalities of images, namely dynamic con-
trast enhancement (DCE), T2-weighted (T2W), and
diffusion-weighted imaging (DWI), from breast mag-
netic resonance imaging (MRI) and axillary lymph
node MRI. Features are extracted by a feature ex-
tractor (composed of conv1 and layer1 of ResNet and
Wavelet transform convolution model) that is pre-
trained on a large breast cancer MRI dataset based
on the Model-Agnostic Meta-Learning (MAML) algo-
rithm. The features of the same modality from breast
MRI and axillary lymph node MRI are concatenated
and then input into the multimodal MulT model for
classifications. The experimental results show that
the addition of meta-learning and the involvement of
multimodal MRI (rather than just uni-model MRI)
significantly improve the classification, with the area
under the ROC curve (AUC) reaching 0.84. The
model performs well in judging the metastatic load
of axillary lymph nodes in the breast and is expected
to contribute to clinical diagnosis and treatments (both
invasive and non-invasive).

Index Terms—multimodal MRI, breast cancer clas-
sification, meta-learning, deep learning, medical imag-
ing diagnostic analytics

I. INTRODUCTION

Breast cancer has been the most frequently diag-
nosed cancer among women globally, with axillary

lymph node metastasis (ALNM) being a key fac-
tor that influences prognosis and treatment choices
[1]. According to current clinical recommendations,
sentinel lymph node biopsy (SLNB) is considered
the standard for assessing nodal involvement [2].
However, research indicates that between 20−35%
of SLNBs produce false negatives, even when pre-
operative imaging is conducted. These inaccuracies
can lead to unnecessary surgical complications,
such as lymphedema and sensory neuropathy [3].
This issue highlights the urgent need for improved
non-invasive methods to accurately detect hidden
metastases, particularly micrometastases ≤ 2mm,
which often go undetected by standard procedures.

Multimodal magnetic resonance imaging (MRI)
is widely used for the screening, diagnosis, and
treatment of breast cancer [4]. Despite the avail-
ability of various modalities, including Dynamic
Contrast-Enhanced Imaging (DCE), T2-weighted
Imaging (T2W), and Diffusion-Weighted Imaging
(DWI), there are still three major challenges in
detecting axillary lymph node metastasis (ALNM):
(1) Cross-regional biological correlation modeling:
The interaction between primary tumors and lymph
nodes presents spatially diverse characteristics, such
as tumor angiogenesis from DCE compared to



cellularity observed in DWI, which complicates
conventional registration techniques. A significant
spatial mismatch (> 5mm in 38% cases) and dif-
fering contrast mechanisms make meaningful fea-
ture pairing difficult [5]. (2) The Prostate Imaging-
Reporting and Data System (PI-RADS) stipulates
that DCE imaging must be utilized to further clas-
sify peripheral zone (PZ) cases with a DWI score
of 3 (DWI3). A positive DCE score can elevate
the overall assessment to a 4, indicating clinically
significant prostate cancer (csPCa). Moreover, DCE
enhances the accuracy of predicting csPCa in DWI3
PZ instances [5]. Current fusion techniques often
overlook specific enhancement patterns that are cru-
cial for identifying micro-metastases. These chal-
lenges diminish clinical confidence in AI-assisted
nodal staging and increase patients’ dependence on
invasive biopsies.

Meta-learning approaches generally involve a
meta-training stage where a series of few-shot tasks
generated from base classes are used during the
training period. The strategy enables well-crafted
models to rapidly adjust to new, unseen tasks during
testing [6]. Essentially, the meta-training phase is
composed of two nested loops. Initially, the model
parameters are updated using the training samples
within each task. Subsequently, the model under-
goes optimization by meta-fine-tuning on the test
samples of each task. Through this process, the
meta-learning framework acquires meta-knowledge
spanning multiple tasks, which facilitates swift
adaptation to novel tasks.

Although previous studies highlight individual
strengths [7], they primarily focus on analyzing var-
ious MRI modalities separately, overlooking the bi-
ological interactions across different regions. On the
other side, traditional implementations of ResNet
[8] and wavelet transform convolution (WTConv)
[9] face challenges due to scanner-specific domain
variations, an issue that our proposed meta-learning
enhanced framework aims to tackle directly.

Given these challenges, this paper seeks to de-
velop an efficient and precise classification model
for assessing the metastatic load in breast lymph
nodes. We enhance both the accuracy and depend-
ability of classifying the metastatic burden by us-
ing advanced feature extraction methods and meta-
learning techniques. This would offer strong support
for related clinical diagnosis and treatment of breast
cancer. The specific areas of research are outlined
as follows:

• Research on the Feature Extractor: In the
initial phase of our model, we will thor-

oughly utilize the feature extractor based on
ResNet18 [8] and WTConv [9]. Through using
ResNet18’s strengths in image feature extrac-
tion alongside with the distinctive convolu-
tional capabilities of WTConv, we can more
effectively identify critical features in breast
lymph node images. We aim at ensuring that
the feature extractor accurately captures the
information pertinent to the metastatic load
of lymph nodes by carefully designing the
network architecture and optimal parameter
configurations. This lays a strong groundwork
for the classification tasks that follow.

• Research on Meta-learning Pre-training
Method: Implementing the meta-learning ap-
proach to pre-train the feature extractor is
a central focus of this study [6]. Meta-
learning allows the model to acquire overar-
ching knowledge and strategies across a range
of tasks, enabling it to adapt effectively to
new challenges. In our experiment, we con-
duct meta-learning and pre-train it on diverse
medical image datasets. The feature extrac-
tor will construct generalized representations
of image features by refining meta-learning
tasks, such as contrastive learning and self-
supervised learning. This enhances the ability
of the model to generalize, and consequently,
it will be better equipped to process medical
images from various sources with differing
characteristics, yielding more universal fea-
tures for assessing the metastatic burden in
breast lymph nodes.

• Multimodal Feature Extraction and Fu-
sion: Our research centers on two primary
anatomical areas: the breast and axillary lymph
nodes. We analyze MRI images across three
modalities—DCE, T2W, and DWI—from both
regions. We will employ pre-trained feature
extractors to carry out feature extraction for
images from these distinct anatomical areas
and modalities independently. Despite sharing
the same architecture and pre-trained weights,
each feature extractor will analyze its respec-
tive images separately, allowing for an in-depth
examination of the unique information present
in each anatomical region and modality. Fol-
lowing this, we will develop innovative and
effective fusion strategies to combine features
across these areas and modalities. During the
fusion process, we will integrate the features
obtained from the breast and axillary lymph
nodes across different modalities, fully uti-



lizing the complementary strengths of mul-
timodal information to enhance the accuracy
of classifying the metastatic burden of breast
lymph nodes. Our approach of feature fu-
sion will provide a more comprehensive de-
piction of lymph node characteristics from
multiple perspectives, effectively overcoming
the limitations associated with relying on a
single anatomical region or modality. Our fu-
sion framework will utilize MulT [20], which
offers a distinct advantage in feature fusion
through its cross-modal attention mechanism.
This model can capture long-range dependen-
cies across modalities, thereby addressing gaps
between different modal data while captur-
ing long-range dependencies across modalities.
This allows for the effective use of multimodal
information without the need for explicit align-
ment, and enhances the fusion of features
extracted from various MRIs.

In conclusion, the main contributions of this
paper are outlined below:

• Create and deploy a pre-trained feature extrac-
tor utilizing the MAML algorithm. Integrate
conv1 and layer1 of ResNet with the WT-
conv model to efficiently extract features from
breast MRI and axillary lymph node MRI.

• Utilize a multimodal (MulT) model to integrate
features from various modalities derived from
breast MRI and axillary lymph node MRI.
This enable us to thoroughly examine the com-
plementary information present in multimodal
data, facilitating a precise classification of the
metastatic load in breast axillary lymph nodes.

• Perform comparative experiments to validate
the effectiveness of meta-learning and the
fusion of multimodal data in enhancing the
model’s performance.

• Train and evaluate the model using actual
datasets of breast MRI and axillary lymph node
MRI, assessing its classification performance
based on the AUC metric.

II. RELATED WORK

Meta-learning has seen good development in
image classification in recent years. In 2017, Finn
et al. [6] proposed Model-Agnostic Meta-Learning
(MAML), a meta-learning method based on opti-
mization. The main idea of MAML is to learn the
initialization of a neural network so that it follows
the fast gradient direction, thus effectively classi-
fying new classes. Prototypical networks for few-
shot learning [10] is a meta-learning method based

on metric learning, which learns the embedding of
the dataset into a low-dimensional space and clas-
sifies the dataset through cosine similarity. These
methods have shown good performance on some
common few-shot datasets, such as miniImageNet
[11] or Omniglot [12]. Learning to learn by gradient
descent by gradient descent [13] is a meta-learning
method for optimizing the optimizer. Different from
previous methods, learning to learn by gradient de-
scent by gradient descent [14] considers using meta-
learning to optimize the parameters of the optimizer,
so as to improve the learning performance of the
neural network. Bayesian meta-learnings were also
proposed so as to learn the probability distribution
of image classification, and use the evidence lower
bound (ELBO) as the optimization function or ap-
proximate the probability distribution using MAP
[14] for learning.

In comparison, there are relatively few studies on
few-shot learning of medical images. Mahajan et al.
[16] implemented the recognition of a small number
of skin diseases under the setting of long-tailed class
distribution based on the meta-learning framework
and attempted rapid model adaptation. Hu et al.
[17] designed a novel data augmentation method,
which was not in the input space but in the logit
space, effectively alleviating the overfitting problem
of classification tasks with limited medical images.
Also, [17] formulated the few-shot learning problem
of retinal diseases as a student-teacher learning task,
and simultaneously utilized the discriminative fea-
ture space and Knowledge Distillation (KD) tech-
nology. In this paper, we shall propose a few-shot
learning classification method for medical images
based on MAML, which integrates the advantages
of both fine-tuning and meta-learning.

III. METHODOLOGY

A. Problem Formulation and Method Overview

Given paired inputs {X1, X2, X3, X4, X5, X6},
where X1, X2, X3 represent breast MRI scans
across three modalities (DCE, DWI, T2W), and
X4, X5, X6 denote corresponding axillary lymph
node MRI scans for the same modalities, our goal
is to predict a binary classification y (metastatic
vs. non-metastatic). To address this, we propose
a novel framework that first employs modality-
specific feature extractors to encode each input
Xi(i = 1, . . . , 6). Features from anatomically
aligned modality pairs (e.g., breast DCE X1 and
lymph node DCE X4) are concatenated to preserve
cross-regional biological interactions. These fused
modality features are then integrated through a



hierarchical multimodal transformer, which learns
inter-modal dependencies between DCE (vascular
kinetics), DWI (cellularity), and T2W (morphol-
ogy). Finally, the model predicts y based on the
joint representation, optimizing for both metastatic
sensitivity and specificity. The pipeline—spanning
feature extraction, cross-region fusion, and mul-
timodal integration—is illustrated in Fig. 1, with
color-coded pathways ensuring clarity in modality-
specific and cross-modal information flow.

Fig. 1. The multimodal MRI represented by the six blocks,
as shown on the left side, are encoded separately in the
meta-learning pre-trained feature extractors. The features
obtained from the images of the same MRI modality
are concatenated pairwise and fed into the multimodal
Transformer model [20], and the classification results are
obtained.

B. Pre-training Process Based on MAML

The researchers developed a pre-training frame-
work integrating ResNet18 and WTConv, optimized
through the MAML algorithm, to empower the fea-
ture extractor with generalized image representation
capabilities and rapid adaptability across diverse
medical imaging tasks. We initialized the param-
eters of the network randomly and optimized them
using meta tasks. These tasks are obtained from BC-
data and structured under meta-learning principles,
with each task containing a dedicated support set
and query set to ensure clinically relevant feature
extraction.

This feature extractor addresses the transferabil-
ity limitations of conventional medical imaging
models by fostering both broad feature abstraction
and task-sensitive refinement. The innovation of
the framework lies in its two-stage optimization

architecture: meta pre-training learns foundational
feature representations, and training on specific
tasks equips the model with better feature extraction
ability for specific tasks, effectively bridging gen-
eral and domain-specific medical image analysis.

For each sampled task, gradient descent is per-
formed on the support set using the current ini-
tialized parameters, and the parameters are updated
according to the formula θ′i = θ − α∇θLTi

(θ) to
adapt to the task, where α is the learning rate.
Subsequently, the query set is used to evaluate the
performance of the model and calculate the meta-
gradient ∇θLTi

(θ′i). Then, the initialized parame-
ters are updated according to the meta-learning rate
β and the formula θ = θ − β∇θ

∑n
i=1 LTi

(θ′i).

The efficiency of the framework is due to
MAML’s optimization strategy. MAML strength-
ens the task-agnostic adaptability of the model,
enabling efficient parameter fine-tuning on minimal
data to achieve robust performance across unseen
medical image tasks. There exist two advantages
of MAML: the feature extractor not only gener-
alizes foundational patterns from prior knowledge
but also rapidly reconfigures its hierarchical rep-
resentations to capture task-specific discriminative
features, which can obtain a good performance by
small datasets.

Critical to this process is the algorithmic empha-
sis on meta-optimization. By exposing the model
to probabilistically sampled task distributions dur-
ing pre-training, the architecture develops intrinsic
sensitivity to subtle feature variations across modal-
ities. The support-query paradigm further reinforces
this capability, guiding the model to distill trans-
ferable representations while avoiding overfitting to
ephemeral task characteristics.

Algorithm 1 Model-Agnostic Meta-Learning
p(T ): distribution over tasks;
α, β: step size hyperparameters
• randomly initialize θ;
• while not done:
sample batch of tasks Ti ∼ p(T ),
• for all Ti do:
evaluate ∇θLTi

(fθ) with respect to K exam-
ples;
compute adapted parameters with gradient de-
scent: θ′i = θ − α∇θLTi(fθ);
End for
• update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi

(fθ′
i
).



C. Feature Extractor

For breast and axillary lymph node MRI images
in DCE, T2W, and DWI modalities, we deploy
a meta-learning pre-trained ResNet-based feature
extractor. Comprising layer1, the initial convolu-
tional part, and WTConv [18], [19], the identically-
structured extractors for each modality operate in-
dependently. They adapt to anatomical and modal
differences, unearthing unique features despite shar-
ing pre-trained weights.

For breast DCE-MRI images, we first resize them
to 224×224 and normalize. The images then pass
through the initial 7×7 convolutional layer with
a stride of 2. This downsamples the images to
112×112 and increases channels to 64. A 3×3 max-
pooling layer further reduces resolution to 56×56,
keeping channels at 64. Next, the images enter
two BasicBlocks in layer1. Each BasicBlock has
two 3×3 convolutional layers, followed by BN and
ReLU. The first layer captures local features, and
the second extracts complex ones. Without down-
sampling in layer1 BasicBlocks, both convolutional
layers have a stride of 1, maintaining 56×56 size
and 64 channels for low-level feature extraction.

Subsequently, images enter the WTConv mod-
ule. Wavelet transform decomposes images into
different-frequency components. Small convolu-
tional kernels then capture local features at each
frequency: low-frequency for shapes and structures
and high-frequency for details. After convolution,
the inverse wavelet transform recombines compo-
nents into feature maps. These rich-feature outputs
provide important information for subsequent net-
work layers.

D. Cross-anatomical Region and Multimodal Inte-
gration Module

This study introduces a hierarchical multimodal
fusion framework that synergizes DCE, T2W, and
DWI MRI data through three interconnected com-
putational stages to optimize breast lymph dis-
ease diagnosis. Initially, anatomically specific fea-
tures from breast and axillary lymph node re-
gions are extracted in parallel using pre-trained
encoders for each modality, with spatial concate-
nation creating cross-region unified representations
that preserve pathological correlations. These intra-
modal features then undergo cross-modal integra-
tion via a Multimodal Transformer (MulT) ar-
chitecture, where bidirectional attention mecha-
nisms autonomously model diagnostic-relevant in-
teractions—such as hemodynamic linkages between
DCE and T2W sequences—without requiring ex-

plicit data alignment. The final stage enhances clin-
ical interpretability through diagnostic-adaptive fea-
ture refinement, resolving contradictory multimodal
signals (e.g., discordant DWI/T2W intensities) via
gated weighting while dynamically correlating le-
sion enhancement patterns with nodal metabolic
characteristics.

IV. EXPERIMENT

A. Experimental Setup

1) Dataset: Breast cancer MRI and axillary
lymph MRI Dataset contains 1572 from 2 classes
(567 low metastatic burden of axillary lymph nodes
in the breast and 1005 high metastatic burden of
axillary lymph nodes in the breast). The number of
DCE-MRI is 524. The number of DWI-MRI is 524.
The number of T2W-MRI is 524.

2) Baseline: We consider cases of uni-modal
(DCE-only, DWI-only and T2W-only), non-meta-
learning multi-modality, and meta-learning multi-
modality for comparison.

a) Meta-learning Ablation Experiment: To verify
the role of meta-learning in the model, a meta-
learning ablation experiment was conducted. Two
groups of experiments were set up. In one group
(the experimental group), the model was trained
using the feature extractor pre-trained with the
MAML algorithm. In the other group (the control
group), the feature extractor was directly trained
on the breast MRI and axillary lymph node MRI
datasets. The performance of the models in the two
groups was compared to reveal the impact of meta-
learning on the model performance. The feature ex-
tractor we use is a combination of ResNet18.conv1,
ResNet18.layer1 and WTConv. We train all of them
in the meta-learning pretrained part, and we froze
ResNet.conv1 during the training.

b) Uni-modal Experiment: To verify the perfor-
mance improvement of the model brought by multi-
modal MRI, a uni-modal experiment was carried
out. The DCE, T2W, and DWI modal images of
breast MRI and axillary lymph node MRI were
used separately to train the model. Three uni-modal
models were obtained and their performance were
compared to that of the multi-modal model to reveal
the performance improvement effect of multi-modal
fusion on the model.

c) Multi-modal Experiment: To verify the impact
of replacing certain modules on the performance
of the multi-modal model, a series of multi-modal
experiments were conducted. In the original multi-
modal model that integrates modalities such as
DCE, T2W, and DWI, modules like ResNet.layer1



and WTConv were replaced separately. For ex-
ample, ResNet.layer1 was replaced with a newly
designed convolutional block and a simplified neu-
ral network layer, and WTConv was replaced with
convolutional layers of different kernel sizes and di-
lation rates. After the replacements, the model was
retrained, and its performance was compared with
that of the original model using metrics such as ac-
curacy, precision, recall, and F1-score. The impact
of these replacements on the overall performance
of the model was analyzed to explore whether the
performance was improved or degraded.

3) Metric: We use area under the ROC curve
(AUC) as evaluation metrics.

4) Implementation Details: The size of each
input is set to 6×224×224. ResNet18 and WTConv
are selected as the feature extractor. The WTConv
kernel size is 5, and the wavelet level is 3. Our
method is implemented with PyTorch, and the ex-
periments are performed on an NVIDIA RTX A100
GPU. During training, we set the batch size to 8.
Adam optimizer is used for optimization, and the
learning rate is set to 1e − 4 with a weight decay
of 1e − 4. We train 50 epochs for each task.

B. Experimental results

1) Meta-Learning Ablation Experiments: The
AUC value of the experimental group (using a fea-
ture extractor pre-trained based on the MAML algo-
rithm) is 0.84, while the AUC value of the control
group (training the feature extractor directly on the
dataset) is 0.80. The AUC value of the experimental
group is significantly higher than that of the control
group, indicating that meta-learning can effectively
improve the performance of the model. When faced
with the task of determining the metastatic burden
of breast axillary lymph nodes, we can see that the
model can distinguish different situations better and
improve the model’s generalization ability.

2) Uni-Modal Experiments: The AUC values of
models trained with only one modal image of breast
MRI or axillary lymph node MRI are all lower than
that of the multi-modal model. For example, the
AUC value of the DCE modal model is 0.76, the
AUC value of the DWI modal model is 0.71 and the
AUC value of the T2W modal model is 0.68, but
the AUC value of the multi-modal model reaches
0.84. This fully demonstrates that our MRI multi-
modal can integrate the advantageous information
of different modalities and significantly improve the
accuracy of the model in determining the metastatic
burden of breast axillary lymph nodes.

3) Multi-modal Experiments: The AUC value of
the model with the only ResNet18.conv1 as feature

extractor is 0.79. When we replace the feature
extractor by the whole ResNet18, the AUC is 0.76.
In contrast, the AUC of the original multi-modal
model integrating DCE, T2W, and DWI modalities
is 0.84. These results clearly demonstrate that our
original multi-modal model outperforms the models
with alternative configurations. It has a higher abil-
ity to distinguish between different classes, which
implies better performance in practical applica-
tions. This indicates that the integration of multiple
modalities in our model effectively captures more
discriminative information, making it a more robust
and accurate solution for the given task.

TABLE I
EXPERIMENTAL DATA OF THE MODEL FOR JUDGING THE

METASTATIC BURDEN OF BREAST LYMPH NODES

Model & Multimodal MRI AUC
MAML+ our model 0.84

our model 0.80
ResNet18.conv only 0.79

DCE 0.76
DWI 0.71
T2W 0.68

V. CONCLUSIONS

The model based on multimodal neural net-
works and meta-learning proposed in this paper
has achieved good performance in the task of de-
termining the metastatic burden of axillary lymph
nodes in the breast. Through pre-training the feature
extractor and fusing it with multimodal MRI via
meta-learning, our model can fully explore the
information of breast MRIs and axillary lymph
node MRIs, and accurately determine the metastatic
burden of axillary lymph nodes. The results of
the meta-learning ablation experiment and the uni-
modal experiment clearly reveal the role of meta-
learning and multimodal MRI data in enhancing the
model’s performance and would face performance
dropoffs when components of our proposed model
were taken off. This proposed model has valuable
clinical applications and can provide effective sup-
port for the diagnosis and treatments (both invasive
and non-invasive) of breast cancer.
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