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Abstract
Hypergraph neural networks (HNNs) have shown promise
in handling tasks characterized by high-order correlations,
achieving notable success across various applications. How-
ever, there has been limited focus on heterophilic hyper-
graph learning (HHL), in contrast to the increasing atten-
tion given to graph neural networks designed for graphs ex-
hibiting heterophily. This paper aims to pave the way for
HHL by addressing key gaps from multiple perspectives:
measurement, dataset diversity, and baseline model devel-
opment. First, we introduce metrics to quantify heterophily
in hypergraphs, providing a numerical basis for assessing
the homophily/heterophily ratio. Second, we develop diverse
benchmark datasets across various real-world scenarios, fa-
cilitating comprehensive evaluations of existing HNNs and
advancing research in HHL. Additionally, as a novel baseline
model, we propose HyperUFG, a framelet-based HNN inte-
grating both low-pass and high-pass filters. Extensive exper-
iments conducted on synthetic and benchmark datasets high-
light the challenges current HNNs face with heterophilic hy-
pergraphs, while showcasing that HyperUFG performs com-
petitively and often outperforms many existing models in
such scenarios. Overall, our study underscores the urgent
need for further exploration and development in this emerg-
ing field, with the potential to inspire and guide future re-
search in HHL.

HHL Repository — https://kellysylvia77.github.io/HHL
Appendix — https://mingli-ai.github.io/HHL.pdf

1 Introduction
Hypergraph Neural Networks (HNNs) (Prokopchik, Ben-
son, and Tudisco 2022; Chien et al. 2022; Duta et al. 2023; 
Wang et al. 2023) have emerged as powerful tools for captur-
ing high-order correlations in complex data , extending the 
capabilities of traditional Graph Neural Networks (GNNs). 
By modeling relationships among multiple entities through 
hyperedges, HNNs are well-suited for various real-world ap-
plications, including recommendation systems, social net-
work analysis, and bioinformatics (Antelmi et al. 2023; Kim 
et al. 2024). Despite their promise, most existing HNNs pri-
marily focus on scenarios characterized by homophily, that
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Figure 1: Performance comparison between MLP (a graph-
agnostic method) and HNNs on synthetic datasets with vary-
ing homophily rates. The results show that MLP outper-
forms HNNs when the homophily rate is low (≤ 0.5), while
HNNs excel as homophily increases.

is, the assumption that connected nodes share similar at-
tributes or labels. This assumption, while effective in many
cases, limits the generalizability of HNNs to settings where
heterophily is predominant.

Heterophilic graph learning, where connected nodes often
have dissimilar labels, has gained attention in the context of
GNNs, leading to the development of models specifically
designed to handle heterophilic graphs (Zhu et al. 2020;
Zheng et al. 2022; Zhu et al. 2023; Gong et al. 2024; Luan
et al. 2024). However, research on heterophilic hypergraph
learning (HHL) remains limited, leaving a significant gap
in the current literature. Our preliminary empirical investi-
gations, as illustrated in Figure 1, reveal that existing clas-
sic HNNs, such as HGNN (Feng et al. 2019), HyperGCN
(Yadati et al. 2019), and the UniGNN series (UniGCN/Uni-
GAT/UniSAGE/UniGCNII) (Huang and Yang 2021), do not
consistently outperform simpler models like Multi-Layer
Perceptrons (MLPs) when applied to hypergraphs with low
homophily. This observation underscores the need to recon-
sider the design and application of HNNs in heterophilic set-
tings.

This paper aims to address the challenges of heterophilic
hypergraph learning (HHL) by identifying and exploring
key gaps in the current body of research. First, we rec-



ognize the absence of robust metrics for quantifying ho-
mophily and heterophily in hypergraphs (Q1: conceptual
perspective). To address this, we introduce new metrics to
measure homophily/heterophily ratios, providing a more di-
rect and systematic way to evaluate hypergraph structures.
Second, we observe a scarcity of high-quality datasets that
represent non-homophilous applications (Q2: data source
perspective). In response, we develop a diverse collection
of benchmark datasets that capture the complexity of real-
world heterophilic hypergraphs, facilitating comprehensive
evaluations of existing HNNs and driving advancements in
HHL. Finally, to the best of our knowledge, few works
have focused on designing HNNs specifically tailored for
HHL (Q3: methodological perspective). To address this,
we propose HyperUFG, a novel framelet-based HNN that
integrates both low-pass and high-pass filters to effectively
tackle the heterophily challenge. HyperUFG is designed as a
strong yet simple baseline, demonstrating significant advan-
tages over existing HNNs in heterophilic scenarios. Through
extensive experiments on synthetic and benchmark datasets,
we show that HyperUFG not only outperforms current mod-
els but also sets a new standard for future research in HHL.

Our contributions in this work are summarized as follows:
Addressing Q1: Defining Hypergraph Homophi-

ly/Heterophily Ratios. We introduce two methods for mea-
suring homophily and heterophily in hypergraphs, focusing
on the perspectives of hypernodes and hyperedges. Using
these methods, we quantify the homophily of both existing
and newly proposed hypergraphs, providing a robust foun-
dation for evaluating hypergraph structures.

Addressing Q2: Constructing Heterophilic Hyper-
graph Benchmarks. We develop a diverse collection of
high-quality non-homophilic hypergraph datasets, charac-
terized by their large size, broad application scope, and
the intricate interplay between labels and topology. These
datasets enable rigorous experimentation across a range of
existing works on HNNs, advancing the evaluation and un-
derstanding of HHL.

Addressing Q3: Introducing a Novel Baseline for
HHL. We propose HyperUFG, a novel HNN framework
based on framelet transforms, specifically designed to tackle
the heterophily challenge. Comparative experiments with
eight HNN models demonstrate that HyperUFG offers a dis-
tinct advantage in handling heterophilic data, establishing it
as a strong baseline for future research in HHL.

2 Challenge for Heterophilic Hypergraphs:
Observations on Synthetic Data

To better understand the issues and challenges associated
with heterophily in hypergraphs, this section explores the
performance of classical HNNs on synthetic datasets with
varying homophily levels. These datasets include both ho-
mophilic and heterophilic hypergraphs. We begin by defin-
ing appropriate measures of hypergraph homophily, fol-
lowed by an introduction to the hypergraph generation pro-
cess. Subsequently, we analyze the heterophily observed in
the synthetic data and conclude with a discussion on the
limitations of existing HNN models, emphasizing the chal-

lenges posed by hypergraph heterophily.

2.1 Hypergraph Homophily Measures
Existing studies (Wang et al. 2023; Duta et al. 2023) often
apply traditional graph homophily measures, such as the CE
homophily rate (Pei et al. 2020), directly to hypergraphs.
However, this approach is inadequate as it fails to capture the
complex structural characteristics of hypergraphs, thereby
limiting our ability to accurately assess the relationship be-
tween specific information and homophily/heterophily ra-
tios (Veldt, Benson, and Kleinberg 2023; Telyatnikov et al.
2023). To address this gap, we introduce, for the first time,
metrics specifically designed to measure homophily ratios
from both hyperedge and hypernode perspectives (see Def-
initions 1 and 2). To the best of our knowledge, these defi-
nitions are novel and have not been previously explored in
the literature. Importantly, these metrics are not only tailored
for hypergraphs but are also versatile enough to apply to tra-
ditional graphs, which can be considered a special case of
hypergraphs where all hyperedges contain only two nodes
(i.e., a 2-uniform hypergraph). When applied to traditional
graphs, our methods produce results that align with estab-
lished node and edge homophily rates, further demonstrat-
ing their flexibility and generalizability.

Definition 1 [Hyperedge Homophily] This ratio is the av-
erage proportion of node pairs within hyperedges that be-
long to the same class. It is defined as:

Hedge =
1

|E|
∑
ej∈E

|{(u, v) ∈ ej |1(yu = yv)}|
C2

nj

, (1)

where 1(·) is the indicator function (i.e., 1(·) = 1 if the
condition is true, and 1(·) = 0) otherwise. Here, ej (j =
1, 2, . . . , |E|) denotes the j-th hyperedge, and nj represents
the number of nodes within ej .

Definition 2 [Node Homophily] represents the average
proportion of node pairs that belong to the same class across
all hyperedges in which a given node is involved. It is defined
as:

Hnode =
1

|V|
∑
v∈V

1

|Rv|
∑

ej∈Rv

|{(u, v) ∈ ej |1(yu = yv)}|
nj

,

(2)
where Rv =

∑
ej∈E{ej |v ∈ ej} is the set of all hyper-

edges containing node v, and 1(·) is the indicator function
as defined previously. Here, ej (j = 1, 2, . . . , |E|) denotes
the j-th hyperedge, and nj represents the number of other
nodes within ej .

In essence, the degree of homophily in a hypergraph is
determined by the proportion of samples from the same cat-
egory within its hyperedges. A hypergraph is considered ho-
mophilic if its hyperedges predominantly consist of samples
from the same category, and heterophilic if this is not the
case. To illustrate these concepts, we present two toy ex-
amples in Figure 2. In particular, Figure 2 (a) illustrates a
homophilic hypergraph, using a citation network as an ex-
ample. In such networks, hyperedges often consist of sam-
ples from the same research category, reflecting the tendency



ES
Paper

CS
Paper

NS
Paper

ES
Researcher

CS
Researcher

NS
Researcher

Cosmetics Digital
products Headwear

Female
Customer

Male
Customer

Special
Customer

Food

(a) Homophilic Hypergraph

ES
Paper

CS
Paper

NS
Paper

ES
Researcher

CS
Researcher

NS
Researcher

Cosmetics Digital
products Headwear

Female
Customer

Male
Customer

Special
Customer

Food

(b) Heterophilic Hypergraph

Figure 2: Schematic representation of homophilic and het-
erophilic hypergraphs: (a) illustrates a citation network
based on co-authorship, and (b) depicts a product network
based on co-purchase relationships.

of researchers to focus on their specific domains. Although
interdisciplinary collaborations have increased, leading to
co-authored papers across different fields, these remain rel-
atively rare. In contrast, Figure 2 illustrates a heterophilic
hypergraph, using a product purchase network as an exam-
ple. This network is characterized by heterophily, where the
pursuit of a diverse lifestyle leads individuals to make a wide
variety of purchases, resulting in hyperedges filled with di-
verse samples. Additionally, unique user profiles with spe-
cialized purchasing behaviors contribute further to the net-
work’s diversity.

For a more comprehensive explanation of these defini-
tions, please refer to Appendix C.

2.2 Synthetic Hypergraphs
This section provides details on the utilization of the Hy-
pergraph Stochastic Block Model (HSBM) (Cole and Zhu
2020) to generate r-uniform hypergraphs, as described in
Definition 3. The process of generating the necessary hyper-
nodes and hyperedges for a hypergraph involves two specific
steps:

• Defining Nodes and Clusters: We begin by specifying the
total number of hypergraph nodes, n, and the number of
clusters, z. Each cluster is composed of s = n/z nodes,
where n is assumed to be divisible by z;

• Defining Hyperedges: A hyperedge, denoted as e =
{v1, v2, . . . , vr}, connects r nodes. These r nodes belong
to the same cluster with a probability p.

Definition 3 [Hypergraph Stochastic Block Model
(HSBM)] Let C = {C1, C2, . . . , Cz} represent a partition
of the set [n] into z clusters, each containing s = n/z
nodes (assuming n is divisible by z). Each cluster Ci (for
1 ≤ i ≤ z) is a subset of [n]. For constants 0 ≤ q < p < 1,
the r-uniform HSBM is defined as follows:

For any set of r distinct vertices v1, v2, . . . , vr, a hyper-
edge e = v1, v2, . . . , vr is generated with probability p if the
vertices v1, v2, . . . , vr belong to the same cluster in C. If the
vertices are in different clusters, the hyperedge e is gener-
ated with probability q. This distribution of random hyper-
graphs is denoted as H = (n, r, C, p, q). When r = 2, this

Table 1: Homophily ratios for existing datasets.

Datasets Congress Senate House Walmart
Hypernodes, |V| 1, 718 282 1, 290 88, 860
CE homophily 0.555 0.498 0.509 0.530

Edge hom. ratio, Hedge 0.651 0.464 0.485 0.595
Node hom. ratio, Hnode 0.659 0.479 0.505 0.500

model corresponds to the stochastic block models for ran-
dom graphs.

By adjusting the parameters p and q, we can generate
hypergraphs with varying homophily rates. For this study,
we focus on hypergraphs where each hyperedge consists
of 3 nodes (r = 3) and there are 2 distinct sample labels
(z = 2). Under these conditions, the HSBM can generate
hypergraphs with a minimum homophily rate of 0.3. De-
spite this constraint, the seven synthetic hypergraphs with
different homophily rates that we generated are sufficient to
examine and validate the challenges that HNNs face in han-
dling heterophily.

2.3 Empirical Observations
To assess whether HNNs encounter challenges with het-
erophily, we conducted a statistical analysis of several clas-
sical HNNs across seven synthetic datasets with varying ho-
mophily ratios. The performance trends are depicted in Fig-
ure 1. From the observed trends, we derive two key findings:

Observation 1: HNN performance improves as the ho-
mophily ratio increases.

Observation 2: Compared to the graph-agnostic method
MLP, HNNs generally underperform on hypergraphs with
low homophily ratios (Hedge ≤ 0.5) but outperform MLP on
hypergraphs with higher homophily ratios (Hedge > 0.5).

These findings suggest that the prevalent HNN models in-
deed face challenges when dealing with heterophilic hyper-
graphs, an issue that has not been adequately addressed in
the current research. In the following discussion, we explore
the limitations of existing hypergraph representation learn-
ing approaches in the context of heterophily and highlight
the key issues that need to be addressed in this field.

Motivation for Developing New Benchmarks. Recent
studies (Wang et al. 2023; Tang et al. 2024; Duta et al. 2023)
have utilized the CE homophily rate, i.e., a metric typically
applied to graphs (Pei et al. 2020; Zhu et al. 2020; Wu et al.
2024)), to assess homophily in hypergraphs. These stud-
ies tested their methods on four datasets: Congress, Senate,
Walmart, and House, which are presumed to have low ho-
mophily rates. However, upon closer inspection, nearly all
the CE homophily ratios for these datasets are larger than 0.5
(see Table 1 for details), which is ambiguous and therefore
difficult to know whether they are homophilic rather than
truly heterophilic. This ambiguity raises concerns about the
suitability of these datasets as benchmarks for evaluating the
performance of HNNs under heterophilic conditions. Fur-
thermore, these datasets are limited by their relatively small
size and lack of diversity, as they cover similar topics. There-
fore, there is a critical need to develop and introduce higher-
quality datasets that can more accurately capture the het-



erophilic nature of hypergraphs, thereby enhancing the ro-
bustness and relevance of future research in this domain.

3 New Benchmarks of Heterophilic
Hypergraphs

Motivated by the observations highlighted in the preceding
section, we develop a set of novel datasets specifically tai-
lored to evaluate the efficacy of HNNs within heterophilic
contexts. In particular, our objective is to compile datasets
that meet the following basic criteria:

• The datasets are expected to demonstrate heterophily, as-
sessed through the metrics of hypergraph homophily. De-
tailed formal definitions can be found in Definitions 1
and 2 (see Section 2).

• The underlying hypergraph structure is expected to sig-
nificantly impact task performance, highlighting the piv-
otal role of hypergraphs in node classification tasks. To
validate this hypothesis, we perform a comparative anal-
ysis between graph-agnostic MLPs and HNNs. Our hy-
pothesis posits that HNNs will demonstrate superior per-
formance compared to MLPs.

• The datasets should encompass a breadth of diversity,
originating from a variety of domains and exhibiting a
range of distinct structural attributes.Consequently, com-
prehensive profiles detailing key dataset characteristics
are provided for each.

• Graph sizes have been carefully chosen to strike a bal-
ance: sufficiently large to yield statistically significant re-
sults, yet manageable for evaluating heterophily-specific
models outlined in the existing literature, many of which
face scalability constraints. Thus, our dataset selection is
confined to graphs ranging from 10K to 30K nodes.

For each dataset under consideration, we provide a detailed
analysis of its fundamental characteristics, covering essen-
tial metrics such as total nodes, hyperedges, feature sets,
and class labels. Additionally, we present relevant graph
statistics, including hyperedge homophily (defined in Def-
inition 1) and hypernode homophily (outlined in Definition
2). These statistical records are summarized in Table 2.
Actor (co-occurence). The actor co-occurrence network is
derived from the broader movie-actor-director-writer net-
work1, capturing intricate actor co-occurrences within films.
This network reveals complex relationships among films, di-
rectors, actors, and writers distilled from heterogeneous in-
formation networks. Nodes represent individuals involved in
film production (actors, directors, and writers), while hyper-
edges signify collaborations among all individuals on a sin-
gle film project. Node attributes are based on keywords ex-
tracted from Wikipedia, and labels indicate the specific roles
of these individuals within the network.
Amazon-ratings (co-purchasing). This dataset is derived
from the Amazon product co-purchasing network meta-
data2, sourced from SNAP Datasets (Jure 2014). It consists
of nodes representing a diverse array of products such as

1https://www.aminer.org/lab-datasets/soinf/
2https://snap.stanford.edu/data/amazon-meta.html

Table 2: Statistics of the newly developed heterophilic hy-
pergraph.

Datasets Actor Amazon-ratings Twitch-gamers Pokec
Hypernodes, |V| 16, 255 22, 299 16, 812 14, 998
Hyperedges, |E| 10, 164 2, 090 2, 627 2, 406

Avg. hyperedge size 5.43 ± 2.65 3.10 ± 0.62 6.23 ± 3.37 2.29 ± 0.65
Features, d 50 111 7 65
Classes, c 3 5 2 2

Node hom. ratio, Hnode 0.4815 0.4805 0.4893 0.4952
Edge hom. ratio, Hedge 0.4675 0.3677 0.4857 0.4529

books, music CDs, DVDs, and VHS videotapes. Hyperedges
in the network connect products frequently co-purchased by
individual users. The dataset poses the challenge of predict-
ing the average rating assigned by reviewers to each product,
categorized into ten distinct classes. Node features are repre-
sented using the Bag of Words technique (Juluru et al. 2021),
which embeds textual content from product descriptions.
Twitch-gamers (co-create). The Twitch-Gamers network3

is a connected, undirected graph that models relationships
among accounts on the Twitch streaming platform. Hy-
peredges are constructed to represent co-occurrences of
users created within the same timeframe. Each node corre-
sponds to a unique Twitch account, with hyperedges formed
between accounts that mutually follow each other. Node
features encompass a range of attributes, including view
counts, account creation and update timestamps, language
preferences, lifetime activity duration, and status indicating
whether the account is inactive. The primary objective of the
binary classification task is to predict the presence of explicit
content on each channel.
Pokec (co-friendship). Pokec4, the predominant online so-
cial networking platform in Slovakia, provides a robust
foundation for constructing social networks aimed at ana-
lyzing various social attributes. In this network, nodes rep-
resent individual users, while hyperedges encapsulate each
user’s complete set of friends. Each node is categorized by
labels indicating the reported gender of the users. To enrich
the dataset, we extract node features from a comprehensive
array of profile information, including age, hobbies, inter-
ests, education level, geographical region, and registration
timestamp.
More detailed descriptions of these four datasets can be
found in Appendix D.

4 New Baseline for Heterophilic HNNs
Technically, many advanced GNNs for heterophilic graphs
are developed by a special design of both low-pass and high-
pass filters (or more generally, homophily and heterophily
filters) (Bo et al. 2021; Li, Pan, and Kang 2024; Li et al.
2024). That is to say, both low-pass and high-pass filters
play a role in heterophilic graph learning, which we assume
also applies to the hypergraph scenario. Motivated by this in-
sight, we introduce a novel spectral-based hypergraph neural
network for heterophilic hypergraphs.

Consider a hypergraph G = (V, E) consisting of a vertex
set V with N = |V| vertices, and a hyperedge set E with
M = |E| hyperedges. The vertex feature matrix is denoted

3http://snap.stanford.edu/data/twitch gamers.html
4https://snap.stanford.edu/data/soc-Pokec.html



by X ∈ RN×m. Let Lh denote the hypergraph Laplacian,
and U = [u1, · · · ,uN ] be the matrix of the eigenvectors of
Lh, with Λ = diag(λ1, · · · , λN ) as the diagonal matrix of
the eigenvalues.

Framelets over the hypergraph are constructed using a set
of scaling functions ξ = {δ; η(1), · · · , η(k)}, associated with
a filter bank ρ = {a; b(1), · · · b(k)}. These functions satisfy
δ̂(2ϑ) = â(ϑ)δ̂(ϑ) and η̂(r)(2ϑ) = b̂(r)(ϑ)δ̂(ϑ) for any
ϑ ∈ R, where f̂(ϑ) denotes the Fourier transform of f , de-
fined by f̂(ϑ) :=

∑
k∈Z h(k)e

−2πikϑ. Here, k denotes the
number of high-pass filters involved in the construction of
the framelets.

The functions Φj,p(ν) and Ψr
j,p(ν) represent the low-pass

and high-pass framelets at node ν associated with node t at
scale level j ∈ {1, · · · , J} respectively, defined as follows:

Low-pass: Φj,t(ν) =

N∑
p=1

δ̂

(
λp

2j

)
up(t)up(ν), (3)

High-pass: Ψr
j,t(ν) =

N∑
p=1

η̂(r)
(
λp

2j

)
up(t)up(ν),

r = 1, . . . , k, (4)

where up(t) represents the t-th component of the eigenvec-
tor up.

These low-pass (i.e., Eq. (3)) and high-pass framelets
(i.e., Eq. (4)) capture coarse-grained and fine-grained infor-
mation from hypergraph signals. The framelet coefficients
V0,W

r
j ∈ RN×m are respectively the low-pass and high-

pass coefficients, defined as the inner product of framelets
and the hypergraph signal X ∈ RN×m:

V0 = ⟨Φ0,·,X⟩ = U⊤δ̂
(Λ
2

)
UX, (5)

W r
j =

〈
Ψr

j,·,X
〉
= U⊤η̂(r)

( Λ

2j+1

)
UX. (6)

Let Fr,j denote the decomposition operators such that
V0 = F0,JX and W r

j = Fr,jX. Referring to Eq. (5) and
Eq. (6), the framelet transform operators for decomposition
are defined as follows:

F0,J = U⊤â(2−C+J−1Λ) · · · â(2−CΛ)U := U⊤Λ0,JU,

Fr,1 = U⊤b̂(r)(2−CΛ)U := U⊤Λr,1U,

Fr,j = U⊤b̂(r)(2−C+j−1Λ)â(2−C+j−2Λ) · · · â(2−CΛ)U

:= U⊤Λr,jU.

Here, C is chosen to be sufficiently large such that the
largest eigenvalue λmax of the hypergraph Laplacian satis-
fies λmax ≤ 2Cπ.

Theoretically, the tightness of the framelet system is en-
sured by the condition:∣∣∣∣δ̂(λp

2j

) ∣∣∣∣2 + k∑
r=1

∣∣∣∣η̂(r) (λp

2j

) ∣∣∣∣2 = 1.

This condition guarantees the invertibility of framelet de-
composition and reconstruction, that is,

F⊤
0,JF0,JX+

∑
r,j

F⊤
r,jFr,jX = X.

The incorporation of Haar-type filters ensures an efficient
multi-scale system computationally (Dong 2017; Zheng
et al. 2021). For example, for a framelet system with two
scale levels (j = 1, 2) and one high-pass filter (r = 1), the
filters are constructed as described: δ̂(Λ2 ) = cos(Λ8 )cos( Λ

16 ),
η̂(Λ2 ) = sin(Λ8 )cos( Λ

16 ) and η̂(Λ4 ) = sin( Λ
16 ).

To tackle the computational complexities associated with
the eigendecomposition of the hypergraph Laplacian, an
approximation strategy employing Chebyshev polynomi-
als is adopted, inspired by the methods outlined in (Dong
2017). Specifically, fixed-degree Chebyshev polynomials
T0, · · · , Ts are utilized, where filters approximate where fil-
ters a ≈ T0 and b(r) ≈ Tr. Consequently, the operators
defined in Eq. (4) are approximated as follows:

F0,J ≈ U⊤T0(2−C+J−1Λ) · · · T0(2−CΛ)U

= T0(2−C+J−1L) · · · T0(2−CL), (7)

Fr,1 ≈ U⊤Tr(2−CΛ)U = Tr(2−CL), (8)

Fr,j ≈ U⊤Tr(2−C+j−1Λ)T0(2−C+j−2Λ) · · · T0(2−CΛ)U

= Tr(2−C+j−1L)T0(2−C+j−2L) · · · T0(2−CL).
(9)

Based on the hypergraph framelets transform system de-
rived in Eqs. (7, 8, 9), we introduce a novel framelet-based
spectral hypergraph convolution termed HyperUFG. This
formulation incorporates initial residual and identity map-
ping techniques as introduced in (Chen et al. 2020). The
convolution operation is defined as follows:

X(ℓ+1)=σ

((
1− αℓ)

∑
(r,j)∈Γ

F⊤
r,jdiag(θr,j)Fr,jX

(ℓ) + αℓX
(0)

)
·
(
(1− βℓ)I+ βℓΘ

(ℓ)
))

,

where θr,j ∈ RN are the learnable filter, and Γ = {(r, j) :
r = 1, . . . , R, j = 0, 1, . . . , J} ∪ {(0, J)} represents the
index set for all framelet decomposition matrices.

Specifically, HyperUFG employs both low-pass and high-
pass filters within the hypergraph convolution layer, effec-
tively addressing the potential limitations of spatial-based
message-passing that can hinder effective neighbor aggrega-
tion in HHL scenarios. The low-pass components enhance
‘similarity’ among homophilic neighbors, while the high-
pass components emphasize ‘distinguishable’ information
among heterophilic neighbors.

5 Experiments
5.1 Datasets and Experimental Settings
This section explores the potential challenges posed by HHL
on the four newly developed heterophilic hypergraph bench-
marks and evaluates the effectiveness of HyperUFG. We



Table 3: Comparative performance of graph-agnostic MLP and various HNNs on homophilic hypergraphs. The best-performing
model is highlighted in lilac, the second-best in blue, and the third-best in grey.

Methods Cora Citeseer Pubmed Cora-CA DBLP-CA RankEdge hom. ratio, Hedge 0.7462 0.6814 0.7765 0.7797 0.8656

MLP 75.16 ± 1.41 71.71 ± 1.01 87.20 ± 0.34 75.17 ± 1.41 84.37 ± 0.33 10

HGNN 79.39 ± 1.36 72.45 ± 1.16 86.44 ± 0.44 82.64 ± 1.65 91.03 ± 0.20 6
HyperGCN 78.45 ± 1.26 71.28 ± 0.82 82.84 ± 8.67 79.48 ± 2.08 89.38 ± 0.25 9
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 88.25 ± 0.40 83.60 ± 1.14 91.69 ± 0.19 4
HyperND 79.20 ± 1.14 72.62 ± 1.49 86.68 ± 0.43 80.62 ± 1.32 90.35 ± 0.26 8

AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 88.75 ± 0.33 81.97 ± 1.50 91.27 ± 0.27 7
AllSetTransformer 78.58 ± 1.47 73.08 ± 1.20 88.72 ± 0.37 83.63 ± 1.47 91.53 ± 0.23 5

ED-HNN 80.31 ± 1.35 73.70 ± 1.38 89.03 ± 0.53 83.97 ± 1.55 91.90 ± 0.19 2nd
SheafHyperGNN 81.30 ± 1.70 74.71 ± 1.23 87.68 ± 0.60 85.52 ± 1.28 91.59 ± 0.24 3rd

HyperUFG 81.51 ± 0.99 74.72 ± 2.10 88.73 ± 0.42 85.18 ± 0.69 91.67 ± 0.31 1st

Table 4: Comparative performance of graph-agnostic MLP and various HNNs on heterophilic hypergraphs. The best-performing
model is highlighted in lilac, the second-best in blue, and the third-best in grey.

Datasets Actor Amazon-ratings Twitch-gamers Pokec Senate House RankEdge hom. ratio, Hedge 0.4675 0.3677 0.4857 0.4529 0.4642 0.4851

MLP 85.45 ± 1.21 26.70 ± 2.82 52.77 ± 1.81 56.92 ± 2.46 52.25 ± 5.17 51.86 ± 2.34 4

HGNN 74.47 ± 0.32 23.79 ± 0.24 51.88 ± 0.26 49.82 ± 0.27 48.59 ± 4.52 61.39 ± 2.96 8
HyperGCN 68.67 ± 4.38 22.53 ± 3.94 51.32 ± 1.02 52.43 ± 3.68 42.45 ± 3.67 48.32 ± 2.93 10
UniGCNII 80.48 ± 1.13 26.63 ± 1.32 50.84 ± 0.76 54.25 ± 2.70 49.30 ± 4.25 67.25 ± 2.57 7
HyperND 92.52 ± 0.81 26.08 ± 0.33 51.44 ± 0.67 55.94 ± 0.45 52.82 ± 3.20 51.70 ± 3.37 5

AllDeepSets 82.00 ± 2.33 18.60 ± 0.17 50.72 ± 0.96 51.11 ± 1.04 48.17 ± 5.67 67.82 ± 2.40 9
AllSetTransformer 83.39 ± 1.73 18.60 ± 0.17 50.45 ± 0.76 58.40 ± 0.42 51.83 ± 5.22 69.33 ± 2.20 6

ED-HNN 91.86 ± 0.43 26.21 ± 0.36 50.86 ± 0.88 59.11 ± 0.57 64.79 ± 5.14 72.45 ± 2.28 2nd
SheafHyperGNN 80.09 ± 2.45 26.93 ± 3.04 51.03 ± 0.76 55.34 ± 4.39 68.73 ± 4.68 73.84 ± 2.30 3rd

HyperUFG 89.32 ± 0.75 40.53 ± 2.25 52.35 ± 0.04 62.30 ± 0.12 67.61 ± 7.00 72.82 ± 2.22 1st

perform extensive performance comparisons across vari-
ous baselines for HHL, utilizing both the newly introduced
datasets and seven existing benchmark datasets. To facili-
tate this, we categorize the datasets into two groups, i.e.,
homophily and heterophily, based on the homophily ra-
tios Hnode and Hedge (see Definitions 1 and 2 in Section
2). Specifically, datasets with homophily ratios exceeding
0.5 are classified as homophilic, while those with lower
ratios are deemed heterophilic. For all new benchmarks,
we utilize feature vectors, class labels, and ten random
splits (40%/20%/40%of nodes per class for training/valida-
tion/testing, respectively). The dataset details are summa-
rized in Tables 2 (for our developed datasets) and Table S-1
(in Appendix A) for the existing benchmark datasets. We
compare HyperUFG with MLP, HGNN (Feng et al. 2019),
HyperGCN (Yadati et al. 2019), UniGCNII (Huang and
Yang 2021), HyperND (Prokopchik, Benson, and Tudisco
2022), AllDeepSets and AllSetTransformer (Chien et al.
2022), ED-HNN (Wang et al. 2023), and SheafHyperGNN
(Duta et al. 2023). We train the model for a total of 1,000
epochs, employing early stopping with a patience thresh-
old of 200 epochs. The experiments are conducted on a
Tesla V100 GPU with 32GB of memory. The baseline re-
sults are reproduced using their publicly available code,
with hyperparameters set according to the original papers.
We utilize grid search to fine-tune the key hyperparameters

via the lightweight but powerful toolkit NNI (https://nni.
readthedocs.io/en/stable/). Additional details can be found
in Appendix A and Appendix B.

5.2 Results and Discussion
We conduct a thorough evaluation of HyperUFG’s per-
formance across hypergraphs characterized by varying de-
grees of homophily, encompassing both homophilic and
heterophilic hypergraphs. This evaluation includes a de-
tailed comparative analysis of the performance of estab-
lished HNNs specifically on heterophilic hypergraphs. The
results of this comparison are presented in Table 4, which
highlights the effectiveness and limitations of these models
when applied to heterophilic structures. In addition to this,
we extend our study by incorporating findings from peer-
reviewed research on HNNs in the context of homophilic
hypergraphs. These findings, drawn from (Wang et al. 2023),
provide a benchmark for understanding the performance of
HNNs under conditions of high homophily and are detailed
in Table 3. By comparing the performance data from both
homophilic and heterophilic settings, we gain valuable in-
sights into how the structural properties of hypergraphs in-
fluence the efficacy of these neural networks.

The combined data from Tables 3 and 4 allow us to make
several significant observations. These include variations in
model performance depending on the degree of homophily



present in the hypergraph, the relative strengths and weak-
nesses of different HNN architectures in handling diverse
hypergraph structures, and the implications of these find-
ings for future research and application of HNNs in complex
graph domains. These observations are discussed in detail in
the following, providing a comprehensive understanding of
the behavior of HyperUFG and related models across differ-
ent types of hypergraphs.
Observation 3: Hypergraph neural networks perform ef-
fectively in handling tasks on homophilic hypergraph
data. The performance of all comparative models on ho-
mophilic hypergraphs is markedly superior to that of the
graph-agnostic model MLP, as evidenced in Table 3. This
superiority can be largely attributed to the benefits of hy-
pergraph filtering, which effectively aggregates informa-
tion from homophilic relationships, thereby enhancing the
model’s ability to capture relevant structural features. This
finding is consistent with empirical observations reported
in related works on HHL, where similar performance gains
have been noted in homophilic settings.
Observation 4: Most existing hypergraph neural net-
works face challenges when dealing with heterophilic hy-
pergraph data. Table 4 reveals that the majority of HNNs
underperform relative to MLP, particularly on the Twitch-
gamers dataset, where MLP outperforms all other baselines.
This underperformance is likely due to the detrimental effect
of heterophilic relationships on the efficacy of hypergraph
filtering, which may result in the incorporation of informa-
tion that is misaligned with the inherent features of the data,
leading to less effective inductive representations. This new
finding has not received sufficient attention in related HHL
studies, as these works predominantly restrict their analysis
to homophilic settings, overlooking the challenges posed by
heterophilic hypergraph data.
Observation 5: HyperUFG shows relatively strong per-
formance across both homophilic and heterophilic hy-
pergraph data. As shown in Tables 3 and 4, HyperUFG
consistently outperforms other baseline models on both ho-
mophilic and heterophilic hypergraphs. Notably, HyperUFG
shows a significant performance advantage on heterophilic
hypergraphs, indicating its ability to effectively manage the
complexities associated with diverse hypergraph structures.

5.3 Comparison of Homophily/Heterophily
Metrics

In this study, we introduce two sets of synthetic datasets,
each constructed using different homophily measurement
approaches, namely, hyperedge homophily and node ho-
mophily, to evaluate the performance of MLP, various
HNNs, and HyperUFG. The statistics of these synthetic
datasets, categorized by hyperedge homophily and node ho-
mophily, are summarized in Table 5. The comparative per-
formance results are illustrated in Figure 3.

As shown, HyperUFG generally outperforms other base-
line models across a range of homophily settings. A no-
table observation is that most baseline models perform
worse than MLP when homophily levels are low (i.e., when
Hedge/Hnode < 0.5). However, methods such as ED-HNN
and SheafHyperGNN, which incorporate strategies to ad-

Table 5: Statistics of synthetic hypergraphs.

Setting in HSBM: n = 10000, r = 3, z = 2

Hyperedge hom. ratio, Hedge 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p 0.01 0.1 0.3 0.5 0.6 0.5 0.9
q 0.99 0.6 0.8 0.6 0.5 0.2 0.2

Node hom. ratio, Hnode 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p 0 0.1 0.3 0.5 0.6 0.5 0.9
q 1 0.6 0.8 0.6 0.5 0.2 0.1
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Figure 3: Baseline performance comparison under different
homophily ratios.

dress heterophily, are able to manage the challenges posed
by low homophily, though they experience some perfor-
mance degradation as homophily increases, indicating inher-
ent limitations. Overall, HyperUFG demonstrates good per-
formance across various homophily conditions, highlighting
its adaptability and effectiveness in diverse settings.

6 Conclusion

In this paper, we have explored the underrepresented area of
heterophilic hypergraph learning (HHL) within the broader
context of hypergraph neural networks (HNNs). While
HNNs have shown significant promise in tasks involving
high-order correlations, our study highlights the critical gaps
that exist when these models are applied to heterophilic hy-
pergraphs. To address these gaps, we first introduce new
metrics to quantify homophily/heterophily ratio for hyper-
graphs. Then, a diverse set of benchmark datasets across var-
ious real-world scenarios, which serve as essential tools for
evaluating existing HNNs and advancing research in HHL,
are developed. Additionally, we propose HyperUFG, a novel
framelet-based HNN that leverages both low-pass and high-
pass filters, offering a new baseline for future studies on
HHL. Our extensive experiments on synthetic and bench-
mark datasets reveal that many current HNNs struggle with
heterophilic hypergraphs, often underperforming compared
to simpler models like MLP. However and surprisingly, Hy-
perUFG demonstrates strong and competitive performance
across various settings, frequently outperforming existing
models, especially in heterophilic scenarios. Overall, our
work sets the stage for further exploration and development
in this emerging field, and we expect our findings to inspire
and guide future research efforts towards advancing HHL.
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